
Chapter 5 Magnetostatics
5.1 The Lorentz Force Law 5.1.1 Magnetic Fields
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By analogy with electrostatics, why don’t we study 

magnetostatics first? Due to lack of magnetic monopole.

If one tries to isolate the poles by cutting the magnet, a

curious thing happens: One obtains two magnets. No matter

how thinly the magnet is sliced, each fragment always has

two poles. Even down to the atomic level, no one has found

an isolated magnetic pole, called a monopole. Thus

magnetic field lines form closed loops.
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The Magnetic Field
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Outside a magnet the lines emerge from the north pole

and enter the south pole; within the magnet they are

directed from the south pole to the north pole. The dots

represent the tip of an arrow coming toward you. The

cross represents the tail of an arrow moving away.

How a current-carry wire 

produces a magnetic field?



The Magnetic Field of a Bar Magnet
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When iron filings are sprinkled around a bar magnet, they

form a characteristic pattern that shows how the influence

of the magnet spreads to the surrounding space.

The magnetic field, B, at a point along the tangent to a

field line. The direction of B is that of the force on the north

pole of a bar magnet, or the direction in which a compass

needle points. The strength of the field is proportional to

the number of lines passing through a unit area normal to

the field (flux density).



Definition of the Magnetic Field
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When defining the electric field, the electric field strength

can be derived from the following relation: E = F/q. Since an

isolated pole is not available, the definition of the magnetic

field is not as simple.

Instead, we examine how an electric charge is affected by 

a magnetic field.

Since F is always perpendicular to v, a magnetic force

does no work on a particle and cannot be used to change

its kinetic energy.

The SI unit of magnetic field is the Tesla (T). 1 T = 104 G 



The Lorentz Force Law
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When a particle is subject to both electric and magnetic 

fields in the same region, what is the total force on it?

This is called the Lorentz force law. This axiom is found in 

experiments.

Magnetic forces do no work. 

Really? But, how do you explain a magnetic crane lifts a 

container?

公理；公設



Force on a Current-Carrying Conductor
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When a current flows in a magnetic field, the electrons as

a whole acquire a slow drift speed, vd, and experience a

magnetic force, which is then transmitted to the wire.

n: the number of the conductor per unit volume.

l : defined to be in the direction in which the current is flowing.



Force on a Current-Carrying Conductor

d Id= F l B
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The force on an infinitesimal current element is 

The force on a wire is the vector sum (integral) of the forces 

on all current elements.



Example:
The Magnetic Force on a Semicircular Loop
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A wire is bent into a semicircular loop of radius R. It carries a

current I, and its plane is perpendicular to a uniform

magnetic field B, as shown below. Find the force on the loop.

Solution:

The x-components of the forces on such elements will cancel 

in pairs.

The net force on any close current-carrying loop is zero.



The Motion of Charged Particles in Magnetic Fields
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How does a charged particle move with an initial velocity v

perpendicular to a uniform magnetic field B?

Since v and B are perpendicular, the particle experiences a

force F = qvB of constant magnitude directed perpendicular.

Under the action of such a force, the particle will move in a

circular path at constant speed. From Newton’s second law,

F = ma, we have

The radius of the orbit is directly proportional to the linear

momentum of the particle and inversely proportional to the

magnetic field strength.



Cyclotron Motion
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What are the frequency and the period? Are they independent 

of the speed of the particle? Yes.

The period of the orbit is 

The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, q/m, have 

the same period and cyclotron frequency.

2.8 MHz Gausscf B =
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Example: Cyclotron
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A cyclotron is used to accelerate protons from rest. It has a

radius of 60 cm and a magnetic field of 0.8 T. The potential

difference across the dees is 75 kV. Find: (a) the frequency of

the alternating potential difference; (b) the maximum kinetic

energy; (c) the number of revolutions made by the protons.

Solution:

(a)

(b)

(c)



Helical Motion
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What happens if the charged particle’s velocity has not only a 

perpendicular component v⊥ but also a parallel component v//? 

Helical Motion.

The perpendicular component v⊥ gives rise to a force qv⊥B

that produces circular motion, but the parallel component

v// is not affected. The result is the superposition of a

uniform circular motion normal to the lines and a constant

motion along the lines.



Example: Cycloid Motion
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Suppose, for instance, that B points in the x-direction, and E

in the z-direction. A particle initially at rest is released from

the origin; what path will it follow?

1. Write down the equation of motion.

2. Solve the coupled differential equations.

3. Determine the constants using the initial conditions.

Solution:



Magnetic Bottle/Mirror
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What happens if the magnetic field is not uniform? Energy

transfers between the perpendicular and parallel components.

In a nonuniform field, the particle experiences a force that

points toward the region of weak field. As a result, the

component of the velocity along the B lines is not constant.

If the particle is moving toward the region of stronger field,

as some point it may be stopped and made to reverse the

direction of its travel.



Velocity Selector
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Only those particles with speed v = E/B pass through the

crossed fields undeflected. This provides a convenient

way of either measuring or selecting the velocities of

charged particles.



Mass Spectrometer
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A mass spectrometer is a device that separates charged 

particles, usually ions, according to their charge-to-mass 

ratios.



Example: Mass Spectrometer
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In a mass spectrometer shown below, two isotopes of an

element with mass m1 and m2 are accelerated from rest by

a potential difference V. They then enter a uniform B

normal to the magnetic field lines. What is the ratio of the

radii of their paths?

Solution:

Note1: How particle is accelerated by a potential difference?



Current and Surface Current
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The current in a wire is the charge per unit time passing a 

given point.

Current is measured in coulombs-per-second, or amperes (A).

1 A = 1 C/s

In words, K is the current per unit width-perpendicular-to-flow.
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The surface current density, K, is defined as follows: 

Consider a “ribbon” of infinitesimal width       , running parallel 

to the flow. Then, 
d ⊥

surface charge density 



Volume Current Density
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The volume current density, J, is defined as follows: 

consider a “tube” of infinitesimal cross section da⊥, running 

parallel to the flow. Then, 

In words, J is the current per unit area-perpendicular-to-flow.
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Conservation of Charge
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The current crossing a surface S can be written as

In particular, the total charge per unit time leaving a volume 

V is
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5.2 The Biot-Savart Law 5.2.1 Steady Currents
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Stationary charges produce electric fields that are constant 

in time. Steady currents produce magnetic fields that are 

also constant in time.

Steady current means that a continuous flow that goes on

forever without change and without charge piling up

anywhere. They represent suitable approximations as long

as the fluctuations are reasonably slow.

Stationary charges  constant electric fields; electrostatics. 

Steady currents  constant magnetic fields; magnetostatics.

0= J
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5.2.2 The Magnetic Field of a Steady Current
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The Biot-Savart law:

Definition of magnetic field B: newtons per ampere-meter 

or tesla (T).      1 T = 1 N/(Am)

The integration is along the current 

path, in the direction of the flow. 

0: the permeability of free space.

0 0
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The Biot-Savart law plays a role analogous to Coulomb’s 

law in electrostatics.



23

Example 5.5 Find the magnetic field a distance s from a long 

straight wire carrying a steady current I.

  :Sol 

2

Then, determine the suitable coordinate:  cylindrical coordinate ( , , ).
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 Contd.  

What is the force between two parallel current-carrying wires?

22
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Example 5.6 Find the magnetic field a 

distance z above the center of a circular 

loop of radius R, which carries a steady 

current I.

  :Sol 

2 2 2 2 2 1/

Choose cylindrical coordinate ( , , ).

ˆIn the diagram, ( ) sweeps around the  axis,

thus only the -component survives.
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The Biot-Savart Law 
for the Surface and Volume Current
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The Biot-Savart law: 0 0
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For volume current:
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For a moving charge:

0 0 0

2 2 2

ˆ ˆ ˆ( )
( )

4 4 4

q q
d d

   
 

  

 −  
 = = = 

J v r r v
B r

r r r
r r r

A point charge does not constitute a steady current.

Wrong, why?



The Magnetic Field of Solenoid
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Solenoid
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Problem 5.10 A solenoid of length L

and radius a has N turns of wire and 

carries a current I. Find the field 

strength at a point along the axis.

Solution:

Since the solenoid is a series of closely 

packed loops, we may divide into current 

loops of width dz, each of which contains 

ndz turns, where n = N/L is the number of 

turns per unit length. 

The current within such a loop is (ndz)I.



Solenoid (II)
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Contd.

2

1

2
20

2 2 2 3/2

0

0

0 2 1

sec
2( tan )

1
         cos

2
1

cos
2

1
    (sin sin )

2

axis

a
dB nIa d

a a

nI d

B nI d

nI






 



  

  

  

=
+

=

=

= −





30

 Find the magnetic field at point  for each of the steady

current configurations shown in Fig. 5.23.

PProblem 5.9

(a) Find the force on a square loop placed as shown in Fig. 5.24(a), 

      near an infinite straight wire. Both the loop and the wire carry

      a steady current  .

(b) Find the force on t

I

Problem 5.10

he triangular loop in Fig. 5.24(b).

 Find the magnetic field at point  on the axis

of a tightly wound  (helical coil) consisting of  turns

per unit length wrapped around a cylindrical tube of radius  

and carrying cu

P

n

a

Problem 5.11

solenoid

1 2

rrent  (Fig. 5.25). Express your answer in

terms of  and  (it's easiest that way). Consider the turns

to be essentially circular, and use the result of Ex. 5.6. What

is the field on the axis of an 

I

i

 

 solenoid (infinite in both

directions)?

nfinite

Homework of Chap. 5 (part I)
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 A current  flows to the right through a rectangular

bar of conducting material, in the presence of a uniform magnetic

field  pointing out of the page (Fig. 5.56).

(a) If the moving charges

IProblem 5.41

B

 are , in which direction are they deflected by

     the magnetic field? This deflection results in an accumulation of charge on the 

     upper and lower surfaces of the bar, which in turn prod

positive

uces an electric force to

     counteract the magnetic one. Equilibrium occurs when the two exactly cancel.

     (This phenomenon is known as the .)

(b) Find the resulting potential difference

Hall effect

23

 (the ) between the top and

      bottom of the bar, in terms of ,  (the speed of the charges), and the relevant

      dimensions of the bar.

(c) How would your analysis change if the mov

B v

Hall voltage

ing charges were ? [The

      Hall effect is the classic way of determining the sign of the mobile charge

      carriers in a material.]

negative

Homework of Chap. 5 (part I)
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 Magnetostatics treats the "source current" (the one that sets up the

field) and the "recipient current" (the one that experiences the force) so asymmetrically

that it is by no means obvious

Problem 5.50

 that the magnetic force between two current

loops is consistent with Newton's third law. Show, starting with the Biot-Savart law

(Eq. 5.34) and the Lorentz force law (Eq. 5.16), that the force on loop 

0
2 1 2 1 22

2 1

2 due to

loop 1 (Fig. 5.61) can be written as

ˆ
                                         .                       (5.91)

4

ˆIn this form, it is clear that , since  changes di

I I d d



= − 

= −

 F I I

F F

r

r
r

2

rection when the roles of

1 and 2 are interchanged. (If you seem to be getting an "extra" term, it will help to

ˆnote that .)d d =l r r

Homework of Chap. 5 (part I)



5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents

33

The magnetic field of an infinite straight wire:

The integral of B around a circular path of radius s, centered 

at the wire, is:
0

0
ˆ ˆ( )

2

I
d sd I

s


 


 =  = B r l  

In fact for any loop that encloses the wire would give the 

same answer. Really?

0 ˆ( )
2

I

s




=B r 
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The Differential Form of B
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Suppose we have a bundle of straight wires. Only wires 

that pass through the loop contribute 0I. 

The line integration then be 

The total current enclosed 

by the integration loop.

0 enc( ) d I = B r l

Does this differential equation apply to any shape of the 

current loop? Yes. To be proved soon.

encI d=  J a

0

0

( )d d d



 =   = 

 =
  B l B a J a

B J



5.3.2 The Divergence and Curl of B
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The Biot-Savart Law for the 

general case of a volume 

current:

0
2

ˆ( )
( )

4
d






 
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J r
B r

r

r

The integration is over the primed coordinates. 

The divergence and the curl are to be taken with 

respective to the unprimed coordinates.

 is a function of ( ,  , ),

 is a function of ( ,  , ),

ˆ ˆ ˆ( ) ( ) ( )

x y z

x y z

x x y y z z

d dx dy dz

  

  = − + − + −
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B

J

x y zr



The Divergence of B
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The divergence of B:
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2 2

2 2 2

ˆ ˆ( ) ( )
( ) ( ) ( )

4 4

ˆ ˆ ˆ( )
( ) ( ) ( )

d d
 

 
 

  
   =   =  

 
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ˆ ˆ ˆ( )
( ) ( ( )) ( )

0     The divergence of a magnetic field is zero.

 
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J r
J r J

B
r r r

r r r
00

2

ˆ 1
( )  (Prob. 1.13)= −

r
r r
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The Curl of B
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The curl of B:

0
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4
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
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30
0

0 0

ˆ( ) ˆ
( ) ( ) 4 ( )

4 ( ) ( ) ( )
4

    The curl of B equals  times .

d




   


 

 
 =  =

  = =

 =



J r
J J

B J r J r

B J J

r
r

r r

r

r
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0

2 2 2

ˆ ˆ ˆ( )
( ) ( ) ( )

 
 =  − 

J r
J J

r r r

r r r

0

0 to be seen next

(See 1.5.3)

( ) ( ) ( ) ( ) ( )  =  −  +  −  A B B A A B A B B A



A Special Technique
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Let’s prove that this 

integration is zero. 

special technique

2

ˆ
( ) 0d  = J

r

r

2 2

ˆ ˆ
( ) ( ) ,

where  ( )

 = − 

= −

J J

r r
r r
r

r r

Using the above rule, the x component is:

3 3 3
( ) ( ) ( )

x x x x x x  − − −
   =   −  J J J

r r r

0, for steady current

2 3 3

ˆ
( ) ( ) ( ) 0x

S

x x x x
d d d 

 − −
    =   =  =  J J J a

r r r
r

0, since J(r@) = 0

What happens if J(r)  0

( ) ( )f f f =   −  A A A



5.3.3 Applications of Ampere’s Law
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Just as the Biot-Savart law plays a role in magnetostatics 

that Coulomb’s law assumed in electrostatics, so 

Ampere’s play the role of Gauss’s.

form aldifferentiin  law sAmpere'     0JB =

0 0 enc

amperian loop

0 enc

amperian loop

( )

  Ampere's law in integral form

d d d I

d I

 



  =  =  =

 =

  



B a B l J a

B l

Electrostatics:       Coulomb        → Gauss

Magnetostatics:    Biot-Savart     → Ampere

EM

Tsun-Hsu Chang



Applications of Ampere’s Law
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Like Gauss’s law, Ampere’s law is always true (for steady 

currents), but is not always useful. 

Only when the symmetry of the problem enables you to 

pull B outside the integral can you calculate the magnetic 

field from the Ampere’s law. 

These symmetries are: 

1. Infinite straight lines

2. Infinite planes (Ex. 5.8)

3. Infinite solenoids (Ex. 5.9)

4. Toroids (Ex. 5.10)



Infinite Straight Wire

( )

0

0

2

    
2

B r I

I
B r R

r

d  





= =

= 

 B l

( )

2

0 2

0
2

2

   
2

r
B r I

R
I

r R
R

d

B r 


 






= =

= 

 B l
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Example An infinite straight wire of radius R carries a current I. 

Find the magnetic field at a distance r from the center of the 

wire for (a) r > R, and (b) r < R. Assume that the current is 

uniformly distributed across the cross section of the wire.

Solution:

(a)

(b)



Infinite Planes

0

0

2

2

B l Kl

K
B

d 



= =

=

 B l

0for 

0for 
   

ˆ2/

   ˆ2/

0

0









−
=

z

z

K

 K

y

y
B




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Solution:

Example 5.8 Find the magnetic field 

of an infinite uniform surface 

current              , flowing over the xy

plane.

xK ˆK=



Solenoid

0

0

b c d a

a b c d

b

a

ab abBL n

d

d d

L I

B

d d

n

d

I







   = + + +

=

=

=





   

B l

B l B l B l B l

B l
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Example 5.9 An ideal infinite solenoid has n turns per unit

length and carries a current I. Find its magnetic field inside.

Solution:



Toroid

0

0

2

d NI

NI
B

r






=

 = B l
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Example 5.10 A toroidal coil (shaped like a doughnut) is 

tightly wound with N turns and carries a current I. We 

assume that it has a rectangular cross section, as shown 

below. Find the field strength within the toroid.

Solution:

The field is not uniform; it varies 

as 1/r. The toroidal fields are 

used in research on fusion power.



5.3.4 Comparison of Magnetostatics and Electrostatics
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0 0 0

0

 )
  

(
t

 


+


  =


 =

E

B

B J

0

  

 ( )0
t






−


 =


 =
 

B

E

E

law force sLorentz'     )( BvEF += q

Gauss’s law

No name (Faraday’s law)

Gauss’s law for magnetic field

Ampere’s law (Ampere-Maxwell law)



5.4 Magnetic Vector Potential  
5.4.1 The Vector Potential
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Proof: 

2

0 0

0     and    V V
 

 
 =  = −  =  = −E E E

JAAJBABB 0

2

0 )(    and    0  =−===

Is it possible for us to set                ? Yes.

The Coulomb gauge

It is always possible to make the vector potential divergenceless.

AABAAA ==+= 000 let  ,0 If 
2

0

2
0

0

2 0
0

If 0,  then    similiar to Poisson's equation

1
/

4

1

4

V V d

d




  



  


 =  = − 


 = − =


   = − =







A A

A
A

r

r

0 =A

EM
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The Vector Potential and Scalar Potential
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For line and surface current, 

What happens when the curl of B vanishes?

Magnetostatic scalar potential.

2
0Using the Coulumb gauge, we obtain:  = −A J

0 ( )

4
d







= 

J r
A

r

0 ( )

4

K
da






= 

r
A

r
0

4
dl




= 

I
A

r

2

0       

0 (similiar to Laplace's equation)

U

U

 =  = −

 =

B B
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Example 5.11 A spherical shell, of radius R, carrying a 

uniform surface charge , is set spinning at angular velocity 

. Find the vector potential it produce at point r.

  :Sol 

0

First, let the observer is in the  axis and  is tilted at an angle 

( )
Vector potential is ( )

4
The surface current density ( )

z

da

 







=

 =


K r

A r

K r v
r

ˆ ˆ ˆ

sin 0 cos

sin cos sin sin cos

ˆ ˆ ˆ[ (cos sin sin ) (cos sin cos sin cos ) (sin sin sin ) ]

' ' =

R ' ' R ' ' R '

R ' ' ' ' ' ' '

   

    

           

=

= − + − +

x y z

v ω× r

x y z
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20

2 2
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2 2

20

2 2

ˆ( cos sin sin )
( ) sin

4 2 cos
ˆ(cos sin cos sin cos )

sin
4 2 cos

ˆ(sin sin sin )
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4 2 cos
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R d d

r R rR

R
R d d

r R rR
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R d d

r R rR
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
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0

4

0

3

( )  inside
3

( )

( )  outside
3

R

R

r

 

 




= 
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
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A r
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))((||)(
(

2

ˆsin
)(

22

22223

0

rR

rRRrrRrRRrrRR +−+−−++
−

−
=

y
rA



Reverting to the “natural” coordinate, we have

Surprisingly, the field inside the spherical shell is uniform.

0
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     





= 
 

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
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Example 5.12 Find the vector potential

of an infinite solenoid with n turns per 

unit length, radius R, and current I.

  :Sol 

0 enc

 ( )  

where  is the flux of  through the loop in question.

          

d d d

d I d

 =  =    = 



 =   = 

  

 

B a A a A l

Β

B l A l

2 0
0

Using a circular "amperian loop" at a radius  the solenoid.

ˆ2 ( )      for 
2

nI
d A s d nI s A s s R


   = =  =  =  

inside

A l B a 

2
2 0

0

Using a circular "amperian loop" at a radius   the solenoid.

ˆ2 ( )      for 
2

s

nIR
d A s d nI R A s R

s


   = =  =  =  

outside

A l B a 



5.4.2 Summary; Magnetostatic Boundary Conditions
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We have derived five formulas 

interrelating three fundamental 

quantities: J, A and B.

Comments: 

•There is one “missing link” in the diagram. 

•These three variables, J, A, and B, are all vectors. It is 

relatively difficult to deal with.



Magnetostatic Boundary Conditions: Normal
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The normal component of the 

magnetic field is continuous, 

even with a surface density K. 

What is the physical picture?

Consider a wafer-thin pillbox. Gauss’s law states that

0
S

d = B a

The sides of the pillbox contribute nothing to the flux, in the 

limit as the thickness  goes to zero.

⊥⊥⊥⊥ ==− belowabovebelowabove      0)( BBABB



Magnetostatic Boundary Conditions: Tangential
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The tangential component of B is 

discontinuous.

0 encP
d I = B l

The ends gives nothing (as →0), and the sides give

// //
above below 0

// //
above below 0( )   B B l Kl B B K− =  − =

Consider a thin rectangular loop. The 

curl of the Ampere’s law states that

 upward."" points ˆ   where,ˆ   short,In 0belowabove nnKBB =− 

How about the vector potential A?



Boundary Conditions in Terms of Vector Potential
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Like the scalar potential in electrostatics, the 

vector potential is continuous any boundary:

belowabove AA =

⊥⊥ == belowabove    0 AAA

 d d =   =  =  A B A l B a
//

below

//

above    AA =



5.4.3 Multipole Expansion of the Vector Potential
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Multipole Expansion
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20
22 3

1 1 1
cos (cos )

4

I
d r d r P d

r r r


 



 
      = + + + 

 
  A l l l

magnetic monopole term is always zero.

0 0
dip 2 2

1 1
ˆcos ( )

4 4

I I
r d d

r r

 


 
    = =  A l r r l

ˆ ˆ( )d d   = −  r r l r a

0 0
dip 2 2

ˆ1
ˆ ( )

4 4
I d

r r

 

 


= −  =

m r
A r a

.  theis    where moment dipole magneticam  = dI

(Eq. 1.108, to be shown later)

Then



A Special Technique
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Recalling Stokes’ theorem ( )
S

P

d d  =  v a v l

Let v = Tc

( ) ( ( ))
S S S

P P

d T T d T d

d

T

dT T

  =   +   = −   

 = 

  

 

a c c a c a

l cc l

c

( ) ( )f f f =  + A A A

S
P

T d Td  = − a l

ˆ,   let 
S

P

T d T d T        = − =  a l r r

Part I

Part II

( ) ( ) ( ) ( ) ( )  =   +   +  + A B A B B A A B B A

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( )

           =    +    +  + 

 =  =

r r r r r r r r r r

r r r

ˆ ˆ ˆ( )
S

P

d d d    = −  =   r a r r l r a
＃

constant vector



The Magnetic Field of a Dipole
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0
dip 3

ˆˆ(2cos sin )  
4
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
 


=  = +B A r  
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ˆˆ sin ˆ
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1

 Two long coaxial solenoids each carry current  , but

in opposite directions, as shown in Fig. 5.42. The inner solenoid 

(radius ) has  turns per unit length, and the outer one (radius 

I

a n b

Problem 5.16

2

)

has . Find  in each of the three regions: (i) inside the inner solenoid,

(ii) between them, and (iii) outside both.

n B

 A large parallel-plate capacitor with uniform surface 

charge  on the upper plate and  on the lower is moving with a

constant speed , as shown in Fig. 5.43.

(a) Find the magnetic field b

v

 −

Problem 5.17

etween the plates and also above and below them.

(b) Find the magnetic force per unit area on the upper plate, including its direction.

(c) At what speed  would the magnetic force balance the electricav 15l force?

1

2
 If  is , show that ( ) ( ) works. That is, check

that 0 and . Is this result unique, or are there other functions

with the same divergence and curl?

uniform = − 

 =  =

Problem 5.25 B A r r B

A A B

Homework of Chap. 5 (part II)



61

 The magnetic field on the axis of a circular current loop (Eq. 5.41)

is far from uniform (it falls off sharply with increasing ). You can produce a more

nearly uniform field by using  s

z

two

Problem 5.47

uch loops a distance  apart (Fig. 5.59).

(a) Find the field ( ) as a function of , and show that /  is zero at the point

     midway between them (  = 0).

(b) If you pick  just right, the  de

d

B z B z

z

d second

 

rivative of  will  vanish at the

      midpoint.This arrangement is known as a ; it's a convenient

      way of producing relatively uniform fields in the laboratory. Determine  

    

B also

d

Helmholtz coil

2 2

0

  such that  /  = 0 at the midpoint, and find the resulting magnetic field

      at the center. [ : 8  /5 5 ]

B z

Answer I R

 

 A uniformly charged solid sphere of radius  carries a total charge

, and is set spinning with angular velocity  about the  axis.

(a) What is the magnetic dipole moment of the sphere?

(b)

R

Q z

Problem 5.60

 Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point ( , ) where .

(d) Find the  potential at a point ( , ) outside the spher

r r R

exact r



 e, and check that it is

      consistent with (c). [ : refer to Ex. 5.11.]

(e) Find the magnetic field at a point  ( , )inside the sphere (Prob. 5.30), and check

     that it is consistent with (b).

Hint

r 

Homework of Chap. 5 (part II)


