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Chapter 5 Magnetostatics Tsun-Hsu Chang

5.1 The Lorentz Force Law 5.1.1 Magnetic Fields

By analogy with electrostatics, why don’t we study
magnetostatics first? Due to lack of magnetic monopole.
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If one tries to isolate the poles by cutting the magnet, a
curious thing happens: One obtains two magnets. No matter
how thinly the magnet is sliced, each fragment always has
two poles. Even down to the atomic level, no one has found
an Isolated magnetic pole, called a monopole. Thus
magnetic field lines form closed loops.



The Magnetic Field

Outside a magnet the lines emerge from the north pole
and enter the south pole; within the magnet they are
directed from the south pole to the north pole. The dots
represent the tip of an arrow coming toward you. The
cross represents the tail of an arrow moving away.
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How a current-carry wire
produces a magnetic field?



The Magnetic Field of a Bar Magnet

When iron filings are sprinkled around a bar magnet, they
form a characteristic pattern that shows how the influence
of the magnet spre
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The magnetic field, B, at a point along the tangent to a
field line. The direction of B is that of the force on the north
pole of a bar magnet, or the direction in which a compass
needle points. The strength of the field is proportional to
the number of lines passing through a unit area normal to
the field (flux density).



Definition of the Magnetic Field

When defining the electric field, the electric field strength
can be derived from the following relation: E = F/g. Since an
Isolated pole is not available, the definition of the magnetic
field Is not as simple.

Instead, we examine how an electric charge is affected by
a magnetic field. i
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F=qvxB s

F =qvBsino L /—/ // N

Since F is always perpendicular to v, a magnetic force
does no work on a particle and cannot be used to change
its kinetic energy.

The Sl unit of magnetic field is the Tesla (T). 1 T =104 G




The Lorentz Force Law

When a particle is subject to both electric and magnetic
fields in the same region, what is the total force on it?

F=¢g(E+ vxB)

NG NS 3

This is called the Lorentz force law. This axiom is found in
experiments.

dWinag = Fnag -dl = q(vx B)-vdt =0

Magnetic forces do no work.

Really? But, how do you explain a magnetic crane lifts a
container?



Force on a Current-Carrying Conductor

When a current flows in a magnetic field, the electrons as
a whole acquire a slow drift speed, v4, and experience a
magnetic force, which is then transmitted to the wire.
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Electron's thermal speed:
F=I1IxB [3KT

_ lmthZh :EkT = Vi~ % =1.18x10°m/s

F =1/Bsin0 2 2 Me

Vth = Vd

n: the number of the conductor per unit volume.
| : defined to be in the direction in which the current is flowing.



Force on a Current-Carrying Conductor

The force on an infinitesimal current element is

dF = 1dl xB

The force on a wire is the vector sum (integral) of the forces
on all current elements.



Example:
The Magnetic Force on a Semicircular Loop

A wire Is bent into a semicircular loop of radius R. It carries a

current |, and its plane Is perpendicular to a uniform
magnetic field B, as shown below. Find the force on the loop.

Solution:

dF = 1dIxB
dFy = |[RBsin6dO

Fy = IRB| ) sin0do
—2IRB = I(2R)B

The x-components of the forces on such elements will cancel
In pairs.

The net force on any close current-carrying loop is zero.



The Motion of Charged Particles in Magnetic Fields

How does a charged particle move with an initial velocity v
perpendicular to a uniform magnetic field B?

Since v and B are perpendicular, the particle experiences a
force F = gqvB of constant magnitude directed perpendicular.
Under the action of such a force, the particle will move in a
circular path at constant speed. From Newton’'s second law,
F =ma, we have
mv* mv
QgvB=— = r=—
r gB
The radius of the orbit is directly proportional to the linear

momentum of the particle and inversely proportional to the
magnetic field strength.
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Cyclotron Motion Tsun-Hsu Chang

What are the frequency and the period? Are they independent
of the speed of the particle? Yes.

The period of the orbit is

T:275r :2ﬂm:(ﬂ]2_ﬂ
1% qbB q ) B
1 gB (q)\B
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The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, g/m, have

the same period and cyclotron frequency.
10



Example: Cyclotron

A cyclotron is used to accelerate protons from rest. It has a
radius of 60 cm and a magnetic field of 0.8 T. The potential
difference across the dees is 75 kV. Find: (a) the frequency of
the alternating potential difference; (b) the maximum kinetic
energy; (c) the number of revolutions made by the protons.

Solution: 0B
=——=12 MH
@ o= 2m -
2

B _
(b) Kmax=(qr“;" ) 176x10721 =11 MeV
m

(c) AK=2¢gV =150 keV
K /AK =11000/150=73.5 revs.

max
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Helical Motion

What happens if the charged particle’s velocity has not only a
perpendicular component v. but also a parallel component vi/?

Helical Motion.
™
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The perpendicular component vi gives rise to a force qv.B
that produces circular motion, but the parallel component
vi IS not affected. The result iIs the superposition of a
uniform circular motion normal to the lines and a constant
motion along the lines.

12



Example: Cycloid Motion

Suppose, for instance, that B points in the x-direction, and E
In the z-direction. A particle initially at rest is released from
the origin; what path will it follow?

<
TE
y a b c y
%

X

Solution:
1. Write down the equation of motion.
2. Solve the coupled differential equations.

3. Determine the constants using the initial conditions.
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Magnetic Bottle/Mirror

What happens if the magnetic field is not uniform? Energy
transfers between the perpendicular and parallel components.

M\)\J@W@ﬂ

In a nonuniform field, the particle experiences a force that
points toward the region of weak field. As a result, the
component of the velocity along the B lines is not constant.

If the particle is moving toward the region of stronger field,
as some point it may be stopped and made to reverse the
direction of its travel.
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Velocity Selector

L J

X | X | X FB X | X| % Y
1Bt { #q<+>—-——;» vy VYE '
| x| x Fel x | x| x X
’ Y%
E=-Ej E. .
—>V=—1=VI
B =-Bk B

Only those particles with speed v = E/B pass through the
crossed fields undeflected. This provides a convenient
way of either measuring or selecting the velocities of
charged particles.
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Mass Spectrometer

A mass spectrometer is a device that separates charged
particles, usually ions, according to their charge-to-mass
ratios.
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Example: Mass Spectrometer

In a mass spectrometer shown below, two isotopes of an
element with mass m;, and m, are accelerated from rest by
a potential difference V. They then enter a uniform B
normal to the magnetic field lines. What is the ratio of the

radii of their paths? H;ﬁ)l
Solution: H P
: = RS
oo [V vy
p= VMY en r/ry=./(my/my) e
qB Y\ gB?

Notel: How particle is accelerated by a potential difference?
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Current and Surface Current

The current in a wire Is the charge per unit time passing a
given point.

Current is measured in coulombs-per-second, or amperes (A).

1A=1C/s

The surface current density, K, is defined as follows:
Consider a “ribbon” of infinitesimal widthd ¢, , running parallel
to the flow. Then,

di

K =
de,

In words, K is the current per unit width-perpendicular-to-flow.

d (d (GEL()// )) surface charge density
_dl dt d/l
K=_"_x o —L=0cV
de, de, dt

18



Volume Current Density

The volume current density, J, is defined as follows:

consider a “tube” of infinitesimal cross section da., running
parallel to the flow. Then,

;_ d

da,

In words, J is the current per unit area-perpendicular-to-flow.

d (d (paL f//)) volume charge density

di dt d’l,
J:—z = — = =0V
da, da, Pt P

19



Conservation of Charge

The current crossing a surface S can be written as

I:j-J-ﬁda

In particular, the total charge per unit time leaving a volume
Vis
. d
]z(_f)J-nda :I(V-J)drz——Q
S V

dt
dQO d
here = =—| odr.
WIS dszr
op __0p
}[(V J)dr———jpdr——j dr = V-J——at

contlnuity equation
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5.2 The Biot-Savart Law 5.2.1 Steady Currents

Stationary charges produce electric fields that are constant
In time. Steady currents produce magnetic fields that are
also constant in time.

Stationary charges = constant electric fields; electrostatics.
Steady currents = constant magnetic fields; magnetostatics.

Steady current means that a continuous flow that goes on
forever without change and without charge piling up
anywhere. They represent suitable approximations as long
as the fluctuations are reasonably slow.

V-J=0

21



5.2.2 The Magnetic Field of a Steady Current

The Biot-Savart law:

B(r) = U, J'lef,dl,_,uolj'dl'x"a

4ird 47 47 ™

The integration is along the current
path, in the direction of the flow.
Uy the permeability of free space.

Definition of magnetic field B: newtons per ampere-meter
ortesla(T). 1T=1N/(Am)

The Biot-Savart law plays a role analogous to Coulomb’s
law In electrostatics.

22



Example 5.5 Find the magnetic field a distance s from a long
straight wire carrying a steady current 1.

Wire segment

Sol :

' Ho
B(r) =
( ) 47 /-,,2 47 A,

IX"vdl,:lLlolj‘dl 2"»

Then, determine the suitable coordinate: cylindrical coordinate (s, @, z).

In the diagram, (dl’ x 4)) points out of page ¢? and has the magnitude
dl'sina =dl'cos

I'=stan@ = dI' = ssec® 6d0 and l _ cos

v S

23



Contd. 7

IJAdl’XAQ:,uOI i cos’0 s

2 2 2
Y 4 s° cos @

T

2

cos@db

H
B(r) =
(r) 4

. 6" _ Ml (=2x107" d Tesla)
Azs 5 27s s

What is the force between two parallel current-carrying wires?

dF = Idl xB 11A A12
dF =1, Hol, dl = Hol 1, dl )

*27d 27d Bkl
d_F_ Hol\ 1,

(attractive force per unit length, why?)



Example 5.6 Find the magnetic field a
distance z above the center of a circular
loop of radius R, which carries a steady
current /.

Hol
Sol: B(r)=
° () 472'"‘/-,_,

dl' x 4,
2

Choose cylindrical coordinate (s, ¢, z).

In the diagram, (dl’' x 4) sweeps around the z axis,
thus only the z-component survives.

z-component of (dlI'x ) =dl’'coséd = Rcosfd¢

1 1 R
e = (Rz _l_Zz) and cosf = (R2 +Zz)1/2

R2
B(2) = 1| 1 R A

2nR =
i (RE+2) (RR+ )2 2 (RE+ )P

25



The Biot-Savart Law
for the Surface and Volume Current

IXﬁ:dl,:luOIJ‘dl’x’;

2 2

The Biot-Savart law: B(r) = o j

4 4 4r A,
. H (Kxa
For surface current: B(r) = j —da
4 4
For volume current: B(r) = Ho _[J X;' dr’
A’ &
For a moving charge: Wrong, why?

b=t [ 125 g o OIS v
4 4T ¢ Ar 4

A,
A point charge does not constitute a steady current.

26



The Magnetic Field of Solenoid

£606000C000CE0
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Solenoid
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S
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Problem 5.10 A solenoid of length L
and radius a has N turns of wire and
carries a current I. Find the field
strength at a point along the axis.

a

Solution: | a8

Since the solenoid is a series of closely
packed loops, we may divide into current
loops of width dz, each of which contains
ndz turns, where n = N/L is the number of
turns per unit length.

The current within such a loop is (ndz)l.

28



Solenoid (lIl)

Contd.
z=atan = dz = asec’0d0O
nldz = nlasec’60do 0, 01 ¢
. }“MMMM 2
_ 0 2
Bts = 2(a” +a* tan” )2 Hlasee 0o i u(_)nl\tB
Y
= % Lonl cos 0d6 :L ____________
0 1 /|
B=|"—uynl cos@df |
_[91 2'UO 7 22
= % Honl (sin &, —sin 6)) ®)

B = pynl (1infinite long solenoid)



Homework of Chap. 5 (part 1)

Problem 5.9 Find the magnetic field at point P for each of the steady /{7 R
NG
P *T %---
(a)

current configurations shown in Fig. 5.23.

(b)

Problem 5.10
(a) Find the force on a square loop placed as shown in Fig. 5.24(a), HIGTRE 23
near an infinite straight wire. Both the loop and the wire carry (T N
a steady current | . a’ i
(b) Find the force on the triangular loop in Fig. 5.24(b). — ¥ =

Problem 5.11 Find the magnetic field at point P on the axis A
of a tightly wound solenoid (helical coil) consisting of n turns
per unit length wrapped around a cylindrical tube of radius a
and carrying current | (Fig. 5.25). Express your answer in
terms of &y and &, (it's easiest that way). Consider the turns
to be essentially circular, and use the result of Ex. 5.6. What

iIs the field on the axis of an infinite solenoid (infinite in both
directions)?

FIGURE 5.25
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Homework of Chap. 5 (part 1)

Problem 5.41 A current | flows to the right through a rectangular

bar of conducting material, in the presence of a uniform magnetic

field B pointing out of the page (Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by
the magnetic field? This deflection results in an accumulation of charge on the
upper and lower surfaces of the bar, which in turn produces an electric force to
counteract the magnetic one. Equilibrium occurs when the two exactly cancel.
(This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and

bottom of the bar, in terms of B, v (the speed of the charges), and the relevant

dimensions of the bar.23
(c) How would your analysis change if the moving charges were negative? [The

Hall effect is the classic way of determining the sign of the mobile charge
carriers in a material.]

FIGURE 5.56
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Homework of Chap. 5 (part 1)

Problem 5.50 Magnetostatics treats the "source current” (the one that sets up the

field) and the "recipient current” (the one that experiences the force) so asymmetrically
that it is by no means obvious that the magnetic force between two current

loops is consistent with Newton's third law. Show, starting with the Biot-Savart law
(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to

loop 1 (Fig. 5.61) can be written as

__Ho 2l
F, = 4ﬂ1112§f>95r2d11 dl,. (5.91)

In this form, it is clear that F, = —Fj, since 4 changes direction when the roles of
1 and 2 are interchanged. (If you seem to be getting an "extra" term, it will help to
note that dl, -4 =dr.)

’:rl//‘\_.
L

e

dl,

FIGURE 5.61
32
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5.3 The Divergence and Curl of B Tsun-Hsu Chang

5.3.1 Straight-Line Currents
The magnetic field of an infinite straight wire:

B(r) =204

The integral of B around a circular path of radius s, centered
at the wire, is:

I ~

(_f)B(r) dl = <_f>’u0 ¢Sd(p=,u0]
27TS

In fact for any loop that encloses the wire would give the

same answer. Really?
33



The Differential Form of B

Suppose we have a bundle of straight wires. Only wires

that pass through the loop contribute pyl.
The line integration then be

PB)-dl= tlepe oo = [I-da

/

The total current enclosed
by the integration loop.

$B-dl=[(VxB)-da= uyJ-da
VxB=pyd

Does this differential equation apply to any shape of the
current loop? Yes. To be proved soon.

34



5.3.2 The Divergence and Curl of B

(X, ,2)

The Biot-Savart Law for the y

0t
general case of a volume

(x', e
current:
B 1s a function of (x, y, z),
B(r) = Ho (J (1")2>< ~ 7' Jisa furAlction of (x:, V', z"), A
47 A 4=(x—-x)X+(y—y)Yy+(z—-2)z

dt' =dx'dy'dz’

The integration is over the primed coordinates.

The divergence and the curl are to be taken with
respective to the unprimed coordinates.

35



The Divergence of B

The divergence of B:
Jx x4 Jx x4
V-B(r):V-(’uoj ( )2 a’z')— j.V( ( ) )drt

V. (J(r)zx"’) ; (Vxd) - J-(Vx—z)

v "v v

V- (AxB)=B-(VxA)—A-(VxB) 4

——V( ) (Prob. 1.13)

vv“”” =% <//<r>> J/)

V. B 0 The divergence of a magnetic field is zero.

36



The Curl of B
The curl of B:
J(r')x4

’7/2

V(AR —(9/V)A (A-V)B+A(V-B) )a/(v A3
\ \)\ primed

unprimed  primed +unprimed 019 be seen next

VxB= “ij( )dz'

%«‘"‘3“) 1) - (/%%
Vx (N < 3(V-2) = 3475° D) (sce 15

L VxB =247 {1\ (R)dr = pd(r)
4

VxB=puJ The curl of B equals g, times J.

37



A Special Technique

j (J-V) i dr' =0 Let’s prove that this
2 Integration is zero.

(V) =-(J-V) >,
special technique * v A

| where 4 =(r—r')
V- (fA)=Vf-A-f(V-A)

Using the above rule, the x component is:
, 0, for steady current

/

nX X , X_X' X—X ,
J- V)" =V (=0 - (V'J)
ki = v 0, since J(r'@«)=0
[0 = [ i = G2 - =0
g7 A A A,

What happens if J(r') #0

38
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5.3.3 Applications of Ampere’s Law Tsun-Hsu Chang
VxB=J Ampere'slaw in differenti al form /"
[(vxB)-da= ¢  B-dl=]upd-da=splenc

amperian loop

<ﬁ B xdl = uplenc  Ampere's law in integral form”

amperian loop

Just as the Biot-Savart law plays a role in magnetostatics
that Coulomb’s law assumed in electrostatics, so
Ampere’s play the role of Gauss'’s.

Electrostatics: Coulomb - Gauss
Magnetostatics: Biot-Savart > Ampere

39



Applications of Ampere’s Law

Like Gauss’s law, Ampere’s law is always true (for steady
currents), but is not always useful.

Only when the symmetry of the problem enables you to
pull B outside the integral can you calculate the magnetic
field from the Ampere’s law.

These symmetries are:

1. Infinite straight lines

2. Infinite planes (Ex. 5.8)

3. Infinite solenoids (Ex. 5.9)
4. Toroids (Ex. 5.10)

40



Infinite Straight Wire

Example An infinite straight wire of radius R carries a current 1.

Find the magnetic field at a distance r from the center of the
wire for (a) r >R, and (b) r <R. Assume that the current is
uniformly distributed across the cross section of the wire.

Solution:
® B
(@) §B.di=B2rr=

_ Mol
B_?Or (r>R)

(b) 2

Tr
B-dl=B2nr = yn —-1
& T IUORRZ

(b)

=0l v (r<R
21 R? ( )

- <) R, I S -

41



Infinite Planes

%
Example 5.8 Find the magnetic field Sheet 0fcurrent| K

of an infinite uniform surface y /4
current K = K%, flowing over the xy y

plane. =

—— Amperian loop
X [

Solution:

$B-dl = B2 = oK o {,uOKIZy for z<0

B:% —u,K /29 forz>0

42



Solenoid

Example 5.9 An ideal infinite solenoid has n turns per unit
length and carries a current I. Find its magnetic field inside.

Solution:
$B-di di—====m—mv e
| |

b C d a : |
.%B-dIerB/dPr c i d -dl OOOOOOOOOO
_(°B.dl b i

va. .
BLap = sonlgpl | 900@99

B = ugnl

43



Toroid

Example 5.10 A toroidal coil (shaped like a doughnut) is
tightly wound with N turns and carries a current I. We
assume that it has a rectangular cross section, as shown
below. Find the field strength within the toroid.

Solution:

$B-dl = 1y NI
B HoM
21y

The field is not uniform; it varies
as 1/r. The toroidal fields are
used in research on fusion power.

a4



5.3.4 Comparison of Magnetostatics and Electrostatics

-

o,
V-E= = Gauss’s law
0

<

VxE=0 (- a_B) No name (Faraday’s law)

! Ot

V-B=0 Gauss’s law for magnetic field

y OE

VxB=uJ (+1,&, 5) Ampere’s law (Ampere-Maxwell law)

F=q(E+vxB) Lorentz's force law

/

(a) Electrostatic field (b) Magnetostatic field
of a point charge of a long wire 45



EM

4. Magnetic Vector Potential Tsun-Hsu Chang

1. The Vector Potential

VxE=0<E=-VV and V-E=L=vy=-_F£
50 8
V.B=0=B=VxA and VxB=uJ=V(VA)- VA = 0J

Is it possible forustoset V-A=0 7?7 Yes.

The Coulomb gauge
Proof: IfV-A,#0,kt A=A, +VAi=>B=VxA ,=VxA
IfV-A=0, then V°A=-V. Ay < similiar to Poisson's equation

V2V=—p/50 V = jpdr
72'50

4
V-Ag

1
Vii=-V-A, A=
0 47zj y

Itis always possible to make the vector potential divergenceless.



The Vector Potential and Scalar Potential

Using the Coulumb gauge, we obtain: VA =— Hod
A=H0 IJ(r dr’
For line and surface current,

A=t Ly A= “OjK(r da’
A4 4,

What happens when the curl of B vanishes?

Magnetostatic scalar potential.
vxB=0 = B=-VU
— V2U =0 (similiar to Laplace's equation)

a7



Example 5.11 A spherical shell, of radius R, carrying a
uniform surface charge o, is set spinning at angular velocity
. Find the vector potential it produce at point r.

Sol: First, let the observer is in the z axis and w is tilted at an angle

<y

Vector potential is A(r) = Ho j ) da’
A’ A
The surface current density K(r') = ov’
X ¥ Z
vVi=oxXr'=| wsiny 0 W CoS Y/
Rsinf'cos¢’ Rsin@'sing’ Rcosl

= Raw|[—(cost sin @'sin ¢') X + (cosiy sin @' cos @’ —siny cos @) y + (siny sin &'sin ¢') 7]
48



A(r) = /10 ij( cosz//sm R2 sin0'd0'd
Jr* + R —2rRcos 0
| Mo r Roo(cosy sin (cos ¢ siny cos8")y R

A Jr? + RE=DrRcosd'
1,O -Ra)(sml//smé(gn?)z 2 e g
+ R sm&'dO'dg

\ -

47 ° r* + R* —2rRcos @

—R’ocwsinwu,y
A(r) = Wi,y J‘ —
A Jr2 + R* —2rRcos &'

_ “Riowsinyy,y (27[)_[ —C0s0 d cos &’
\/ 2

A +R*—2rRcos b’
_ —,u0R30'a)smt//yj U Ju
2 N2+ R* —2rRu
2
J‘+1 s dy = — (R +r +Rm)\/R2+r —2Rru i
_ 2 2
1\/R2+r —2Rru 3R"r
1

== (R 4P RO R | (R 477 = R)(R +7)]
r

sin@'df'd ¢’

cos 0 sin0'd0'd '

49



—u,Rowsnyy (R°+r°+Rr)|R—r|—(R*>+r> —Rr)(R+7r)
A(r) = (— 5 5 )
2 3R"r
a Ofo- (o xr) inside
A(r) =+ Iy
A (; 30- (0 xr) outside
. 3r

Reverting to the “natural” coordinate, we have
HyRwo rsin ¢9¢3, r<R

A(r,0,0) =+ 4 .
,UoR3 )] 511126’ b.r>R
X r

2,LloRCOO'

2 2

B=VxA= (cos OF —sin 0@) = = HoRowz = 2 HoRow

Surprisingly, the field inside the spherical shell is uniform.
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Example 5.12 Find the vector potential
of an infinite solenoid with n turns per
unit length, radius R, and current I.

Sol: [B-da=®= [(VxA)-da=A-d
where @ is the flux of B through the loop in question.
PB-dl=pplee = PA-dl=0

Using a circular "amperian loop" at a radius inside the solenoid.

@A-dl:A27zs:jB-da:,uonl(7zsz) = A:’uo—n]sqg fors < R

2
Using a circular "amperian loop" at a radius s outside the solenoid.
2
IR -
§A-di=A2zs =B -da=ppl(rR*) = A=EC——§ fors>R

28
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5.4.2 Summary; Magnetostatic Boundary Conditions

We have derived five formulas
Interrelating three fundamental
guantities: J, A and B.

B:VXA;V'A =0

Comments: : / .H

*There is one “missing link™ in the diagram.

*These three variables, J, A, and B, are all vectors. Itis
relatively difficult to deal with.
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Magnetostatic Boundary Conditions: Normal

The normal component of the
magnetic field is continuous,
even with a surface density K.

What is the physical picture? TBL

Consider a wafer-thin pillbox. Gauss’s law states that
gSS B-da=0

The sides of the pillbox contribute nothing to the flux, in the
limit as the thickness & goes to zero.

(Bt -B' )A=0 = B! =B

above below above below
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Magnetostatic Boundary Conditions: Tangential

The tangential component of B is
discontinuous.

Consider a thin rectangular loop. The CJ‘) B.dl = |
curl of the Ampere’s law states that Ho'enc

The ends gives nothing (as e—0), and the sides give

/] /]
(Babove Bbelow)I HoKl = Babove Bbelow HoK

Inshort, B, ... —Bieow = oK XN, Where n points "upward."

How about the vector potential A?
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Boundary Conditions in Terms of Vector Potential

Like the scalar potential in electrostatics, the
vector potential is continuous any boundary:

Aabove — Abelow
_ 1 _ AL
V-A=0 = Aabove — Mhelow

VXAZBjCﬁA.dIZIB.da:CD — /i)ove :At/)/elow
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EM
5.4.3 Multipole Expansion of the Vector Potential Tsun-Hsu Chang

1 1

-r| J(r2+r2=2rr'cosd)
_1 (1+ (r_’) cosé' + (i) *((3cos? &' -1)/2) +...)

——Z( )‘P(cos@)

o T
The vector potential of a current Ioop
k Z <j>(r) P (cos@")dl’
n= 0
/’4)' rl ’ ’ 12 ’ ’ —|
=1 dl +— r'cos@'dl’ + r'“P,(cos@)dl’ +--.
|L,-CP 96 95 > (C0s0) |

/ / /

monopole dipole guadrupole
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Multipole Expansion

IUOI 1 ’ 3 U 1 12 r
A= 47[[ dl+—<j>rcos«9dl+—<j) P,(cos @)dl' + }

magnetic monopole term is always zero.

ILl]1 r n! ll'l[1 !
Agip = 42{ 5 r'cos@'dl' = 4(;? (r-r')dl

b (F-r')adl' =—x[da'| (Eq.1.108, to be shown later)

Then

Ly 1
Adip —ﬁr—rx(lj‘da)—

0 me
2

472';/'

where m =/ j da’ is the magnetic dipole moment .
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A Special Technique
Part| Recalling Stokes’ theorem IS(VXV)-da — <j>v-dl

LetV=7;c Vx(fA)=VfxA+ f(VxA)

constant vector

[ (VxTe)-da=] (VT xe+T(Vxe)-da=—c-| VI xda
pre-di=c-pral = LVTxda:_qSle
P P P

Part || jSV'T'xda':—cJST'dl’, let 7' =¢-r'
V(A-B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A
VI(F-1') = Bx (ZK0) + 1 X (VSE) + (F- VI + (B
=r-Vr'=r
rxda’ =—@Q(r-r)dl'=rx|da’
[ =it e
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The Magnetic Field of a Dipole

Uy MZXY Ly msin@ 7
A ¢ — —
whp 4 r2 4 r2 ¢

<y

By, =VxA= Ho™ (2cos OF +sin 00)
“ A7r

<A <A

AN

(a) Field of a "pure" dipole (b) Field of a "physical" dipole
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Homework of Chap. 5 (part 11)

Problem 5.16 Two long coaxial solenoids each carry current | , but
In opposite directions, as shown in Fig. 5.42. The inner solenoid
(radius a) has nq turns per unit length, and the outer one (radius b)
has n,. Find B in each of the three regions: (i) inside the inner solenoid, FIGURE 5.42
(i) between them, and (iii) outside both.

Problem 5.17 A large parallel-plate capacitor with uniform surface

charge o on the upper plate and — ¢ on the lower is moving with a Z—="
constant speed v, as shown in Fig. 5.43. ~G

(a) Find the magnetic field between the plates and also above and below them.  piGURE 5.43
(b) Find the magnetic force per unit area on the upper plate, including its direction.

(c) At what speed v would the magnetic force balance the electrical force?1°

Problem 5.25 If B is uniform, show that A(r) =- E(rx B) works. That is, check
2

that V- A =0 and Vx A =B. Is this result unique, or are there other functions
with the same divergence and curl?
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Homework of Chap. 5 (part 1)

Problem 5.47 The magnetic field on the axis of a circular current loop (Eqg. 5.41)

is far from uniform (it falls off sharply with increasing z). You can produce a more

nearly uniform field by using two such loops a distance d apart (Fig. 5.59).

(a) Find the field (B) as a function of z, and show that 0B/cz is zero at the point
midway between them (z = 0).

(b) If you pick d just right, the second derivative of B will also vanish at the
midpoint.This arrangement is known as a Helmholtz coil; it's a convenient
way of producing relatively uniform fields in the laboratory. Determine d

such that 82B/dz2 = 0 at the midpoint, and find the resulting magnetic field
at the center. [Answer: 8441 /5 /5R]

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge

Q, and is set spinning with angular velocity  about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r,0) where r > R.

(d) Find the exact potential at a point (r,0) outside the sphere, and check that it is
consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r,0)inside the sphere (Prob. 5.30), and check
that it is consistent with (b).

FIGURE 5.59
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