
Chapter 4 Electric Fields in Matter
4.1 Polarization: 4.1.1 Dielectrics

Most everyday objects belong to one of two large classes:

conductors and insulators (or dielectrics)

Conductors: Substances contain an “unlimited” supply of 

charges that are free to move about through the material.

Dielectrics: All charges are attached to specific atoms or 

molecules. All they can do is move a bit within the atom or 

molecule.
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Dielectrics

Dielectrics: Microscopic displacements are not as 

dramatics as the wholesale rearrangement of charge in 

conductor, but their cumulative effects account for the 

characteristic behavior of dielectric materials.

There are actually two principal mechanisms by which 

electric fields can distort the charge distribution of a 

dielectric atom or molecule: rotating and stretching.
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4.1.2 Induced Dipoles

What happens to a neutral atom when it is placed in an 

electric field E ?

Although the atom as a whole is electrically neutral, there is 

a positively charged core (the nucleus) and a negatively 

charged electron cloud surrounding it.

Thus, the nucleus is pushed in the direction of the field, and 

the electron the opposite way.

The electric fields pull the electrons and the nucleus apart, 

their mutual attraction drawing them together - reach 

balance, leaving the atom polarized.



4.1.2 Induced Dipoles

The atom or molecule now has a tiny dipole moment p, 

which points in the same direction as E and is proportional 

to the field.

p = E,  = atomic polarizability
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Example 4.1 A primitive model for an atom consists of a point 

nucleus (+q) surrounded by a uniformly charged spherical 

cloud (–q) of radius a. Calculate the atomic polarizability of 

such an atom.

Sol. The actual displacements involved are extremely small. It 

is reasonable to assume that the electron cloud retains its 

spherical shape.

The equilibrium occurs when the nucleus is displaced a 

distance d from the center of the sphere.

The external field pushing the nucleus to the right exactly 

balances the internal field pulling it to the left.

1 qd

40 a3
p = qd = (40a3)E = E

the atomic polarizability = 40a3

Ee =
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4 r3
33

 3
r̂, where q = 4 a 

04r2

Sol. The electric field inside a uniform charged sphere of radius a

1 1 qr

0 a3
Ee (r) =

r

3 0 4
r̂ =


r̂ =

40 a3

1 qd

40 a3

p   = 40a3

40a3

Two uniformly charged spheres separated by d produce the electric field:

E(r) = Eq+ (r+ ) + Eq− (r−) =
1 q

(r+ − r−)

1

2 240 a3

q
((r −

1
d) − (r +

1
d)) = −

1

=

= −

Example 4.3 If we have two spheres of charge: a positive

sphere and a negative sphere. When the material is uniformly

polarized, all the plus charges move slightly upward (the z-

direction), all the minus charges move slightly downward. The

two sphere no longer overlap perfectly. Find the polarizability.
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Prob.4.2 According to quantum mechanics, the electron 

cloud for a hydrogen atom in ground state has a charge 

density

a3

where q is the charge of the electron and a is the Bohr 

radius. Find the atomic polarizability of such an atom. [Hint: 

First calculate the electric field of the electron cloud, Ee(r); 

then expand the exponential, assume r <<a.

(r) =
q

e−2r /a ,

Sol. For a more sophisticated approach, see W. A. Bowers, 

Am. J. Phys. 54, 347 (1986).



Polarizability of Molecules

For molecules the situation is not quite so simple, because 

frequently they polarize more readily in some directions 

than others.

For instance, carbon dioxide CO2

When the field is at some angle to the axis, you must resolve 

it into parallel and perpendicular components, and multiply 

each by the pertinent polarizability:

p = ⊥E⊥ + E

In this case the induced dipole moment may not even be in 

the same direction as E.
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Polarizability Tensor

px = xx Ex +xy Ey

py =  yxEx 

pz = zx Ex

+yy Ey

+zy Ey

+xz Ez

+ yz Ez

+zz Ez

CO2 is relatively simple, as molecules go, since the atoms 

at least arrange themselves in a straight line.

For a complete asymmetrical molecule, a more general 

linear relation between E and p.

The set of nine constants ij constitute the polarizability

tensor for the molecule.

It is always possible to choose “principal” axes such that

the off-diagonal terms vanish, leaving just three nonzero

polarizabilities.



4.1.3. Alignment of Polar Molecules

The neutral atom has no dipole moment to start with---

p was induced by the applied field E. However, some 

molecules have built-in, permanent dipole moment.

The dipole moment of water is usually large : 6.1*10-30 

Cm, which accounts for its effectiveness as solvent.

What happens when polar molecules are placed in an 

electric field? Rotating
10



Torque for a Permanent Dipole in Uniform Field

In a uniform field, the force on the positive end, F = qE, 

exactly cancels the force on the negative end. However, 

there will be a torque:

N = (r+  F+) + (r–  F–)

= [(d/2)  (qE) + (–d/2)  (–qE)]

= qd  E

This dipole p = qd in a uniform field experiences a torque

N = p  E

N is in such a direction as to line p up parallel to E.

A polar molecule that is free to rotate will swing around 

until it points in the direction of the applied field.
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Net Force due to Field Nonuniformity

If the field is nonuniform, so that F+ does not exactly 

balance F–; There will be a net force on the dipole.

Of course, E must change rather abruptly for there to be 

significant in the space of one molecule, so this is not 

ordinarily a major consideration in discussing the behavior 

of dielectrics.

The formula for the force on a dipole in a nonuniform field 

is of some interest

Evaluated at different positions

F = F+ + F – = q(E+ – E–) = q(∆E)  q((d．)E)

F  (p．)E
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4.1.4. Polarization

What happens to a piece of dielectric material when it is 

placed in an electric field?

•Neutral atoms: Inducing tiny dipole moment, pointing in 

the same direction as the field (stretching).

•Polar molecules: experiencing a torque, tending to line it 

up along the field direction (rotating).

Results: A lot of little dipoles point along the direction of the 

field and the material becomes polarized.

A convenient measure of this effect is

P  dipole moment per unit volume, which is called the 

polarization.



4.2 The Field of a Polarized Object

r 2

4.2.1 Bound Charges

Suppose we have a piece of polarized material with 

polarization P. What is the field produced by this object? 

(It is easier to work with potential.)

V (r) =
1 r̂ p

04
For a single dipole p, the potential is

where r is the vector from the dipole to the point at which 

we are evaluating the potential.
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Ref. Sec. 3.4
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Example 3.10 An electric dipole consists of 

two equal and opposite charges separated 

by a distance d. Find the approximate 

potential V at points far from the dipole.

((1+  )−1/2 − (1− )−1/2 )
q

40r
2 2

q 1 1 

40

((1+  )−1/2 − (1− )−1/2 )
40r

r2
0 0

(since
r

1 and r =
d

)
r 2

Sol : V (r) = ( − ) =
r − d ẑ r + d ẑ

V (r) =

q d 1 qd cos

4 r
(

r
cos ) =

4

q
r r r

where  =
r

(
r

− 2cos )  −
d

cos

=

r2

15

0 0 0
r2 r2

1 r̂ p
V (r) =

4 4 4

1 qd cos
=

p cos
=

where p = qd pointing from negative charge to positive charge.



4.2.1 Bound Charges

For an infinitesimal dipole moment dp = Pd, the total

0 0

potential is

V (r) =
4 4


v

r 2

1 r̂ dp
=

v

 r 2

1 r̂ P(r)
d 

40 v

 V =
1

 P (
1

) d
r


1( ) =
r r2

r with respect to

the source coordinate.

Integrating by parts, using product rule, gives

1 1

g
  (

A
) =

g g
(  A) + A  ( )


→
Note that

r  r − r

Ref. Sec. 1.2.6
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Bound Charges

40

V =
1

[(
P

) d  − 
1

( P) d  ]
v

S
40 r 40

v r
=

1

P

 da +
1


1

( −  P) d 

r v r

b = P  n̂

surface charge

b = − P

volume charge

P
P (

1
) = ( ) −

1 
 P

r r r

40

17

v

 V =
1

 P (
1

) d
r



Bound Surface and Volume Charges


b = P  n̂

S

V =
1


b da +

1


bd 
40 r 40

v r

This means that the potential of a polarized object is the 

same as that produced by a surface charge density plus a 

volume charge density.

Ex. 4.2 Find the electric field produced by 

a uniformly polarized sphere of radius R.

Sol: See the next three pages.

b  = −  P
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0
V (r) = 2 R sin d

 
 

1 Pcos

40 r


 b

b = P  n̂ = Pcos 

 = − P = 0

(

n

n

n

n

1 

R

r

R

n=0

( ) P ( cos) r  R

) P (cos) r  R



1
=

1


R

rr r


n=0

= 

19

da = (Rd )(Rsin d)

= R2sin d d

 : angle between

r and r  cos = r̂  r̂ 

(

n

n

1 

R

n

n
) P (cos )

r

R

( ) P ( cos )

It will be easier if we let r lie on the z axis, so that the angle 

between them changes from  to  


n=0

r  R


n=0

= r  R

=





1 1 R

r r r
Ref. Sec. 3.4
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0

1
2

0

1
2

0 0

orthogonality

2

n

n

n

n

PR3 1 PR3

r 2



( ) P ( cos )Pcos 2 R sin d

( ) P ( cos )Pcos 2 R d cos



n=0



−1
n=0

−1

   V (r, 0, 0) =
1

 r  R

 

1 R

4 r r

=
1 1 R

4 r r

1




only n =1 survive
 

 = cos  d cos =
3

0




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0

1
2

1
−1

0

0

4

1

V (r, 0, 0) =
1

R d cos
4

P
r

orthogonality

3

n

n

r 2

1 r 

R R

1 r

R R



( ) P (cos )Pcos

( ) P (cos ) Pcos 2



n=0

    2 R sin d r  R

  =


only n =1 survive
 

=

0



Allow r a  -dependence.

PR3

r2

0

 1
cos (r  R)

3
V (r,  , 0) = 

 P
rcos

30

(r  R)



Electric Field of a Uniformly Polarized Sphere

V (r) =
P

r cosθ =
P

z
3ε0 3ε0

(inside)

0

P R3

r2
V (r) =

3ε
cosθ (outside)

E = − V = −
P

ẑ uniformly
3ε0

3

0

0

4

1
( πR P) 
3

r 2

V (r) =
4πε r 2

1 r̂ p

cos

4πε 3
where p =

4
πR3P=

Why are the field 

lines not continuous?
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4.2.2 Physical Interpretation of Bound Charges

q

Aend

σb = = P cosθ = P  n̂

What is the physical meaning of the bound charge? 

Consider a long string of dipoles.

The net charge at the ends is called the bound charge. The 

bound charge is no different from any other kind.

Consider a “tube” of dielectric with a given polarization P.

EM
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Nonuniform Polarization

23

→ The Bound Volume Charge

If the polarization is nonuniform, we get accumulations of 

bound charge within the material as well as on the surface.

The net bound charge in a given volume is equal and 

opposite to the amount that has been pushed out through 

the surface.

v
bdτ = − SP da = v

( −  P) d

Gauss’s laws

This is true for any volume 

bound charge.

ρb = − P



4.2.3 The Field Inside a Dielectric

What kind of dipole is we actually dealing with, “pure” 

dipole or “physical” dipole?

Outside the dielectric there is no real problem, since we 

are far away from the molecules.

Inside the dielectric, however, we can hardly pretend to be 

far from all the dipoles.
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4.2.3 The Field Inside a Dielectric

The electric field inside matter must be very complicated, 

on the microscopic level, which would be utterly 

impossible to calculate, nor would it be of much interest.

The macroscopic field is defined as the average field over 

regions large enough to contain many thousands of atoms.

The macroscopic field smoothes over the uninteresting

microscopic fluctuation and is what people mean when

they speak of “the field inside matter”.



e−2r /a ,
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Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen 

atom in the ground state has a charge density

(r) =
a3

where q is the charge of the electron and a is the Bohr radius. Find the atomic

polarizability of such an atom. [Hint: First calculate the electric field of the electron

cloud, Ee (r); then expand the exponential, assuming r a.1

Problem 4.9 A dipole p is a distance r from a point charge q, and oriented so that

p makes an angle  with the vector r from q to p.

(a) What is the force on p?

(b) What is the force on q?

Problem 4.10 A sphere of radius R carries a polarization

P(r) = kr,

where k is a constant and r is the vector from the center.

(a) Calculate the bound charges b and b.

(b) Find the field inside and outside the sphere.

q

Homework of Chap. 4 (part I)
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Problem 4.16 Suppose the field inside a large piece of dielectric is E0 , so that the 

electric displacement is D0 = 0E0 + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find

the field at the center of the cavity in terms of E0 and P. Also find the displacement 

at the center of the cavity in terms of D0 and P. Assume the polarization

is "frozen in," so it doesn't change when the cavity is excavated.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).

(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19c). 

Assume the cavities are small enough that P, E0 , and D0 are essentially uniform.

[Hint: Carving out a cavity is the same as superimposing an object of the same 

shape but opposite polarization.]

Problem 4.33 A dielectric cube of side a, centered at the origin, carries a "frozenin" 

polarization P = kr, where k is a constant. Find all the bound charges, and check 

that they add up to zero.

Homework of Chap. 4 (part I)
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4.3 The Electric Displacement
4.3.1 Gauss’s Law in the Presence of Dielectric

The effect of polarization is to produce accumulations of bound

on thecharge, ρb = − P within the dielectric and b = P  n̂

surface.

Now we are going to treat the field caused by both bound

charge and free charge.  =  f + ρb

=  f − P = 0 E

where E is now the total field, not just that portion generated

by polarization .

Gauss’s law reads

0 E +  P =  f

 (0E + P) =  f

Let D = 0E + P the electric displacement

 D =  f

EM
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Gauss’s Law in the Presence of Dielectric

The total free charge

enclosed in the volume

In a typical problem, we know f , but not b. So this 

equation allows us to deal with the information at hand.

What is the contribution of the bound surface charge? 

The bound surface charge b can be considered as b

varies rapidly but smoothly within the “skin”. So Gauss’s 

law can be applied elsewhere.

 D =  f   D da = Q f enc

29
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4.3.2 A Deceptive Parallel

“To solve problems involving dielectrics, you just forget

all about the bound charge ─ calculate the field as you

ordinarily would, only call the answer D instead of E”

 This conclusion is false.

The divergence alone is insufficient to determine a vector 

field; you need to know the curl as well.

D=0(E)+P=P ←not always zero

Since the curl of D is not always zero, D cannot be 

expressed as the gradient of a scalar.

Advice: If the problem exhibits spherical, cylindrical, or 
plane symmetry, then you can get D directly from the 

generalized Gauss’s law i.e.,  D =  f



4.3.3 Boundary Conditions

The electrostatic boundary condition in terms of E

above belowE⊥ − E⊥ =
 

0

= 0

E =
 

0

 E = 0

The electrostatic boundary condition in terms of D

Eabove − Ebelow

above below fD⊥
− D⊥ =   D =  f

 D =  P
above below above below−D = P −PD

31



4.4 Linear Dielectric
4.4.1 Susceptibility and Permittivity

For many substances, the polarization is proportional to 

the field, provided E is not too strong.

P = 0eE e : the electric susceptibility of the medium 

dimensionless

Materials that obey above equation are called linear dielectrics.

The total field E may be due in part to free charges and in 

part to the polarization itself.

EM
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Permittivity and Dielectric Constant

E 0 → P0

We cannot compute P directly from this equation:

the external field 

will polarize the

material
this polarization will 

produce its own field and 

contribute to the total field.

The new total

33

field will polarize 

the material.

P0 → E 0 + E P

E 0 + E P → P0 + P0

Depends.Will this series converge?



Linear Media & Dielectric Constant

34

In linear media ,

D = 0E + P = 0E + 0eE = 0 (1+ e )E = E

where  = 0 (1+ e )


Permittivity of the material

r =
 

=1+ e
0

Relative permittivity 

or dielectric constant



 D =  f  D  da = Qf enc

Inside (s  a) D(2 sL) = L

Example 4.4 A thin long straight wire, 
carrying uniform line charge density , is 
surrounded by rubber insulation out to a 
radius a. Find the electric displacement.

Sol: Drawing a cylindrical Gaussian surface, of radius s and 

length L, and applying the new Gauss’s law, we find

2sr0

E =


ŝ
2s

 D =


ŝ

2s 2s0

Outside (s  a) D(2sL) = L  D =


ŝ E =


ŝ
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2 2
0

1

b ra  b

1  1
+

4

a 

b
0 r4 r 4

Q Q Q
dr =

  r

b


dr −  − 

0  r 
V = −

a
E dl = −

2

0

r̂

ˆ
4 r

 4r 2

Q

Example 4.5 A metal sphere of radius a carries a charge Q. It 
is surrounded, out to radius b , by linear dielectric material of 
permittivity . Find the potential at the center (relative to infinity).

Sol: Use the generalized Gauss’s law

Q



E = 



r

for all points r > a

for a < r < b

for r > b

The metal sphere is equalpotential

r̂D =
Q

4r2
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e
b

r24 1+ e 1+ e

( 
r̂

) = −
Qe  3(r)volume bound charge  = − P = −

Q

 0eQ

b
0 e


−  Q

 = P  n̂ =
 4b2

this layer of negative charge that reduces the field, within

surface bound charge
at the outer surface

at the inner surface

the dielectric by a factor of  r .

In this respect a dielectric is rather like an imperfect conductor.

 4a 2

Note that n̂ always points outward with respect to the dielectric , 

which is + r̂ at b but − r̂ at a .

The surface bound charge at inner surface is negative. It is

0eQ

37

0 e 2
ˆ

4r2 4r e

e

1+ 

Q
P =   E =





r = 



r̂ for a < r < b



Stokes’ Theorem for the Polarization

In general, linear dielectrics

cannot escape the defect that

However, if the space is entirely filled with a homogenous 

linear dielectric, then this objection is void.

Remark : When all the space is filled with a homogenous 

linear dielectric, the field everywhere is simply reduced by 

a factor of one over the dielectric constant .

 P  0

 D =  f

 D = 0 r

E =
1

D =
1

 
Evac
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Shielding Effect & Susceptibility Tensor

39

P = 0 e E

Px = 0 (exx Ex + exy Ey + exz Ez )

Py = 0 (eyx Ex + eyy Ey + eyz Ez )

Pz = 0 (ezxEx + ezyEy + ezz Ez )

The polarization of the medium partially 

“shields” the charge, by surrounding it 

with bound charge of the opposite sign.

For some material, it is generally easier to polarize in some 

directions than in others .

general case

the susceptibility tensor

linear dielectric



Prob. 4.18 The space between the planes of a parallel-plate 
capacitor is filled with two slabs of linear dielectric material. Each 
slab has thickness a, so the total distance between the plates is 2a. 
Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric 
constant of 1.5 the free charge density on the top plate is  and on 
the bottom plate –.
(a) Find the electric displacement D in each slab.
(b) Find the electric field E in each slab.
(c) Find the polarization P in each slab.
(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.
(f) Now that you know all the charge (free and bound), recalculate 
the field in each slab, and confirm your answer to (d).
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4.4.2 Boundary Value Problems 
with Linear Dielectrics

shielding effect

The boundary conditions that make reference only to the 

free charge .

Relation between bound charge and free charge

 f ← in a homogenous 
linear dielectric

b
e


 
 0 e  

e

1+ 
= −

 

D
ρ = − P = −  

above below f above above below below fD⊥ E⊥ E⊥− D⊥ =    −  = 

(aboveVabove − belowVbelow ) = − f n̂
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(above
Vabove − below

Vbelow ) = − f
n n

where
Vabove = V  n̂.

n

or

EM

Tsun-Hsu Chang



Homogeneous Linear Dielectric Sphere

Vin = Vout

VoutVin = 0

(i)

(ii) 
r r

(iii)Vout → −E0r cos





at r = R

at r = R 


for r R

Example 4.7 A sphere of homogeneous linear dielectric 

material is placed in a uniform electric field E. Find the 

resultant electric field.

Sol: Look at Ex. 3.8 an uncharged conducting sphere. In 

that case the field of the induced charge completely 

canceled E within the sphere; However, in a dielectric the 

cancellation is only partial.

The boundary conditions

no free charge 

at the surface
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A1R = −E0R + B1R−2

AℓR
ℓ = BℓR

−(ℓ+1)

B.C. (ii): rℓAℓR
ℓ−1Pℓ = −E0 cos − (ℓ +1)BℓR

−(ℓ+2)Pℓ

r A1 = −E0 − 2B1R−3

ℓ−1 −(ℓ+2)

ℓ =1

ℓ  1

= −(ℓ +1)BℓR

 


ℓ =1

ℓ  1


 

rℓAℓ R

ℓ=0

−(ℓ+1)
0

A r P (cos )

P (cos ) r  R

inV (r, ) =

outV (r,

r  R

B r



V (r, ) =  (Aℓr
ℓ + Bℓr

−(ℓ+1) )Pℓ (cos )




ℓ=0









) = −E r cos +



ℓ=0

B.C. (iii)

B.C. (i): Aℓ Rℓ Pℓ = −E0R cos + BℓR
−(ℓ+1)Pℓ

ℓ
ℓ ℓ

ℓ ℓ
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Vin(r, ) = −
3E0

)R E0r3 −2

r cos
r + 2

cos

ẑ  uniform
r + 2

Ein = −Vin = −
3E0






r −1Vout (r, ) = −E0r cos + (
r + 2

ℓ =1

ℓ  1−(ℓ+2)

−3ℓ =1 

ℓ  1


1




−2A R = −E0 R + B1R

ℓ= −(ℓ +1)B Rℓ

0 − 2B1R

 r

r 1

ℓ−1 ℓA R

 A = −E

ℓ

ℓ −(ℓ+1)= B RℓA R

30
1 1 0; B = ℓ =1

ℓ  1 A = B = 0

r

r

3E

 + 2 r

 −1

 + 2
A = − R E







 ℓ ℓ
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Partial Image Charge

45

Example 4.8 Suppose the entire region below the plane z = 0 is 

filled with uniform linear dielectric material of susceptibility  e .

Calculate the force on a point charge q situated at distance d

above the origin.

Sol: The surface bound charge on the xy plane is of opposite 

sign to q , so the force will be attractive.

( )
22 2

1 q q
z > 0 V =

x + y + z + d

 
 + b

40
 x2 + y2 +(z −d)2

 

1
 why ?bV =

 (q + q ) 


40




x2 + y2 + (z − d )2 
 Because Vabove = Vbelow

z < 0

 0Ea
⊥

bove = (1+ e )0 Ebelow
⊥

−0
Vabove = −(1+ e )0

Vbelow

z=0+ z=0−

when z = 0above below− D⊥ = 0D⊥

z z




Partial Image Charge (Contd.)

( )

( )

0 0 0z=0 z=0
2 2 2

3
2

2 2 2
3
2

2

1
ˆ

e +2

e
b

e

z
x + y +d

qd

x + y +d



2 
 =Pn

+ −


z z=0

 E + = E − +P  P=−
V

 
z=0 

−
V 

ẑ =−
1  e



 qd
ẑ

 



=− 
+2

( ) ( )
dr2

3 30
2 2 2 22 2

−
1 

2


 +2


e e e
b r=0

q = 2


 e  e

rdr =−
1 

2  +2

qd qd 
q= −

 +2


 e 
r +d r +d

 
 

−0
Vabove
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= −(1+ e )0
Vbelow

z=0+

(x2 + y2 + d 2 )3/2 (x2 + y2 + d 2 )3/2

(q − qb )d −e

e + 2
b

z=0−

 q =

z z

=
(1+ e )(q + qb )d

q

Double check!



4.4.3 Energy in Dielectric systems

How to express the energy for a dielectric filled capacitor? 

Suppose we bring in the free charge, a bit at a time. As  f is 

increased by an amount  f , the polarization will change and 

with it the bound charge distribution.
The work done on the incremental free charge is :

W =  ( f )Vd

the resulting change in D
0

 D =  f   f =   (D)

W =  ( D)Vd =  ( DV − V  D)d

surface integral vanish if we 

integrate over entire space.

47

W = E  Dd =
1
(E2 )d W =

1
 (E D)d

2 2



Which Formula is Correct?

derived in Chap. 4

derived in Chap. 2
speak to somewhat 

different question.

0
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W =
1

( E E)d
2 

2
W =

1
 (E D)d

What do we mean by “the energy of a system“? 

It is the work required to assemble the system.

1) Bring in all the charges (free and bound), one by one, 

with tweezers, and glue each one down in its proper final 

position (Chap. 2).

2) Bring in the free charges, with the unpolarized dielectric in 

place, one by one, allowing the dielectric to respond as it 

sees fit (Chap. 4).



4.4.4 Forces on Dielectric

The dielectric is attracted into an electric field, just like 

conductor: the bound charge tends to accumulate near the 

free charge of the opposite sign.

How to calculate the forces on dielectrics? 

Consider the case of a slab of linear

dielectric material, partially inserted 

between the plates of a parallel-plate 

capacitor.

If the field is perpendicular to the 

plates, no force would exert on the 

dielectric. Is that true?

w
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dielectric



2C

1 Q2
2

F = −
dW 2

Fringing field are difficult to calculate, so we 

adapt the following ingenious method.

The energy stored in the capacitor is: W = CV =

dx

( )
( )0 r0 0C = C1 + C2 = r e ℓ −  x

d

 wx

d

  w ℓ − x

d

 w
+ =

The Fringing Field Effect

The electric force on the slab is:

In reality a fringing field around the edges 

is responsible for the whole effect.

It is this nonuniform fringing field that pulls 

the dielectric into the capacitor.
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F = −
0ew

V 2  0 indicates that the force is in the negative
2d

x direction; the dielectric is pulled into the capacitor.

Fixed voltage

To maintain a constant voltage, the battery must do work.

work done by the battery

dW = Fdx +VdQ

F =
dW

−V
dQ

=
1

V 2 dC
−V 2 dC

= −
1

V 2 dC
=

0ew
V 2

dx dx 2 dx dx 2 dx 2d

Fixed charge

dW 1 Q2 dC 1 2 dC 2

2d

0ewF = − =
dx 2 C2

= V = − V 
dx 2 dx

2d
51

F =
0ew

V 2  0
The dielectric will be pushed out of

the capacitor.



Homework of Chap. 4 (part II)

tan 2 / tan1 = 2 /1,

Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, 

surrounded by a concentric copper tube of inner radius c (Fig. 4.26). The 

space between is partially filled (from b out to c) with material of dielectric 

constant r , as shown. Find the capacitance per unit length of this cable.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner 

radius a, outer radius b) stand vertically in a tank of dielectric

oil (susceptibility e , mass density ). The inner one is maintained

at potential V , and the outer one is grounded (Fig. 4.32). To what 

height (h) does the oil rise, in the space between the tubes?

Problem 4.36 At the interface between one linear dielectric and another, 

the electric field lines bend (see Fig. 4.34). Show that

(4.68)

assuming there is no free charge at the boundary. [Comment: Eq. 4.68

is reminiscent of Snell's law in optics.Would a convex "lens" of dielectric 

material tend to "focus," or "defocus," the electric field?]
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Problem 4.39 A conducting sphere at potential V0 is half embedded in linear 

dielectric material of susceptibility e , which occupies the region z < 0 (Fig. 4.35). 

Claim: the potential everywhere is exactly the same as it would have been in the 

absence of the dielectric! Check this claim, as follows:

(a) Write down the formula for the proposed potential V (r), in terms of V0, R,

and r . Use it to determine the field, the polarization, the bound charge, and the 

free charge distribution on the sphere.

(b) Show that the resulting charge configuration would indeed produce the potential

V (r).

(c) Appeal to the uniqueness theorem in Prob. 4.38 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential? 

If not, explain why.

Homework of Chap. 4 (part II)
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