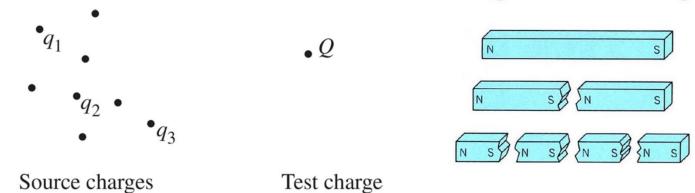
Chapter 5 Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields

By analogy with electrostatics, why don't we study magnetostatics first? Due to lack of magnetic monopole.

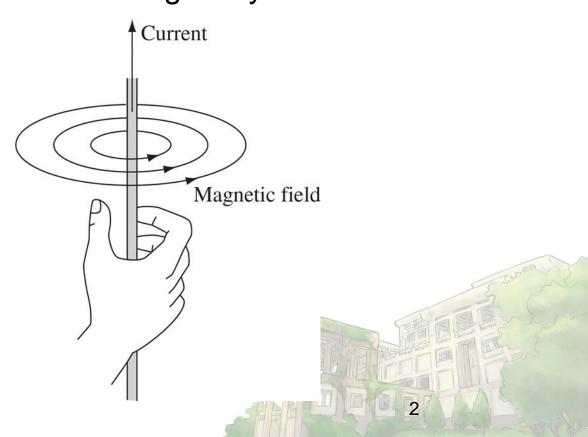


If one tries to isolate the poles by cutting the magnet, a curious thing happens: One obtains two magnets. No matter how thinly the magnet is sliced, each fragment always has two poles. Even down to the atomic level, no one has found an isolated magnetic pole, called a monopole. Thus magnetic field lines form closed loops.

The Magnetic Field

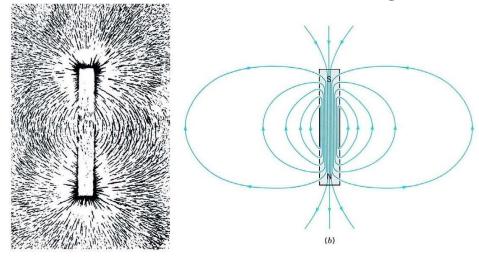
Outside a magnet the lines emerge from the north pole and enter the south pole; within the magnet they are directed from the south pole to the north pole. The dots represent the tip of an arrow coming toward you. The cross represents the tail of an arrow moving away.

How a current-carry wire produces a magnetic field?



The Magnetic Field of a Bar Magnet

When iron filings are sprinkled around a bar magnet, they form a characteristic pattern that shows how the influence of the magnet spreads to the surrounding space.



The **magnetic field**, **B**, at a point along the tangent to a field line. The *direction* of **B** is that of the force on the north pole of a bar magnet, or the *direction* in which a compass needle points. The *strength* of the field is proportional to the number of lines passing through a unit area normal to the field (*flux density*).

Definition of the Magnetic Field

When defining the electric field, the electric field strength can be derived from the following relation: $\mathbf{E} = \mathbf{F}/q$. Since an isolated pole is not available, the definition of the magnetic field is not as simple.

Instead, we examine how an electric charge is affected by

a magnetic field.

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$$
$$F = q\mathbf{v}B\sin\theta$$

Since **F** is always perpendicular to **v**, a magnetic force does no work on a particle and cannot be used to change its kinetic energy.

The SI unit of magnetic field is the Tesla (T). $1 T = 10^4 G$

The Lorentz Force Law

When a particle is subject to both electric and magnetic fields in the same region, what is the total force on it?

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

公理;公設

This is called the **Lorentz force law**. This **axiom** is found in experiments.

$$dW_{mag} = \mathbf{F}_{mag} \cdot d\mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} dt = 0$$

Magnetic forces do no work.

Really? But, how do you explain a magnetic crane lifts a container?

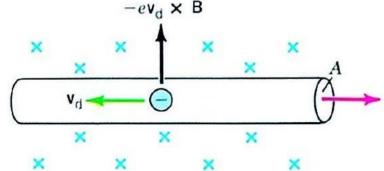
Force on a Current-Carrying Conductor

When a current flows in a magnetic field, the electrons as a whole acquire a slow drift speed, \mathbf{v}_d , and experience a magnetic force, which is then transmitted to the wire.

$$F = qvB \sin\theta = (nA\ell e)v_d B$$

$$= (nAev_d)\ell B$$

$$= I\ell B$$



$$\mathbf{F} = \mathbf{\Lambda} \times \mathbf{B}$$
$$F = I \ell B \sin \theta$$

Electron's thermal speed:

$$\frac{1}{2}m_e v_{th}^2 = \frac{3}{2}kT \implies v_{th} = \sqrt{\frac{3kT}{m_e}} = 1.18 \times 10^5 \text{m/s}$$

$$v_{th} \gg v_d$$

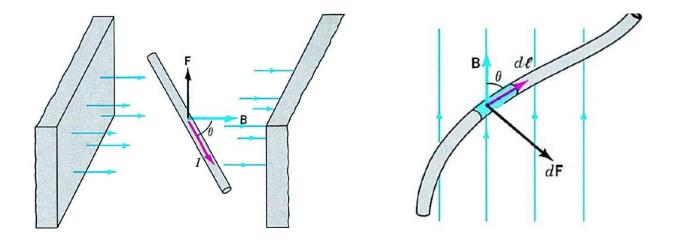
n: the number of the conductor per unit volume.

1: defined to be in the direction in which the current is flowing.

Force on a Current-Carrying Conductor

The force on an infinitesimal current element is

$$d\mathbf{F} = Id\mathbf{I} \times \mathbf{B}$$



The force on a wire is the vector sum (integral) of the forces on all current elements.

Example: The Magnetic Force on a Semicircular Loop

A wire is bent into a semicircular loop of radius R. It carries a current I, and its plane is perpendicular to a uniform magnetic field \mathbf{B} , as shown below. Find the force on the loop.

Solution:

$$d\mathbf{F} = Id\mathbf{I} \times \mathbf{B}$$

$$dF_{y} = IRB \sin\theta d\theta$$

$$F_{y} = IRB \int_{0}^{\pi} \sin\theta d\theta$$

$$= 2IRB = I(2R)B$$

The *x*-components of the forces on such elements will cancel in pairs.

The net force on any close current-carrying loop is zero.

The Motion of Charged Particles in Magnetic Fields

How does a charged particle move with an initial velocity v perpendicular to a uniform magnetic field **B**?

Since \mathbf{v} and \mathbf{B} are perpendicular, the particle experiences a force F = qvB of constant magnitude directed perpendicular. Under the action of such a force, the particle will move in a circular path at constant speed. From Newton's second law, F = ma, we have

$$qvB = \frac{mv^2}{r} \implies r = \frac{mv}{qB}$$

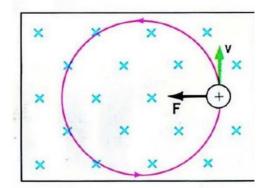
The radius of the orbit is directly proportional to the linear momentum of the particle and inversely proportional to the magnetic field strength.

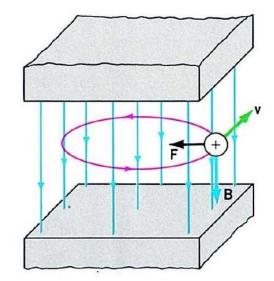
Cyclotron Motion

What are the frequency and the period? Are they independent of the speed of the particle? Yes.

The period of the orbit is

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB} = \left(\frac{m}{q}\right) \frac{2\pi}{B}$$
$$f_c = \frac{1}{T} = \frac{qB}{2\pi m} = \left(\frac{q}{m}\right) \frac{B}{2\pi}$$





$$f_c/B = 2.8 \text{ MHz/Gauss}$$

The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, q/m, have the same period and cyclotron frequency.

Example: Cyclotron

A cyclotron is used to accelerate protons from rest. It has a radius of 60 cm and a magnetic field of 0.8 T. The potential difference across the dees is 75 kV. Find: (a) the frequency of the alternating potential difference; (b) the maximum kinetic energy; (c) the number of revolutions made by the protons.

Solution:
(a)
$$f_c = \frac{qB}{2\pi m} = 12 \text{ MHz}$$

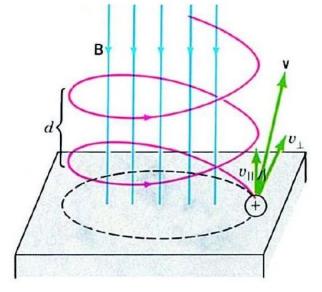
(b)
$$K_{\text{max}} = \frac{(qr_{\text{max}}B)^2}{2m} = 1.76 \times 10^{-12} \text{ J} = 11 \text{ MeV}$$

(c)
$$\Delta K = 2qV = 150 \text{ keV}$$

 $K_{\text{max}} / \Delta K = 11000 / 150 = 73.5 \text{ revs.}$

Helical Motion

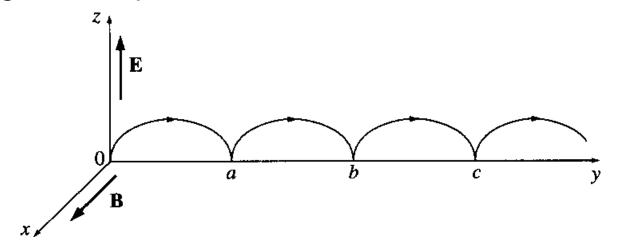
What happens if the charged particle's velocity has not only a perpendicular component v_{\perp} but also a parallel component v_{\parallel} ? Helical Motion.



The perpendicular component v_{\perp} gives rise to a force $qv_{\perp}B$ that produces circular motion, but the parallel component v_{\parallel} is not affected. The result is the superposition of a uniform circular motion normal to the lines and a constant motion along the lines.

Example: Cycloid Motion

Suppose, for instance, that **B** points in the x-direction, and **E** in the z-direction. A particle initially at rest is released from the origin; what path will it follow?

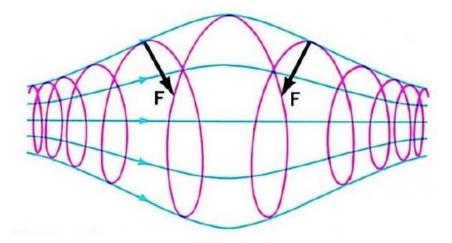


Solution:

- 1. Write down the equation of motion.
- 2. Solve the coupled differential equations.
- 3. Determine the constants using the initial conditions.

Magnetic Bottle/Mirror

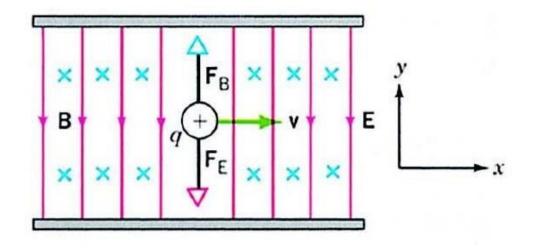
What happens if the magnetic field is not uniform? Energy transfers between the perpendicular and parallel components.



In a nonuniform field, the particle experiences a force that points toward the region of weak field. As a result, the component of the velocity along the **B** lines is not constant.

If the particle is moving toward the region of stronger field, as some point it may be stopped and made to reverse the direction of its travel.

Velocity Selector

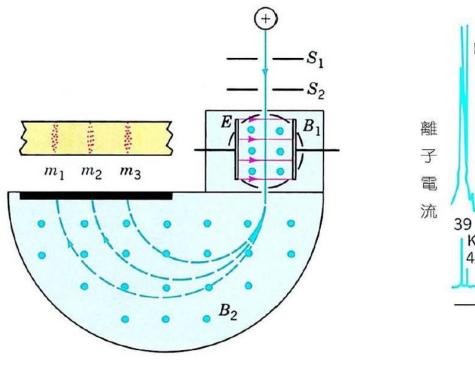


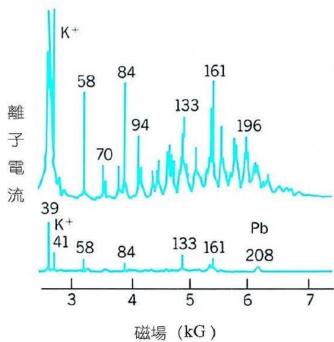
$$\begin{pmatrix} \mathbf{E} = -E\mathbf{j} \\ \mathbf{B} = -B\mathbf{k} \end{pmatrix} \Rightarrow \mathbf{v} = \frac{E}{B}\mathbf{i} = v\mathbf{i}$$

Only those particles with speed v = E/B pass through the crossed fields undeflected. This provides a convenient way of either measuring or selecting the velocities of charged particles.

Mass Spectrometer

A mass spectrometer is a device that separates charged particles, usually ions, according to their charge-to-mass ratios.





Example: Mass Spectrometer

In a mass spectrometer shown below, two isotopes of an element with mass m_1 and m_2 are accelerated from rest by a potential difference V. They then enter a uniform \mathbf{B} normal to the magnetic field lines. What is the ratio of the radii of their paths?

Solution:

$$v = \sqrt{\frac{2qV}{m}}$$

$$r = \frac{mv}{qB} = \sqrt{\frac{2mV}{qB^2}} \quad \text{then } r_1/r_2 = \sqrt{(m_1/m_2)}$$

Note1: How particle is accelerated by a potential difference?

Current and Surface Current

The **current** in a wire is the charge per unit time passing a given point.

Current is measured in coulombs-per-second, or amperes (A).

$$1 A = 1 C/s$$

The **surface current density**, **K**, is defined as follows:

Consider a "ribbon" of infinitesimal width d ℓ_{\perp} , running parallel

to the flow. Then,

$$\mathbf{K} = \frac{d\mathbf{I}}{d\ell_{\perp}}$$
 Flow

In words, **K** is the current per unit width-perpendicular-to-flow.

$$\mathbf{K} = \frac{d\mathbf{I}}{d\ell_{\perp}} \approx \frac{d(\frac{d(\sigma\ell_{\perp}\ell_{\parallel})}{dt})}{d\ell_{\perp}} = \sigma \frac{d\ell_{\parallel}}{dt} = \sigma \mathbf{v}$$
surface charge density

Volume Current Density

The **volume current density**, **J**, is defined as follows: consider a "tube" of infinitesimal cross section da_{\perp} , running parallel to the flow. Then,

$$\mathbf{J} = \frac{d\mathbf{I}}{da_{\perp}}$$

In words, J is the current per unit area-perpendicular-to-flow.

$$\mathbf{J} = \frac{d\mathbf{I}}{da_{\perp}} \approx \frac{d(\frac{d(\rho a_{\perp} \ell_{//})}{dt})}{da_{\perp}} = \rho \frac{d\ell_{//}}{dt} = \rho \mathbf{v}$$

Conservation of Charge

The current crossing a surface *S* can be written as

$$I = \int_{S} \mathbf{J} \cdot \hat{\mathbf{n}} da$$

In particular, the total charge per unit time leaving a volume V is

$$I = \oint_{S} \mathbf{J} \cdot \hat{\mathbf{n}} da = \int_{V} (\nabla \cdot \mathbf{J}) d\tau = -\frac{dQ}{dt}$$

where
$$\frac{dQ}{dt} = \frac{d}{dt} \int_{V} \rho d\tau$$
.

$$\int_{V} (\nabla \cdot \mathbf{J}) d\tau = -\frac{d}{dt} \int_{V} \rho d\tau = -\int_{V} \frac{\partial \rho}{\partial t} d\tau \implies \nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

continuity equation

5.2 The Biot-Savart Law 5.2.1 Steady Currents

Stationary charges produce electric fields that are constant in time. Steady currents produce magnetic fields that are also constant in time.

Stationary charges ⇒ constant electric fields; electrostatics. Steady currents ⇒ constant magnetic fields; magnetostatics.

Steady current means that a continuous flow that goes on forever without change and without charge piling up anywhere. They represent *suitable approximations* as long as the fluctuations are reasonably slow.

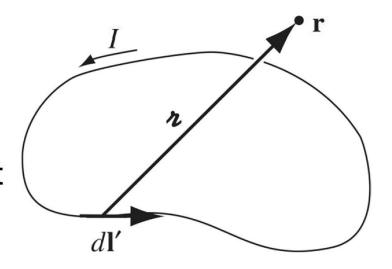
$$\nabla \cdot \mathbf{J} = 0$$

5.2.2 The Magnetic Field of a Steady Current

The **Biot-Savart law**:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{\mathbf{v}}}{\mathbf{v}^2} dl' = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l}' \times \hat{\mathbf{v}}}{\mathbf{v}^2}$$

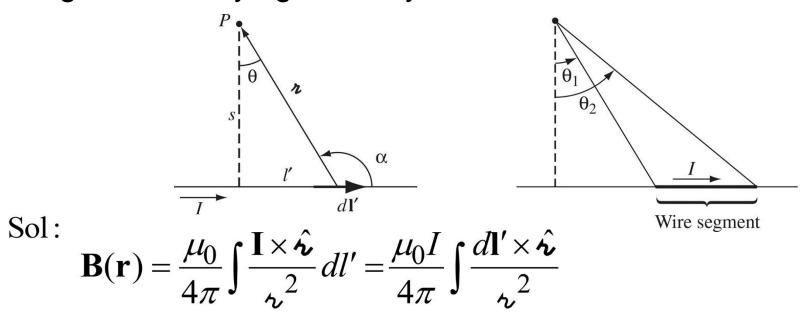
The integration is along the current path, in the direction of the flow. μ_0 : the *permeability of free space*.



Definition of magnetic field **B**: newtons per ampere-meter or **tesla** (T). $1 T = 1 N/(A \cdot m)$

The Biot-Savart law plays a role analogous to Coulomb's law in electrostatics.

Example 5.5 Find the magnetic field a distance *s* from a long straight wire carrying a steady current *I*.



Then, determine the suitable coordinate: cylindrical coordinate (s, ϕ, z) . In the diagram, $(d\mathbf{l}' \times \hat{\lambda})$ points out of page $\hat{\phi}$ and has the magnitude $dl' \sin \alpha = dl' \cos \theta$

$$l' = s \tan \theta \Rightarrow dl' = s \sec^2 \theta d\theta$$
 and $\frac{1}{2} = \frac{\cos \theta}{s}$

Contd.

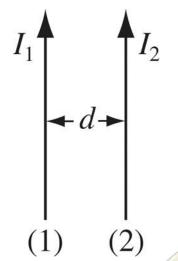
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l'} \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} = \frac{\mu_0 I}{4\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 \theta}{s^2} \frac{s}{\cos^2 \theta} \cos \theta d\theta$$
$$= \frac{\mu_0 I}{4\pi s} \sin \theta \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\mu_0 I}{2\pi s} (= 2 \times 10^{-7} \frac{I}{s} \text{ Tesla})$$

What is the force between two parallel current-carrying wires?

nat is the force between two parallel current-carrying
$$d\mathbf{F} = Id\mathbf{I} \times \mathbf{B}$$

$$dF = I_2 \frac{\mu_0 I_1}{2\pi d} dl = \frac{\mu_0 I_1 I_2}{2\pi d} dl$$

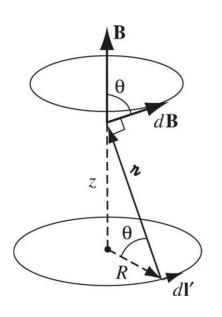
$$\frac{dF}{dl} = \frac{\mu_0 I_1 I_2}{2\pi d}$$
 (1)



(attractive force per unit length, why?)

Example 5.6 Find the magnetic field a distance z above the center of a circular loop of radius R, which carries a steady current I.

Sol:
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l'} \times \hat{\mathbf{\lambda}}}{\mathbf{r}^2}$$



Choose cylindrical coordinate (s, ϕ, z) .

In the diagram, $(d\mathbf{l}' \times \hat{\mathbf{\lambda}})$ sweeps around the z axis, thus only the z-component survives.

z-component of $(d\mathbf{l}' \times \hat{\mathbf{r}}) = dl' \cos \theta = R \cos \theta d\phi$

$$\frac{1}{r^2} = \frac{1}{(R^2 + z^2)} \quad \text{and} \quad \cos \theta = \frac{R}{(R^2 + z^2)^{1/2}}$$

$$B(z) = \frac{\mu_0 I}{4\pi} \frac{1}{(R^2 + z^2)} \frac{R}{(R^2 + z^2)^{1/2}} 2\pi R = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + z^2)^{3/2}}$$

The Biot-Savart Law for the Surface and Volume Current

The Biot-Savart law:
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I} \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} dl' = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l}' \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}$$

For surface current:
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K} \times \hat{\mathbf{v}}}{\mathbf{v}^2} da'$$

For volume current:
$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \times \hat{\mathbf{v}}}{\mathbf{v}^2} d\tau'$$

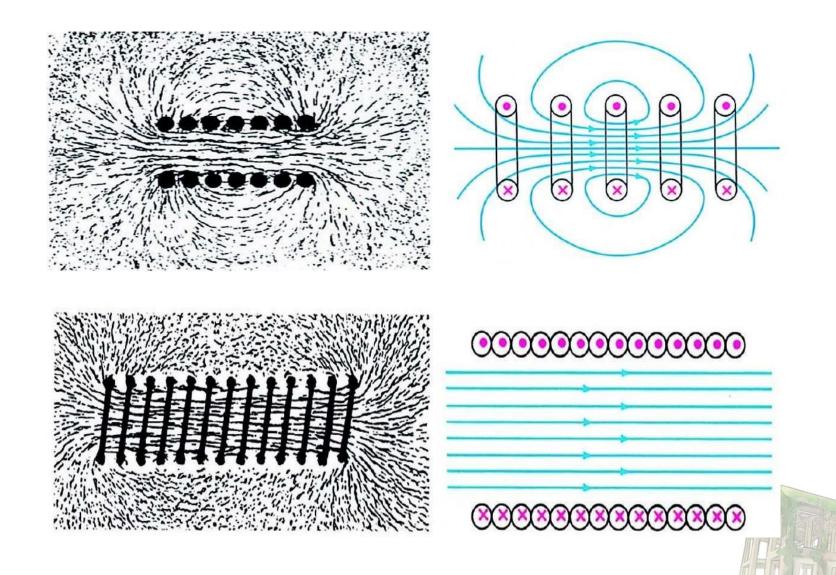
For a moving charge:

Wrong, why?

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\nu}^2} d\tau' = \frac{\mu_0}{4\pi} \int \frac{q\mathbf{v} \delta(\mathbf{r} - \mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\nu}^2} d\tau' = \frac{\mu_0}{4\pi} \frac{q\mathbf{v} \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\nu}^2}$$

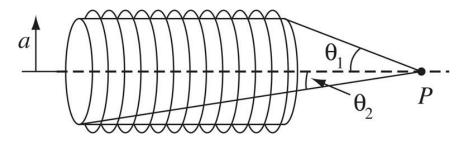
A point charge does not constitute a steady current.

The Magnetic Field of Solenoid



Solenoid

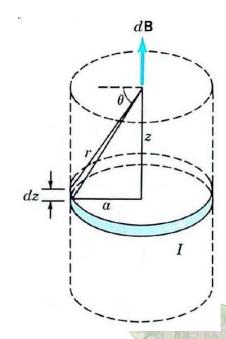
Problem 5.10 A solenoid of length L and radius a has N turns of wire and carries a current I. Find the field strength at a point along the axis.



Solution:

Since the solenoid is a series of closely packed loops, we may divide into current loops of width dz, each of which contains ndz turns, where n = N/L is the number of turns per unit length.

The current within such a loop is (ndz)I.



Solenoid (II)

Contd.

$$z = a \tan \theta \Rightarrow dz = a \sec^{2}\theta d\theta$$

$$nIdz = nIa \sec^{2}\theta d\theta$$

$$dB_{axis} = \frac{\mu_{0}a^{2}}{2(a^{2} + a^{2} \tan^{2}\theta)^{3/2}} nIa \sec^{2}\theta d\theta$$

$$= \frac{1}{2} \mu_{0} nI \cos \theta d\theta$$

$$B = \int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} \mu_{0} nI \cos \theta d\theta$$

$$= \frac{1}{2} \mu_{0} nI (\sin \theta_{2} - \sin \theta_{1})$$
(b)

 $B = \mu_0 nI$ (infinite long solenoid)

(b)

Homework of Chap. 5 (part I)

Problem 5.9 Find the magnetic field at point *P* for each of the steady current configurations shown in Fig. 5.23.

Problem 5.10

- (a) Find the force on a square loop placed as shown in Fig. 5.24(a), near an infinite straight wire. Both the loop and the wire carry a steady current I.
- (b) Find the force on the triangular loop in Fig. 5.24(b).

Problem 5.11 Find the magnetic field at point P on the axis of a tightly wound **solenoid** (helical coil) consisting of n turns per unit length wrapped around a cylindrical tube of radius a and carrying current I (Fig. 5.25). Express your answer in terms of θ_1 and θ_2 (it's easiest that way). Consider the turns to be essentially circular, and use the result of Ex. 5.6. What is the field on the axis of an *infinite* solenoid (infinite in both directions)?

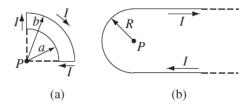


FIGURE 5.23

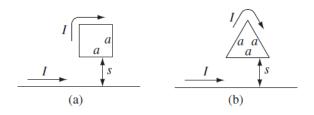


FIGURE 5.24

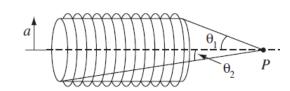


FIGURE 5.25

Homework of Chap. 5 (part I)

Problem 5.41 A current *I* flows to the right through a rectangular bar of conducting material, in the presence of a uniform magnetic field **B** pointing out of the page (Fig. 5.56).

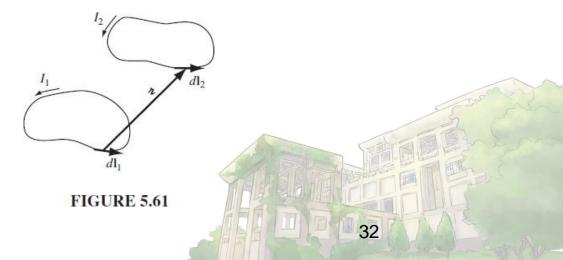
- (a) If the moving charges are *positive*, in which direction are they deflected by the magnetic field? This deflection results in an accumulation of charge on the upper and lower surfaces of the bar, which in turn produces an electric force to counteract the magnetic one. Equilibrium occurs when the two exactly cancel. (This phenomenon is known as the **Hall effect**.)
- (b) Find the resulting potential difference (the **Hall voltage**) between the top and bottom of the bar, in terms of B, v (the speed of the charges), and the relevant dimensions of the bar.²³
- (c) How would your analysis change if the moving charges were *negative*? [The Hall effect is the classic way of determining the sign of the mobile charge carriers in a material.]

Homework of Chap. 5 (part I)

Problem 5.50 Magnetostatics treats the "source current" (the one that sets up the field) and the "recipient current" (the one that experiences the force) so asymmetrically that it is by no means obvious that the magnetic force between two current loops is consistent with Newton's third law. Show, starting with the Biot-Savart law (Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to loop 1 (Fig. 5.61) can be written as

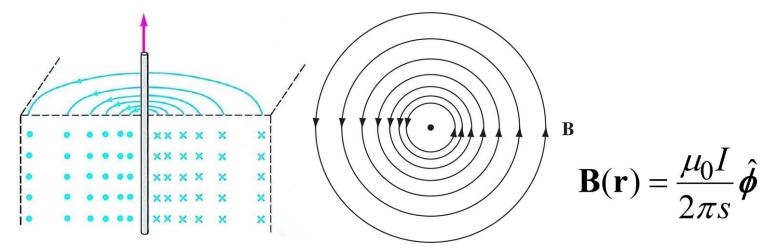
$$\mathbf{F}_2 = -\frac{\mu_0}{4\pi} I_1 I_2 \oint \oint \frac{\hat{\mathbf{r}}}{r^2} d\mathbf{I}_1 \cdot d\mathbf{I}_2. \tag{5.91}$$

In this form, it is clear that $\mathbf{F}_2 = -\mathbf{F}_1$, since $\hat{\mathbf{c}}$ changes direction when the roles of 1 and 2 are interchanged. (If you seem to be getting an "extra" term, it will help to note that $d\mathbf{I}_2 \cdot \hat{\mathbf{c}} = dr$.)



5.3 The Divergence and Curl of B5.3.1 Straight-Line Currents

The magnetic field of an infinite straight wire:



The integral of **B** around a *circular path* of radius *s*, centered at the wire, is:

$$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{l} = \oint \frac{\mu_0 I}{2\pi s} \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} s d\varphi = \mu_0 I$$

In fact for any loop that encloses the wire would give the same answer. Really?

The Differential Form of B

Suppose we have a bundle of straight wires. Only wires that pass through the loop contribute $\mu_0 I$.

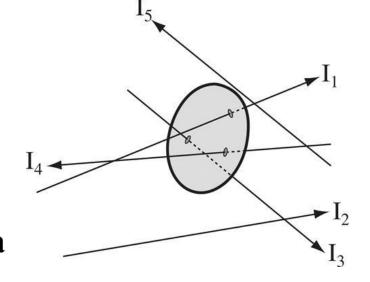
The line integration then be

$$\oint \mathbf{B}(\mathbf{r}) \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} \quad I_{\text{enc}} = \int \mathbf{J} \cdot d\mathbf{a}$$

The total current enclosed by the integration loop.

$$\oint \mathbf{B} \cdot d\mathbf{l} = \int (\nabla \times \mathbf{B}) \cdot d\mathbf{a} = \int \mu_0 \mathbf{J} \cdot d\mathbf{a}$$

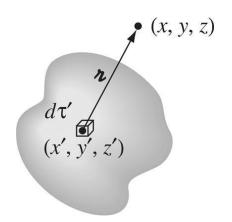
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$



Does this differential equation apply to any shape of the current loop? Yes. To be proved soon.

5.3.2 The Divergence and Curl of B

The Biot-Savart Law for the general case of a volume current:



$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{{\boldsymbol{\lambda}}^2} d\tau'$$

$$\mathbf{B} \text{ is a function of } (x, y, z),$$

$$\mathbf{B} \text{ is a function of } (x, y, z),$$

$$\mathbf{J} \text{ is a function of } (x', y', z'),$$

$$\mathbf{\lambda} = (x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}$$

$$d\tau' = dx'dy'dz'$$

The integration is over the *primed* coordinates.

The divergence and the curl are to be taken with respective to the *unprimed* coordinates.

The Divergence of B

The divergence of **B**:

$$\nabla \cdot \mathbf{B}(\mathbf{r}) = \nabla \cdot (\frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} d\tau') = \frac{\mu_0}{4\pi} \int \nabla \cdot (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}) d\tau'$$

$$\nabla \cdot (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}) = \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} \cdot (\nabla \times \mathbf{J}) - \mathbf{J} \cdot (\nabla \times \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2})$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \quad \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} = -\nabla (\frac{1}{\boldsymbol{\lambda}}) \quad (\text{Prob. 1.13})$$

$$\nabla \cdot (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}) = \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} \cdot (\nabla \times \mathbf{J}(\mathbf{r}')) - \mathbf{J} \cdot (\nabla \times \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2})$$

 $\nabla \cdot \mathbf{B} = 0$ The divergence of a magnetic field is zero.

The Curl of B

The curl of B:

$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \times (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\nu}}}{\boldsymbol{\nu}^2}) d\tau'$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$
unprimed primed +unprimed 0 to be seen next
$$\nabla \times (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{\nu}}}{\boldsymbol{\nu}^2}) = \mathbf{J}(\nabla \cdot \frac{\hat{\boldsymbol{\nu}}}{\boldsymbol{\nu}^2}) - (\mathbf{J} \cdot \nabla) \frac{\hat{\boldsymbol{\nu}}}{\boldsymbol{\nu}^2}$$

$$\nabla \times (\frac{\mathbf{J}(\mathbf{r}') \times \hat{\boldsymbol{r}}}{\boldsymbol{\nu}^2}) = \mathbf{J}(\nabla \cdot \frac{\hat{\boldsymbol{\nu}}}{\boldsymbol{\nu}^2}) = \mathbf{J}4\pi\delta^3(\hat{\boldsymbol{\nu}}) \text{ (See 1.5.3)}$$

$$\therefore \nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} 4\pi \int \mathbf{J}(\mathbf{r}') \delta^3(\hat{\boldsymbol{\nu}}) d\tau' = \mu_0 \mathbf{J}(\mathbf{r})$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \text{ The curl of B equals } \mu_0 \text{ times } \mathbf{J}.$$

A Special Technique

$$\int (\mathbf{J} \cdot \nabla) \frac{\hat{\boldsymbol{\lambda}}}{{\boldsymbol{\lambda}}^2} d\tau' = 0$$

 $\int (\mathbf{J} \cdot \nabla) \frac{\hat{\mathbf{v}}}{2} d\tau' = 0$ Let's prove that this integration is zero.

special technique
$$\begin{cases} (\mathbf{J} \cdot \nabla) \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2} = -(\mathbf{J} \cdot \nabla') \frac{\hat{\boldsymbol{\lambda}}}{\boldsymbol{\lambda}^2}, \\ \text{where } \vec{\boldsymbol{\lambda}} = (\mathbf{r} - \mathbf{r}') \end{cases}$$

$$\nabla \cdot (f\mathbf{A}) = \nabla f \cdot \mathbf{A} - f(\nabla \cdot \mathbf{A})$$

Using the above rule, the x component is:

$$(\mathbf{J} \cdot \nabla') \frac{x - x'}{\lambda^3} = \nabla' \cdot (\frac{x - x'}{\lambda^3} \mathbf{J}) - \frac{x - x'}{\lambda^3} (\nabla' \cdot \mathbf{J})$$

$$0, \text{ since } \mathbf{J}(\mathbf{r}'@\infty) = 0$$

$$\int (\mathbf{J} \cdot \nabla) \frac{\hat{\mathbf{h}}_x}{\lambda^2} d\tau' = \int \nabla' \cdot (\frac{x - x'}{\lambda^3} \mathbf{J}) d\tau' = \oint_S (\frac{x - x'}{\lambda^3} \mathbf{J}) \cdot d\mathbf{a}' = 0$$

What happens if $J(r') \neq 0$

5.3.3 Applications of Ampere's Law

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 Ampere's law in differential form

$$\int (\nabla \times \mathbf{B}) \cdot d\mathbf{a} = \oint \mathbf{B} \cdot d\mathbf{l} = \int \mu_0 \mathbf{J} \cdot d\mathbf{a} = \mu_0 I_{\text{enc}}$$
amperian loop

$$\oint \mathbf{B} \times d\mathbf{l} = \mu_0 I_{\text{enc}} \quad \text{Ampere's law in integral form}$$
amperian loop

Just as the Biot-Savart law plays a role in magnetostatics that Coulomb's law assumed in electrostatics, so Ampere's play the role of Gauss's.

Electrostatics: Coulomb → Gauss

Magnetostatics: Biot-Savart → Ampere

Applications of Ampere's Law

Like Gauss's law, Ampere's law is always *true* (for steady currents), but is *not always useful*.

Only when the symmetry of the problem enables you to pull **B** outside the integral can you calculate the magnetic field from the Ampere's law.

These symmetries are:

- 1. Infinite straight lines
- 2. Infinite planes (Ex. 5.8)
- 3. Infinite solenoids (Ex. 5.9)
- 4. Toroids (Ex. 5.10)

Infinite Straight Wire

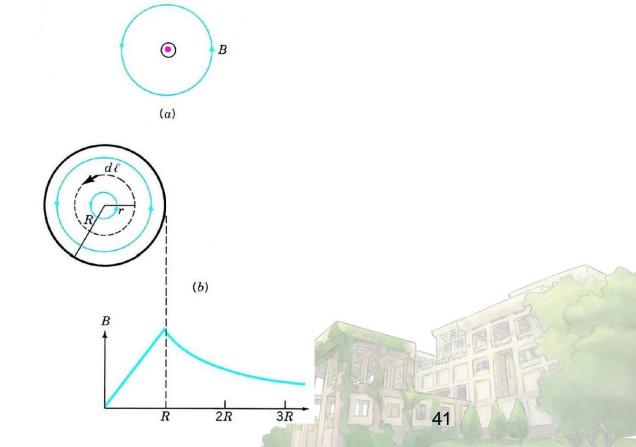
Example An infinite straight wire of radius R carries a current I. Find the magnetic field at a distance r from the center of the wire for (a) r > R, and (b) r < R. Assume that the current is uniformly distributed across the cross section of the wire.

Solution:

(a)
$$\oint \mathbf{B} \cdot d\mathbf{I} = B2\pi r = \mu_0 I$$
$$B = \frac{\mu_0 I}{2\pi r} \qquad (r > R)$$

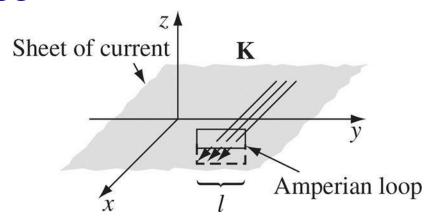
(b)
$$\oint \mathbf{B} \cdot d\mathbf{l} = B2\pi r = \mu_0 \frac{\pi r^2}{\pi R^2} I$$

$$B = \frac{\mu_0 I}{2\pi R^2} r \quad (r < R)$$



Infinite Planes

Example 5.8 Find the magnetic field of an infinite uniform surface current $\mathbf{K} = K\hat{\mathbf{x}}$, flowing over the xy plane.



Solution:

$$\oint \mathbf{B} \cdot d\mathbf{l} = B2l = \mu_0 Kl$$

$$B = \frac{\mu_0 K}{2}$$

$$\mathbf{B} = \begin{cases} \mu_0 K / 2\hat{\mathbf{y}} & \text{for } z < 0 \\ -\mu_0 K / 2\hat{\mathbf{y}} & \text{for } z > 0 \end{cases}$$

Solenoid

Example 5.9 An ideal infinite solenoid has *n* turns per unit length and carries a current *I*. Find its magnetic field inside.

Solution:

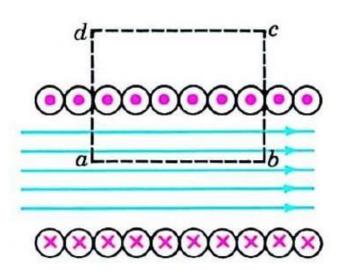
$$\oint \mathbf{B} \cdot d\mathbf{l}$$

$$= \int_{a}^{b} \mathbf{B} \cdot d\mathbf{l} + \int_{b}^{c} \mathbf{B} \cdot d\mathbf{l} + \int_{c}^{d} \mathbf{B} \cdot d\mathbf{l} + \int_{d}^{a} \mathbf{B} \cdot d\mathbf{l}$$

$$= \int_{a}^{b} \mathbf{B} \cdot d\mathbf{l}$$

$$BL_{ab} = \mu_0 n L_{ab} I$$

$$B = \mu_0 nI$$



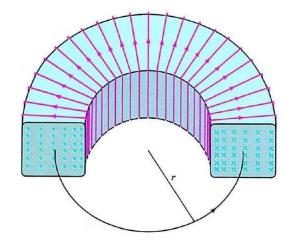
Toroid

Example 5.10 A toroidal coil (shaped like a doughnut) is tightly wound with *N* turns and carries a current *I*. We assume that it has a rectangular cross section, as shown below. Find the field strength within the toroid.

Solution:

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 NI$$

$$B = \frac{\mu_0 NI}{2\pi r}$$



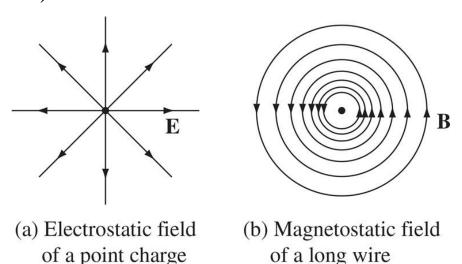
The field is not uniform; it varies as 1/r. The toroidal fields are used in research on fusion power.

5.3.4 Comparison of Magnetostatics and Electrostatics

$$\begin{cases} \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} & \text{Gauss's law} \\ \nabla \times \mathbf{E} = 0 \ (-\frac{\partial \mathbf{B}}{\partial t}) & \text{No name (Faraday's law)} \end{cases}$$

$$\begin{cases} \nabla \cdot \mathbf{B} = 0 & \text{Gauss's law for magnetic field} \\ \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \ (+\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}) & \text{Ampere's law (Ampere-Maxwell law)} \end{cases}$$

 $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ Lorentz's force law



45

EM Tsun-Hsu Chang

4. Magnetic Vector Potential1. The Vector Potential

$$\nabla \times \mathbf{E} = 0 \Leftrightarrow \mathbf{E} = -\nabla V \quad \text{and} \quad \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \Rightarrow \nabla^2 V = -\frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0 \Leftrightarrow \mathbf{B} = \nabla \times \mathbf{A} \quad \text{and} \quad \nabla \times \mathbf{B} = \mu_0 \mathbf{J} \Rightarrow \nabla (\nabla \mathbf{A}) - \nabla^2 \mathbf{A} = \mu_0 \mathbf{J}$$

Is it possible for us to set $\nabla \cdot \mathbf{A} = 0$? Yes.

The Coulomb gauge

Proof: If $\nabla \cdot \mathbf{A}_0 \neq 0$, let $\mathbf{A} = \mathbf{A}_0 + \nabla \lambda \Rightarrow \mathbf{B} = \nabla \times \mathbf{A}_0 = \nabla \times \mathbf{A}$ If $\nabla \cdot \mathbf{A} = 0$, then $\nabla^2 \lambda = -\nabla \cdot \mathbf{A}_0$ \leftarrow similar to Poisson's equation

$$\begin{cases} \nabla^2 V = -\rho / \varepsilon_0 & V = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho}{\nu} d\tau' \\ \nabla^2 \lambda = -\nabla \cdot \mathbf{A}_0 & \lambda = \frac{1}{4\pi} \int \frac{\nabla \cdot \mathbf{A}_0}{\nu} d\tau' \end{cases}$$

It is always possible to make the vector potential divergenceless.

The Vector Potential and Scalar Potential

Using the Coulumb gauge, we obtain: $\nabla^2 \mathbf{A} = -\mu_0 \mathbf{J}$

$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{2} d\tau'$$

For line and surface current,

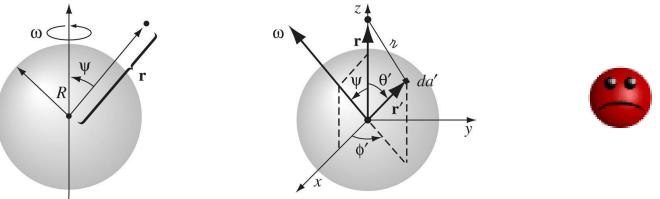
$$\mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{\mathbf{I}}{2} dl' \qquad \mathbf{A} = \frac{\mu_0}{4\pi} \int \frac{K(\mathbf{r}')}{2} da'$$

What happens when the curl of **B** vanishes?

Magnetostatic scalar potential.

$$\nabla \times \mathbf{B} = 0 \quad \Rightarrow \quad \mathbf{B} = -\nabla U$$
$$\Rightarrow \nabla^2 U = 0 \text{ (similar to Laplace's equation)}$$

Example 5.11 A spherical shell, of radius R, carrying a uniform surface charge σ , is set spinning at angular velocity ω . Find the vector potential it produce at point \mathbf{r} .



Sol: First, let the observer is in the z axis and ω is tilted at an angle ψ

Vector potential is
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{K}(\mathbf{r}')}{\hbar} da'$$

The surface current density $\mathbf{K}(\mathbf{r}') = \sigma \mathbf{v}'$

$$\mathbf{v}' = \boldsymbol{\omega} \times \mathbf{r}' = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \omega \sin \psi & 0 & \omega \cos \psi \\ R \sin \theta' \cos \phi' & R \sin \theta' \sin \phi' & R \cos \theta' \end{vmatrix}$$

 $=R\omega[-(\cos\psi\sin\theta'\sin\phi')\hat{x}+(\cos\psi\sin\theta'\cos\phi'-\sin\psi\cos\theta')\hat{y}+(\sin\psi\sin\theta'\sin\phi')\hat{z}]$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0 \sigma}{4\pi} \int \frac{R\omega(-\cos\psi\sin\theta(\sin\phi')\hat{\mathbf{x}}}{\sqrt{r^2 + R^2 - 2rR\cos\theta'}} R^2 \sin\theta'd\theta'd\phi'$$

$$+ \frac{\mu_0 \sigma}{4\pi} \int \frac{R\omega(\cos\psi\sin\theta(\cos\phi') - \sin\psi\cos\theta')\hat{\mathbf{y}}}{\sqrt{r^2 + R^2 - 2rR\cos\theta'}} R^2 \sin\theta'd\theta'd\phi'$$

$$+ \frac{\mu_0 \sigma}{4\pi} \int \frac{R\omega(\sin\psi\sin\theta(\sin\phi)\hat{\mathbf{z}}}{\sqrt{r^2 + R^2 - 2rR\cos\theta'}} R^2 \sin\theta'd\theta'd\phi'$$

$$+ \mathbf{A}(\mathbf{r}) = \frac{-R^3 \sigma\omega\sin\psi\mu_0\hat{\mathbf{y}}}{4\pi} \int \frac{\cos\theta'}{\sqrt{r^2 + R^2 - 2rR\cos\theta'}} \sin\theta'd\theta'd\phi'$$

$$= \frac{-R^3 \sigma\omega\sin\psi\mu_0\hat{\mathbf{y}}}{4\pi} (2\pi) \int_0^{\pi} \frac{-\cos\theta'}{\sqrt{r^2 + R^2 - 2rR\cos\theta'}} d\cos\theta'$$

$$= \frac{-\mu_0 R^3 \sigma\omega\sin\psi\hat{\mathbf{y}}}{2} \int_{-1}^{1} \frac{u}{\sqrt{r^2 + R^2 - 2rRu}} du$$

$$\int_{-1}^{+1} \frac{u}{\sqrt{R^2 + r^2 - 2Rru}} du = -\frac{(R^2 + r^2 + Rru)}{3R^2 r^2} \sqrt{R^2 + r^2 - 2Rru} \Big|_{-1}^{+1}$$

$$= -\frac{1}{3R^2 r^2} [(R^2 + r^2 + Rr) |R - r| - (R^2 + r^2 - Rr)(R + r)]$$

$$\mathbf{A}(\mathbf{r}) = \frac{-\mu_0 R^3 \sigma \omega \sin \psi \hat{\mathbf{y}}}{2} \left(-\frac{(R^2 + r^2 + Rr) |R - r| - (R^2 + r^2 - Rr)(R + r)}{3R^2 r^2} \right)$$

$$\mathbf{A}(\mathbf{r}) = \begin{cases} \frac{\mu_0 R \sigma}{3} (\boldsymbol{\omega} \times \mathbf{r}) & \text{inside} \\ \frac{\mu_0 R^4 \sigma}{3r^3} (\boldsymbol{\omega} \times \mathbf{r}) & \text{outside} \end{cases}$$

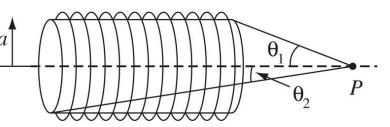
Reverting to the "natural" coordinate, we have

$$\mathbf{A}(r,\theta,\phi) = \begin{cases} \frac{\mu_0 R \omega \sigma}{3} r \sin \theta \hat{\boldsymbol{\phi}}, & r \leq R \\ \frac{\mu_0 R^4 \omega \sigma}{3} \frac{\sin \theta}{r^2} \hat{\boldsymbol{\phi}}, & r \geq R \end{cases}$$

$$\mathbf{B} = \nabla \times \mathbf{A} = \frac{2\mu_0 R\omega\sigma}{3} (\cos\theta \hat{\mathbf{r}} - \sin\theta \hat{\boldsymbol{\theta}}) = \frac{2}{3}\mu_0 R\sigma\omega \hat{\boldsymbol{z}} = \frac{2}{3}\mu_0 R\sigma\omega$$

Surprisingly, the field inside the spherical shell is uniform.

Example 5.12 Find the vector potential a of an *infinite* solenoid with n turns per unit length, radius R, and current I.



Sol:
$$\int \mathbf{B} \cdot d\mathbf{a} = \Phi = \int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{l}$$
 where Φ is the flux of \mathbf{B} through the loop in question.
$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}} \implies \oint \mathbf{A} \cdot d\mathbf{l} = \Phi$$

Using a circular "amperian loop" at a radius inside the solenoid.

$$\oint \mathbf{A} \cdot d\mathbf{l} = A2\pi s = \int \mathbf{B} \cdot d\mathbf{a} = \mu_0 nI(\pi s^2) \implies A = \frac{\mu_0 nI}{2} s \hat{\boldsymbol{\phi}} \quad \text{for } s < R$$

Using a circular "amperian loop" at a radius s outside the solenoid.

$$\oint \mathbf{A} \cdot d\mathbf{l} = A2\pi s = \int \mathbf{B} \cdot d\mathbf{a} = \mu_0 nI(\pi R^2) \implies A = \frac{\mu_0 nIR^2}{2s} \hat{\boldsymbol{\phi}} \quad \text{for } s \ge R$$

5.4.2 Summary; Magnetostatic Boundary Conditions

 $\mathbf{B} = \nabla \times \mathbf{A}; \nabla \cdot \mathbf{A} = 0$

We have derived *five* formulas interrelating three fundamental quantities: **J**, **A** and **B**.

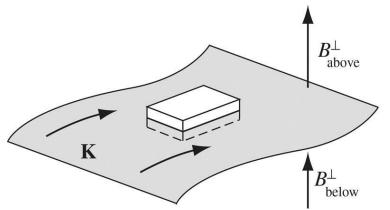
Comments:

- •There is one "missing link" in the diagram.
- •These three variables, **J**, **A**, and **B**, are all vectors. It is relatively difficult to deal with.

B

Magnetostatic Boundary Conditions: Normal

The normal component of the magnetic field is continuous, even with a surface density **K**.



What is the physical picture?

Consider a wafer-thin pillbox. Gauss's law states that

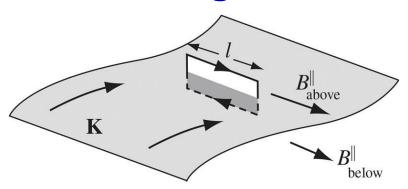
$$\oint_{S} \mathbf{B} \cdot d\mathbf{a} = 0$$

The sides of the pillbox contribute nothing to the flux, in the limit as the thickness ϵ goes to zero.

$$(B_{\text{above}}^{\perp} - B_{\text{below}}^{\perp})A = 0 \implies B_{\text{above}}^{\perp} = B_{\text{below}}^{\perp}$$

Magnetostatic Boundary Conditions: Tangential

The tangential component of **B** is discontinuous.



Consider a thin rectangular loop. The curl of the Ampere's law states that

$$\oint_{P} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}}$$

The ends gives nothing (as $\varepsilon \rightarrow 0$), and the sides give

$$(B_{\text{above}}^{\prime\prime} - B_{\text{below}}^{\prime\prime})l = \mu_0 K l \implies B_{\text{above}}^{\prime\prime} - B_{\text{below}}^{\prime\prime} = \mu_0 K$$

In short, $\mathbf{B}_{\text{above}} - \mathbf{B}_{\text{below}} = \mu_0 \mathbf{K} \times \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ points "upward."

How about the vector potential A?

Boundary Conditions in Terms of Vector Potential

Like the scalar potential in electrostatics, the vector potential is continuous any boundary:

$$\mathbf{A}_{\mathrm{above}} = \mathbf{A}_{\mathrm{below}}$$

$$\nabla \cdot \mathbf{A} = 0 \implies A_{\text{above}}^{\perp} = A_{\text{below}}^{\perp}$$

$$\nabla \times \mathbf{A} = \mathbf{B} \Rightarrow \oint \mathbf{A} \cdot d\mathbf{l} = \int \mathbf{B} \cdot d\mathbf{a} = \Phi \Rightarrow A_{\text{above}}^{\prime\prime} = A_{\text{below}}^{\prime\prime}$$

EM Tsun-Hsu Chang

5.4.3 Multipole Expansion of the Vector Potential

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(r^2 + r'^2 - 2rr'\cos\theta')}}$$

$$= \frac{1}{r} (1 + (\frac{r'}{r})\cos\theta' + (\frac{r'}{r})^2 ((3\cos^2\theta' - 1)/2) + \dots)$$

$$= \frac{1}{r} \sum_{\ell=0}^{\infty} (\frac{r'}{r})^{\ell} P_{\ell}(\cos\theta')$$
The vector potential of a current loop

The vector potential of a current loop

$$\mathbf{A} = \frac{\mu_0 I}{4\pi} \oint \frac{1}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{l}' = \frac{\mu_0 I}{4\pi} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \oint (r')^n P_n(\cos\theta') d\mathbf{l}'$$

$$= \frac{\mu_0 I}{4\pi} \left[\frac{1}{r} \oint d\mathbf{l}' + \frac{1}{r^2} \oint r' \cos\theta' d\mathbf{l}' + \frac{1}{r^3} \oint r'^2 P_2(\cos\theta') d\mathbf{l}' + \cdots \right]$$
monopole dipole quadrupole

Multipole Expansion

$$\mathbf{A} = \frac{\mu_0 I}{4\pi} \left[\frac{1}{r} \oint d\mathbf{l'} + \frac{1}{r^2} \oint r' \cos \theta' d\mathbf{l'} + \frac{1}{r^3} \oint r'^2 P_2(\cos \theta') d\mathbf{l'} + \cdots \right]$$

magnetic monopole term is always zero.

$$\mathbf{A}_{\text{dip}} = \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint r' \cos \theta' d\mathbf{l}' = \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}'$$

$$\oint (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}' = -\hat{\mathbf{r}} \times \int d\mathbf{a}'$$
 (Eq. 1.108, to be shown later)

Then

$$\mathbf{A}_{\text{dip}} = -\frac{\mu_0}{4\pi} \frac{1}{r^2} \hat{\mathbf{r}} \times (I \int d\mathbf{a}') = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \hat{\mathbf{r}}}{r^2}$$

where $\mathbf{m} = I \int d\mathbf{a}'$ is the magnetic dipole moment.

A Special Technique

Part I Recalling Stokes' theorem
$$\int_{S} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{P} \mathbf{v} \cdot d\mathbf{l}$$
Let $\mathbf{v} = T\mathbf{c}$
$$\nabla \times (f\mathbf{A}) = \nabla f \times \mathbf{A} + f(\nabla \times \mathbf{A})$$
constant vector
$$\int_{S} (\nabla \times T\mathbf{c}) \cdot d\mathbf{a} = \int_{S} (\nabla T \times \mathbf{c} + T(\nabla \times \mathbf{c})) \cdot d\mathbf{a} = -\mathbf{c} \cdot \int_{S} \nabla T \times d\mathbf{a}$$

$$\oint_{P} T\mathbf{c} \cdot d\mathbf{l} = \mathbf{c} \cdot \oint_{P} Td\mathbf{l}$$

$$\int_{S} \nabla T \times d\mathbf{a} = -\oint_{P} Td\mathbf{l}$$
Part II
$$\int_{S} \nabla' T' \times d\mathbf{a}' = -\oint_{P} T'd\mathbf{l}', \text{ let } T' = \hat{\mathbf{r}} \cdot \mathbf{r}'$$

$$\int_{S} \mathbf{V} T \times d\mathbf{a} = -\mathbf{\Phi} T d\mathbf{l}, \text{ let } T = \mathbf{r} \cdot \mathbf{r}$$

$$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}$$

$$\nabla' (\hat{\mathbf{r}} \cdot \mathbf{r}') = \hat{\mathbf{r}} \times (\nabla' \times \mathbf{r}') + \mathbf{r}' \times (\nabla' \times \hat{\mathbf{r}}) + (\hat{\mathbf{r}} \cdot \nabla') \mathbf{r}' + (\mathbf{r}' \cdot \nabla') \hat{\mathbf{r}}$$

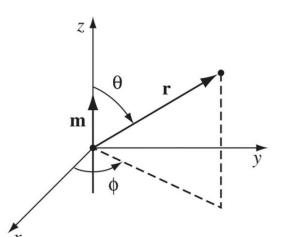
$$= (\hat{\mathbf{r}} \cdot \nabla') \mathbf{r}' = \hat{\mathbf{r}}$$

$$\int_{S} \hat{\mathbf{r}} \times d\mathbf{a}' = -\mathbf{\Phi} (\hat{\mathbf{r}} \cdot \mathbf{r}') d\mathbf{l}' = \hat{\mathbf{r}} \times \int d\mathbf{a}'$$
#

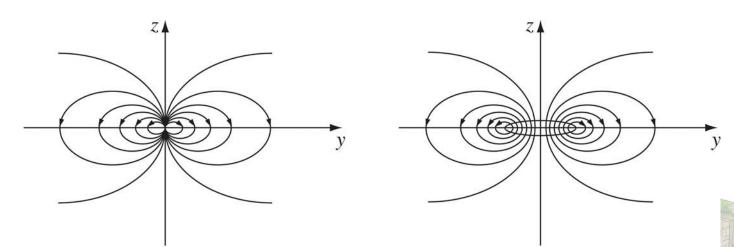
58

The Magnetic Field of a Dipole

$$\mathbf{A}_{\text{dip}} = \frac{\mu_0}{4\pi} \frac{m\hat{\mathbf{z}} \times \hat{\mathbf{r}}}{r^2} = \frac{\mu_0}{4\pi} \frac{m\sin\theta}{r^2} \hat{\boldsymbol{\phi}}$$



$$\mathbf{B}_{\text{dip}} = \nabla \times \mathbf{A} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})^{\tau}$$



(a) Field of a "pure" dipole

(b) Field of a "physical" dipole

Homework of Chap. 5 (part II)

Problem 5.16 Two long coaxial solenoids each carry current I, but in opposite directions, as shown in Fig. 5.42. The inner solenoid (radius a) has n_1 turns per unit length, and the outer one (radius b) has n_2 . Find **B** in each of the three regions: (i) inside the inner solenoid, (ii) between them, and (iii) outside both.

FIGURE 5.42

Problem 5.17 A large parallel-plate capacitor with uniform surface charge σ on the upper plate and $-\sigma$ on the lower is moving with a constant speed v, as shown in Fig. 5.43.

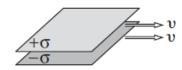


FIGURE 5.43

- (a) Find the magnetic field between the plates and also above and below them.
- (b) Find the magnetic force per unit area on the upper plate, including its direction.
- (c) At what speed v would the magnetic force balance the electrical force?¹⁵

Problem 5.25 If **B** is *uniform*, show that $\mathbf{A}(\mathbf{r}) = -\frac{1}{2}(\mathbf{r} \times \mathbf{B})$ works. That is, check

that $\nabla \cdot \mathbf{A} = 0$ and $\nabla \times \mathbf{A} = \mathbf{B}$. Is this result unique, or are there other functions with the same divergence and curl?

Homework of Chap. 5 (part II)

Problem 5.47 The magnetic field on the axis of a circular current loop (Eq. 5.41) is far from uniform (it falls off sharply with increasing z). You can produce a more nearly uniform field by using two such loops a distance d apart (Fig. 5.59).

- (a) Find the field (B) as a function of z, and show that $\partial B/\partial z$ is zero at the point midway between them (z = 0).
- (b) If you pick d just right, the *second* derivative of B will *also* vanish at the midpoint. This arrangement is known as a **Helmholtz coil**; it's a convenient way of producing relatively uniform fields in the laboratory. Determine d such that $\partial^2 B/\partial z^2 = 0$ at the midpoint, and find the resulting magnetic field at the center. [Answer: $8\mu_0 I/5\sqrt{5}R$]

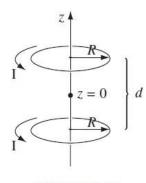


FIGURE 5.59

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity ω about the z axis.

- (a) What is the magnetic dipole moment of the sphere?
- (b) Find the average magnetic field within the sphere (see Prob. 5.59).
- (c) Find the approximate vector potential at a point (r, θ) where $r \gg R$.
- (d) Find the *exact* potential at a point (r,θ) outside the sphere, and check that it is consistent with (c). [*Hint*: refer to Ex. 5.11.]
- (e) Find the magnetic field at a point (r,θ) inside the sphere (Prob. 5.30), and check that it is consistent with (b).