
Chapter 5 Magnetostatics
5.1 The Lorentz Force Law 5.1.1 Magnetic Fields

By analogy with electrostatics, why don’t we study 

magnetostatics first? Due to lack of magnetic monopole.

If one tries to isolate the poles by cutting the magnet, a

curious thing happens: One obtains two magnets. No matter

how thinly the magnet is sliced, each fragment always has

two poles. Even down to the atomic level, no one has found

an isolated magnetic pole, called a monopole. Thus

magnetic field lines form closed loops.
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The Magnetic Field

Outside a magnet the lines emerge from the north pole

and enter the south pole; within the magnet they are

directed from the south pole to the north pole. The dots

represent the tip of an arrow coming toward you. The

cross represents the tail of an arrow moving away.

How a current-carry wire 

produces a magnetic field?
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The Magnetic Field of a Bar Magnet

When iron filings are sprinkled around a bar magnet, they

form a characteristic pattern that shows how the influence

of the magnet spreads to the surrounding space.
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The magnetic field, B, at a point along the tangent to a

field line. The direction of B is that of the force on the north

pole of a bar magnet, or the direction in which a compass

needle points. The strength of the field is proportional to

the number of lines passing through a unit area normal to

the field (flux density).



Definition of the Magnetic Field

When defining the electric field, the electric field strength

can be derived from the following relation: E = F/q. Since an

isolated pole is not available, the definition of the magnetic

field is not as simple.

Instead, we examine how an electric charge is affected by

a magnetic field.

F = qv B

F = qvBsin

Since F is always perpendicular to v, a magnetic force

does no work on a particle and cannot be used to change

its kinetic energy.

The SI unit of magnetic field is the Tesla (T). 1 T = 104 G
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The Lorentz Force Law

When a particle is subject to both electric and magnetic 

fields in the same region, what is the total force on it?

F = q(E + v B)
公理；公設

This is called the Lorentz force law. This axiom is found in

experiments.

dWmag = Fmag dl = q(vB)  vdt = 0
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Magnetic forces do no work.

Really? But, how do you explain a magnetic crane lifts a 

container?
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m v = kT  v =
3kT

=1.18105m/s
me

F = Il B

F = I B sin

Force on a Current-Carrying Conductor

When a current flows in a magnetic field, the electrons as

a whole acquire a slow drift speed, vd, and experience a

magnetic force, which is then transmitted to the wire.

F = qvB sin = (nA e)vd B

= (nAevd ) B

= I B

Electron's thermal speed:
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n: the number of the conductor per unit volume.

l : defined to be in the direction in which the current is flowing.



Force on a Current-Carrying Conductor

The force on an infinitesimal current element is

dF = IdlB

The force on a wire is the vector sum (integral) of the forces 

on all current elements.
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Example:
The Magnetic Force on a Semicircular Loop

A wire is bent into a semicircular loop of radius R. It carries a
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current I, and its plane is perpendicular to a uniform
magnetic field B, as shown below. Find the force on the loop. 

Solution:

dF = IdlB

dFy = IRB sind

Fy = IRB0 sind

= 2IRB = I (2R)B

The x-components of the forces on such elements will cancel 

in pairs.

The net force on any close current-carrying loop is zero.



The Motion of Charged Particles in Magnetic Fields

r qB

9

 r =
mv2 mv

qvB =

How does a charged particle move with an initial velocity v

perpendicular to a uniform magnetic field B?

Since v and B are perpendicular, the particle experiences a

force F = qvB of constant magnitude directed perpendicular.

Under the action of such a force, the particle will move in a

circular path at constant speed. From Newton’s second law,

F = ma, we have

The radius of the orbit is directly proportional to the linear

momentum of the particle and inversely proportional to the

magnetic field strength.



Cyclotron Motion

fc =
1
=T 2m  m  2

 

v qB
 q  B 

qB
=
 q  B

What are the frequency and the period? Are they independent 

of the speed of the particle? Yes.

The period of the orbit is

T =
2r

=
2m

=
 m  2

The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, q/m, have 

the same period and cyclotron frequency.

fc B = 2.8 MHz Gauss
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Example: Cyclotron

qB
fc = 2m

=12 MHz

K = 2qV =150 keV

Kmax / K =11000 /150 = 73.5 revs.

(qrmax B)2

11

−12
Kmax = =1.7610 J =11 MeV

2m

A cyclotron is used to accelerate protons from rest. It has a

radius of 60 cm and a magnetic field of 0.8 T. The potential

difference across the dees is 75 kV. Find: (a) the frequency of

the alternating potential difference; (b) the maximum kinetic

energy; (c) the number of revolutions made by the protons.

Solution:

(a)

(b)

(c)



Helical Motion

What happens if the charged particle’s velocity has not only a 

perpendicular component v⊥ but also a parallel component v//? 

Helical Motion.

12

The perpendicular component v⊥ gives rise to a force qv⊥B

that produces circular motion, but the parallel component

v// is not affected. The result is the superposition of a

uniform circular motion normal to the lines and a constant

motion along the lines.



Example: Cycloid Motion

Suppose, for instance, that B points in the x-direction, and E

in the z-direction. A particle initially at rest is released from

the origin; what path will it follow?

Solution:

1. Write down the equation of motion.

2. Solve the coupled differential equations.

3. Determine the constants using the initial conditions.
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Magnetic Bottle/Mirror

What happens if the magnetic field is not uniform? Energy 

transfers between the perpendicular and parallel components.
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In a nonuniform field, the particle experiences a force that

points toward the region of weak field. As a result, the

component of the velocity along the B lines is not constant.

If the particle is moving toward the region of stronger field,

as some point it may be stopped and made to reverse the

direction of its travel.



Velocity Selector

E

 
  v = i = vi 
B = −Bk B

 E = −Ej 

Only those particles with speed v = E/B pass through the

crossed fields undeflected. This provides a convenient

way of either measuring or selecting the velocities of

charged particles.
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Mass Spectrometer

v =
E 

B1

r =
mv

=
mE 

qB2 qB1B2

m
=

B1B2 r 
q E

A mass spectrometer is a device that separates charged

particles, usually ions, according to their charge-to-mass

ratios.
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Example: Mass Spectrometer

then r1 / r2 = (m1 / m2)

2qV

2mV

qB2

v =
m

qB
r =

mv
=

In a mass spectrometer shown below, two isotopes of an

element with mass m1 and m2 are accelerated from rest by

a potential difference V. They then enter a uniform B

normal to the magnetic field lines. What is the ratio of the

radii of their paths?

Solution:
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Note1: How particle is accelerated by a potential difference?



Current and Surface Current

dI

d
⊥

K =

In words, K is the current per unit width-perpendicular-to-flow.

//dt

d d dt

d (
d ( ⊥ // ))

⊥ ⊥

K =
dI

The current in a wire is the charge per unit time passing a 

given point.

Current is measured in coulombs-per-second, or amperes (A).

1 A = 1 C/s

The surface current density, K, is defined as follows:
Consider a “ribbon” of infinitesimal widthd
to the flow. Then,

⊥ , running parallel

surface charge density

=
d

= v
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Volume Current Density

The volume current density, J, is defined as follows: 

consider a “tube” of infinitesimal cross section da⊥, running 

parallel to the flow. Then,

J =
dI

da⊥

In words, J is the current per unit area-perpendicular-to-flow.

//

// ))
dt

da⊥

J =
dI


dt

d (
d (a⊥

da⊥

volume charge density

= 
d

= v
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where
dQ

=
d
 d .

dt dt
V

S V

V V
dt

V
t

 ( J)d = −
d
 d = −


d 

dt

Conservation of Charge

The current crossing a surface S can be written as

I =  J  n̂da

S

In particular, the total charge per unit time leaving a volume

V is

I =  J  n̂da =  ( J)d = −
dQ

t
 J = −



continuity equation
20



21

5.2 The Biot-Savart Law 5.2.1 Steady Currents

Stationary charges produce electric fields that are constant 

in time. Steady currents produce magnetic fields that are 

also constant in time.

Steady current means that a continuous flow that goes on

forever without change and without charge piling up

anywhere. They represent suitable approximations as long

as the fluctuations are reasonably slow.

 J = 0

Stationary charges  constant electric fields; electrostatics.

Steady currents  constant magnetic fields; magnetostatics.
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5.2.2 The Magnetic Field of a Steady Current

The Biot-Savart law:

or tesla (T). 1 T = 1 N/(Am)

The integration is along the current 

path, in the direction of the flow.

0: the permeability of free space.

Definition of magnetic field B: newtons per ampere-meter

4  4 
B(r) =

0

r 2 r 2

I r̂
dl =

0I dl r̂

The Biot-Savart law plays a role analogous to Coulomb’s 

law in electrostatics.
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Example 5.5 Find the magnetic field a distance s from a long

straight wire carrying a steady current I.

Sol:

l = s tan  dl = ssec2d and

Then, determine the suitable coordinate: cylindrical coordinate (s, , z). 

In the diagram, (dl r̂ ) points out of page ̂ and has the magnitude 

dlsin = dlcos

1
=

cos

r s

0 0I
B(r) =  2

dl = 
4 r 4

I r̂ dl r̂

r2
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Contd.
2

 2

0

4 r 2



2

2

 I dl r̂
B(r) = cosd

Tesla)

s

 I

4s
= 0 sin

 I

2s

−7 I 

s
= 0 (= 2 10



 I cos2
0

4 s cos 
−


2

 2

−


=

2 2d 2d
dF = I

0I1 dl =
0I1I2 dl

dF
=
0I1I2

dl 2d

(attractive force per unit length, why?)

What is the force between two parallel current-carrying wires?

dF = Idl B
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Example 5.6 Find the magnetic field a 

distance z above the center of a circular 

loop of radius R, which carries a steady 

current I.

Sol:

Choose cylindrical coordinate (s, , z).

In the diagram, (dl r̂ ) sweeps around the z axis, 

thus only the z-component survives.

z-component of (dl r̂) = dlcos = Rcos d

1
=

1

r 2

R
and cos =

(R2 + z2 ) (R2 + z2 )1/2

R2

2 (R2

 I 1 R  I
B(z) = 0 2R = 0

4 (R2 + z2 ) (R2 + z2 )1/2 + z2 )3/2

0

4

 ˆ
B(r) =  r2

 I dl  r
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The Biot-Savart Law
for the Surface and Volume Current

The Biot-Savart law:
r 2

dl r̂

4 
B(r) =

0

4 r 2

I r̂
dl =

0I

For surface current:

For volume current:

r 2

K  r̂
da

4 
B(r) =

0

r 2

J  r̂
d 

4 
B(r) =

0

For a moving charge:

4
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4  4 
B(r) =

0

r 2 r 2 r 2

J  r̂
d  =

0 qv (r − r) r̂
d  =

0 qv  r̂

A point charge does not constitute a steady current.

Wrong, why?



The Magnetic Field of Solenoid
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Solenoid

Problem 5.10 A solenoid of length L 

and radius a has N turns of wire and 

carries a current I. Find the field 

strength at a point along the axis.

Solution:

Since the solenoid is a series of closely 

packed loops, we may divide into current 

loops of width dz, each of which contains 

ndz turns, where n = N/L is the number of 

turns per unit length.

The current within such a loop is (ndz)I.
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Solenoid (II)

Contd.

z = a tan  dz = a sec2 d

nIdz = nIasec2 d

B =0nI(infinite long solenoid)

2

29

1 2

0a2
2

2 2 2 3/2

0

nIa sec d
2(a + a tan )

2
1

=
1
0nI cosd

nI cosd

2
=

1
0nI(sin2 − sin1)

dBaxis =

B =






Problem 5.9 Find the magnetic field at point P for each of the steady 

current configurations shown in Fig. 5.23.

Problem 5.10

(a) Find the force on a square loop placed as shown in Fig. 5.24(a),

near an infinite straight wire. Both the loop and the wire carry 

a steady current I .

(b) Find the force on the triangular loop in Fig. 5.24(b).

Problem 5.11 Find the magnetic field at point P on the axis

of a tightly wound solenoid (helical coil) consisting of n turns 

per unit length wrapped around a cylindrical tube of radius a 

and carrying current I (Fig. 5.25). Express your answer in 

terms of 1 and 2 (it's easiest that way). Consider the turns

to be essentially circular, and use the result of Ex. 5.6. What

is the field on the axis of an infinite solenoid (infinite in both 

directions)?

Homework of Chap. 5 (part I)
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Problem 5.41 A current I flows to the right through a rectangular

bar of conducting material, in the presence of a uniform magnetic

field B pointing out of the page (Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by

the magnetic field? This deflection results in an accumulation of charge on the

upper and lower surfaces of the bar, which in turn produces an electric force to

counteract the magnetic one. Equilibrium occurs when the two exactly cancel.

(This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and

bottom of the bar, in terms of B, v (the speed of the charges), and the relevant

dimensions of the bar.23

(c) How would your analysis change if the moving charges were negative? [The 

Hall effect is the classic way of determining the sign of the mobile charge 

carriers in a material.]

Homework of Chap. 5 (part I)
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Problem 5.50 Magnetostatics treats the "source current" (the one that sets up the

field) and the "recipient current" (the one that experiences the force) so asymmetrically 

that it is by no means obvious that the magnetic force between two current

loops is consistent with Newton's third law. Show, starting with the Biot-Savart law 

(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 2 due to

loop 1 (Fig. 5.61) can be written as

2 1 2 1 22
(5.91)

4  F = −
0 I I

r̂
dI dI .

r
In this form, it is clear that F2 = −F1, since r̂ changes direction when the roles of 

1 and 2 are interchanged. (If you seem to be getting an "extra" term, it will help to 

note that dl2 rˆ = dr .)

Homework of Chap. 5 (part I)
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5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents

The magnetic field of an infinite straight wire:

 I0

2s
 B(r) dl =  ̂ ˆsd = 0I

In fact for any loop that encloses the wire would give the 

same answer. Really?

2s

The integral of B around a circular path of radius s, centered 

at the wire, is:

33

B(r) =
0I

̂
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The Differential Form of B

Suppose we have a bundle of straight wires. Only wires 

that pass through the loop contribute 0I.

The line integration then be

 B(r) dl =0Ienc Ienc =  J da

The total current enclosed 

by the integration loop.

 B dl =  (B) da = 0J da

B =0J

Does this differential equation apply to any shape of the

current loop? Yes. To be proved soon.
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5.3.2 The Divergence and Curl of B

The Biot-Savart Law for the 

general case of a volume 

current:

0B(r) =
4

 ˆ
d 

 J(r ) 

r2

 r

The integration is over the primed coordinates.

The divergence and the curl are to be taken with 

respective to the unprimed coordinates.

B is a function of (x, y, z),

J is a function of (x, y, z),

r= (x − x)x̂ + (y − y)yˆ + (z − z)zˆ 

d= dxdydz
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The Divergence of B

The divergence of B:

4 4
B(r) =   (

0 
J(r) r̂

d)=
0   (

J(r) r̂
)d

r2 r2

 (
J(r) r̂

) =
r̂
 ( J) − J  (

r̂
)

r2 r2 r2

The divergence of a magnetic field is zero.

r 2

B = 0

r 2 r2
(

J(r) r̂
) =

r̂
 ( J(r)) − J  (

r̂
)

0

 (AB) = B  ( A) −A  (B)

0

r̂
= −

1

36
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The Curl of B
The curl of B:

4
B =

0  (
J(r) r̂

)d
r2

3

0

The curl of B equals 0 times J.

 B =
0 4 J(r )
4

B = 0J

 (r)d =  J(r)

primed

+unprimedunprimed primed

0 0

0 to be seen next

 (
J(r) r̂

) = J(
r̂

) − (J )
r̂

r2 r2 r2

 (
J(r) r̂

) = J(
r̂

) = J4 3(r) (See 1.5.3)
r 2 r 2

(A B) = (B )A − (A )B + A(B) −B(A)
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A Special Technique

Let’s prove that this 

integration is zero.

special technique

r 2 (J )
r̂

d  = 0

r 2 r 2

where r = (r − r)

(J )
r̂

= −(J )
r̂

,


x − x

 =   ((J  ) J) − (  J)
r3

x − x x − x

r3 r3

(
x − x

S

 r 2
(J )

r̂x d  =  J)d  =
r 3  (

x − x
J) da = 0

r 3

0, since J(r@) = 0

 ( fA) = f A − f (A)

Using the above rule, the x component is:

0, for steady current

38
What happens if J(r)  0



5.3.3 Applications of Ampere’s Law

Just as the Biot-Savart law plays a role in magnetostatics 

that Coulomb’s law assumed in electrostatics, so 

Ampere’s play the role of Gauss’s.

amperian loop




amperian loop

B = 0J Ampere' s law in differenti al form

 (B) da = B dl = 0J da = 0Ienc

Ampere's law in integral formBdl = 0Ienc

Electrostatics: Coulomb → Gauss

Magnetostatics: Biot-Savart → Ampere

EM
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Applications of Ampere’s Law

Like Gauss’s law, Ampere’s law is always true (for steady 

currents), but is not always useful.

Only when the symmetry of the problem enables you to 

pull B outside the integral can you calculate the magnetic 

field from the Ampere’s law.

These symmetries are:

1. Infinite straight lines

2. Infinite planes (Ex. 5.8)

3. Infinite solenoids (Ex. 5.9)

4. Toroids (Ex. 5.10)



Infinite Straight Wire

Example An infinite straight wire of radius R carries a current I. 

Find the magnetic field at a distance r from the center of the 

wire for (a) r > R, and (b) r < R. Assume that the current is 

uniformly distributed across the cross section of the wire.

Solution:

B =
0 I

(r  R)

 B dl = B2 r = 0I

2r

(r  R)

r2

 B dl = B2r = 0
R2

I

2R2
B =

0 I
r

(a)

41

(b)



Infinite Planes

Example 5.8 Find the magnetic field 

of an infinite uniform surface

current K = Kx̂, flowing over the xy 

plane.

Solution:

2

 K
B = 0

 B dl = B2l = 0Kl
for z  0 

for z  0
0

B = 
 − 0K / 2ŷ

 K / 2ŷ
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Solenoid

BLab = 0nLabI

B = 0nI

b c d a

a b c d

b

a

=

= 

   B dl + B dl + B dlB dl +

B dl

Example 5.9 An ideal infinite solenoid has n turns per unit 

length and carries a current I. Find its magnetic field inside.

Solution:

 B dl
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Toroid

Example 5.10 A toroidal coil (shaped like a doughnut) is 

tightly wound with N turns and carries a current I. We 

assume that it has a rectangular cross section, as shown 

below. Find the field strength within the toroid.

Solution:

 B dl = 0NI 

B =
0 NI

2r

The field is not uniform; it varies 

as 1/r. The toroidal fields are

used in research on fusion power.
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5.3.4 Comparison of Magnetostatics and Electrostatics

0 0 0

B = 0

)
E

t







B =  J (+ 

0

E =





 t

BE = 0 ( − )

Lorentz' s force lawF = q(E + vB)

Gauss’s law

No name (Faraday’s law)

Gauss’s law for magnetic field

Ampere’s law (Ampere-Maxwell law)
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4. Magnetic Vector Potential
1. The Vector Potential

Proof:

0 0

E =

2V = −


E = 0  E = −V and

0

2

0
 A) − A =  JB = 0  B =  A and B =  J (

Yes.

The Coulomb gauge

Is it possible for us to set A = 0 ?

It is always possible to make the vector potential divergenceless.

If  A0  0, let A = A0 + B =  A0 =  A

If A = 0, then 2 = − A0  similiar to Poisson's equation


2V = − / 0

0

V =
1



d 
40 r

d





 

1  A2 = −A0  =
4 r

EM

Tsun-Hsu Chang
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What happens when the curl of B vanishes? 

Magnetostatic scalar potential.

B = 0  B = −U

2U = 0 (similiar to Laplace's equation)

The Vector Potential and Scalar Potential

Using the Coulumb gauge, we obtain: 2A = −0J

A =
0 

J(r)
d

4 r
For line and surface current,

A =
0 

K (r)
daA =

0 
I

dl
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Example 5.11 A spherical shell, of radius R, carrying a

uniform surface charge , is set spinning at angular velocity

. Find the vector potential it produce at point r.

Sol: First, let the observer is in the z axis and  is tilted at an angle 


K(r)

daVector potential is A(r) =
0

The surface current density K(r) =v
4 r

x̂

sin

Rsin'cos'
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ŷ

0

Rsin' sin'

ẑ

cos

Rcos'

= R[−(cossin' sin')x̂ + (cossin' cos' − sincos') ŷ + (sinsin'sin')zˆ]

v' =ω× r' =
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2

2

2

r2

r2

r2

A(r) =

R sin d d

 
R sin d d0

4

  R(cos0

4

  R(sin
R sin d d0

4

 R(− cos
  

+ R2 − 2rR cos 
  sin cos − sin

+ R2 − 2rR cos 
  +

 
  

+ R2 − 2rR cos 
+







 sin sin )x̂

 cos ) ŷ

 sin sin )ẑ

3

0

1

r 2
+ R2 − 2rRu−1

ˆ
A(r) = sin d d

2

r2

r2

cos

4

4

u
du

−R sin

+ R2 − 2rR cos 

 d cos

+ R2 − 2rR cos 

= 0 

  
y



=
−R3 sin ŷ


−cos 

0 (2 )
0

− R3 sin ŷ

+1

−1

(R2 + r2 + Rru) 2 2

3R2r22 2

3R2r2

+1
R + r − 2Rru

−1
R + r − 2Rru

1

u
du = −

= − [(R2 + r2 + Rr) | R − r | −(R2 + r2 − Rr)(R + r)]



4

0

3r3

3

 0R (ωr) inside

(ωr) outside
 R 





A(r) =


)
3R2r 22

(R2 + r 2 + Rr) | R − r | −(R2 + r 2 − Rr)(R + r)
A(r) = 0 (−

− R3sinŷ

Reverting to the “natural” coordinate, we have

Surprisingly, the field inside the spherical shell is uniform.

4
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0

3
,)=A(r,

3 r2

R sin

3 3 3
B =  A =

20R(cosr̂ − sinθ̂ )=
2
0Rẑ =

2
0Rω








0Rrsin̂, r  R

̂, r  R



Example 5.12 Find the vector potential 

of an infinite solenoid with n turns per 

unit length, radius R, and current I.

Sol: B da =  =  (A) da =  A dl

where  is the flux of Β through the loop in question.

 B dl = 0Ienc   A dl = 

Using a circular "amperian loop" at a radius inside the solenoid.

for s  R
2

A dl = A2s = Bda = 0nI(s2)  A=
0nI

s̂

0nIR2
ˆ2

0

Using a circular "amperian loop" at a radius s outside the solenoid.

 for s R
2s

A= Adl = A2s = Bda = nI(R )
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5.4.2 Summary; Magnetostatic Boundary Conditions

We have derived five formulas

interrelating three fundamental

quantities: J, A and B.

Comments:

•There is one “missing link” in the diagram.

•These three variables, J, A, and B, are all vectors. It is 

relatively difficult to deal with.
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Magnetostatic Boundary Conditions: Normal

The normal component of the 

magnetic field is continuous, 

even with a surface density K.

What is the physical picture?

Consider a wafer-thin pillbox. Gauss’s law states that

S B da = 0

The sides of the pillbox contribute nothing to the flux, in the 

limit as the thickness  goes to zero.

(B⊥ − B⊥ )A = 0  B⊥ = B⊥

above below above below
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Magnetostatic Boundary Conditions: Tangential

The tangential component of B is 

discontinuous.

P B dl = 0Ienc

The ends gives nothing (as →0), and the sides give

(B// − B//
above below below 0

− B//)l = 0Kl  Babove
// =  K

Consider a thin rectangular loop. The 

curl of the Ampere’s law states that

In short, Babove −Bbelow = 0K  n̂, where n̂ points "upward."

How about the vector potential A?
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Boundary Conditions in Terms of Vector Potential

Like the scalar potential in electrostatics, the 

vector potential is continuous any boundary:

Aabove = Abelow

belowabove A = 0  A⊥ = A⊥

 A = B  = A dl = B da below
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5.4.3 Multipole Expansion of the Vector Potential

2






=
1


=
(r 2 + r2 − 2rrcos )

1 1

r − r

ℓ

ℓ=0

ℓ( ) P (cos )
r

r

r

=
1

(1+ (
r

) cos  + (
r

) ((3cos2  −1) / 2) +… )
r r r

2

2

The vector potential of a current loop

1 1 n

n

0

4



n=0

   

  =
0 I 1 




rn+1 

4 r
 r2  r3 

A =
0 I  I

dl = (r ) P (cos )dl
r

dl +
1

r cos dl +
1

r P (cos )dl +

4  r-

monopole dipole quadrupole

EM

Tsun-Hsu Chang
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Multipole Expansion

2

2r2 r3
  


4 r

  A =
0I 1

dl +
1

rcos dl +
1

r P (cos )dl +

magnetic monopole term is always zero.

4 r2
Adip =

0I 1
 rcosdl =

0I 1
 (r̂ r)dl

4 r2

(Eq. 1.108, to be shown later) (r̂ r)dl = −r̂   da

dip
4r2 4 r2A = −
0 1

r̂ (I da) =
0 m r̂

where m = I  da is the magnetic dipole moment .

Then
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A Special Technique

58

Recalling Stokes’ theorem

P

S 
( v) da =  v dl

S
(Tc) da = S

(T  c + T ( c)) da = −c  S
T  da

 Tc dl = c   Tdl S
T da = −  Tdl

P P P

( fA) = f A + f ( A)Let v = Tc

constant vector

S
T  da = −  T dl, let T  = r̂ r

Part I

Part II

P

(A B) = A(B) +B(
P
A) + (A )B + (B )A

(r̂ r) = r̂(r) + r(rˆ)+ (r̂ )r + (r)rˆ

= (r̂ )r = r̂

S
r̂da = −  (r̂ r)dl = r̂  da

＃



The Magnetic Field of a Dipole

Bdip = A =
0m

(2cosrˆ + sinˆ)
4r3

dip
r2 r24 4

=
0 mẑ r̂

=
0 msin

̂A
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Problem 5.16 Two long coaxial solenoids each carry current I , but 

in opposite directions, as shown in Fig. 5.42. The inner solenoid 

(radius a) has n1 turns per unit length, and the outer one (radius b)

has n2. Find B in each of the three regions: (i) inside the inner solenoid,

(ii) between them, and (iii) outside both.

Problem 5.17 A large parallel-plate capacitor with uniform surface

charge  on the upper plate and −  on the lower is moving with a

constant speed v, as shown in Fig. 5.43.

(a) Find the magnetic field between the plates and also above and below them.

(b) Find the magnetic force per unit area on the upper plate, including its direction.

(c) At what speed v would the magnetic force balance the electrical force?15

Problem 5.25 If B is uniform, show that A(r) = −
1

(rB) works. That is, check
2

that  A = 0 and  A = B. Is this result unique, or are there other functions

with the same divergence and curl?
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Problem 5.47 The magnetic field on the axis of a circular current loop (Eq. 5.41) 

is far from uniform (it falls off sharply with increasing z). You can produce a more 

nearly uniform field by using two such loops a distance d apart (Fig. 5.59).

(a) Find the field (B) as a function of z, and show that B/z is zero at the point 

midway between them (z = 0).

(b) If you pick d just right, the second derivative of B will also vanish at the 

midpoint.This arrangement is known as a Helmholtz coil; it's a convenient 

way of producing relatively uniform fields in the laboratory. Determine d

such that 2B/z2 = 0 at the midpoint, and find the resulting magnetic field 

at the center. [Answer: 80I /5 5R]

Problem 5.60 A uniformly charged solid sphere of radius R carries a total charge

Q, and is set spinning with angular velocity  about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r, ) where r R.

(d) Find the exact potential at a point (r, ) outside the sphere, and check that it is 

consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, )inside the sphere (Prob. 5.30), and check

that it is consistent with (b).
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