Chapter 4 Electric Fields in Matter
4.1 Polarization: 4.1.1 Dielectrics

Most everyday objects belong to one of two large classes:
conductors and insulators (or dielectrics)

Conductors: Substances contain an “unlimited” supply of
charges that are free to move about through the material.

Dielectrics: All charges are attached to specific atoms or
molecules. All they can do is move a bit within the atom or
molecule.
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Dielectrics

Dielectrics: Microscopic displacements are not as
dramatics as the wholesale rearrangement of charge in
conductor, but their cumulative effects account for the
characteristic behavior of dielectric materials.

There are actually two principal mechanisms by which
electric fields can distort the charge distribution of a
dielectric atom or molecule: rotating and stretching.
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4.1.2 Induced Dipoles

What happens to a neutral atom when it is placed In an
electric field E ?

Although the atom as a whole is electrically neutral, there is

a positively charged core (the nucleus) and a negatively
charged electron cloud surrounding it.

Thus, the nucleus is pushed in the direction of the field, and
the electron the opposite way.

The electric fields pull the electrons and the nucleus apart,
their mutual attraction drawing them together - reach
balance, leaving the atom polarized.



4.1.2 Induced Dipoles

The atom or molecule now has a tiny dipole moment p,
which points in the same direction as E and is proportional
to the field.

p=oaE, o =atomic polarizability

H He L1 Be & Ne Na Ar K Es
0.667 0205 243 560 1.67 0396 24.1 164 434 594

TABLE 4.1 Atomic Polarizabilities («/4meg. in units of 107 m?). Data from: Hand-
book of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press, 2010).




Example 4.1 A primitive model for an atom consists of a point
nucleus (+q) surrounded by a uniformly charged spherical
cloud (—q) of radius a. Calculate the atomic polarizability of
such an atom.

Sol. The actual displacements involved are extremely small. It
IS reasonable to assume that the electron cloud retains its
spherical shape.

The equilibrium occurs when the nucleus is displaced a
distance d from the center of the sphere.

The external field pushing the nucleus to the right exactly
balances the internal field pulling it to the left.

1 od
v )\ Ee=- L p=0d = (4nega®)E =oF
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—q
I o = 47epa
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3 the atomic polarizability



Example 4.3 If we have two spheres of charge: a positive
sphere and a negative sphere. When the material is uniformly
polarized, all the plus charges move slightly upward (the z-
direction), all the minus charges move slightly downward. The
two sphere no longer overlap perfectly. Find the polarizability.

Sol. The electric field inside a uniform charged sphere of radius a

3
1 37rp .1 qr,
3T P Pl e where ¢ = 4na°p

Eo(r) = I

e (1) Amtr? € 3€ Ameg as
Two uniformly charged spheres separated by d produce the electric field:

1 g
E(r)=Eq.(ry)+Eq_(r-) = Iy (ry—r-) 45 S+t v
+ +
1 q 1 1 1 qd

= r-=d)—(r+=d)) = 2

Ameqy a3 ( 2 )= ( 2 ) Admey ad dj _
— 1 3 P oo 0= 47[803.3 —_—_—______—_—_—
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Prob.4.2 According to quantum mechanics, the electron
cloud for a hydrogen atom in ground state has a charge

density
_g a—2r/a

p(r) = e

where ¢ Is the charge of the electron and a is the Bohr
radius. Find the atomic polarizability of such an atom. [Hint:
First calculate the electric field of the electron cloud, E.(r);
then expand the exponential, assume r < a.

Sol. For a more sophisticated approach, see W. A. Bowers,
Am. J. Phys. 54, 347 (1986).



Polarizability of Molecules

For molecules the situation is not quite so simple, because

frequently they polarize more readily in some directions
than others.

For instance, carbon dioxide CO,

When the field is at some angle to the axis, you must resolve

it iInto parallel and perpendicular components, and multiply
each by the pertinent polarizability:

p=a,E, toE

In this case the induced dipole moment may not even be In
the same direction as E.



Polarizability Tensor

CO, is relatively simple, as molecules go, since the atoms
at least arrange themselves in a straight line.

For a complete asymmetrical molecule, a more general
linear relation between E and p.

px = Olyy Ex T Ony Ey + Oy, Ez

py — OLyx Ex -|-(ny Ey -|-(Xyz Ez

P, = A, Ex + Otzy Ey + O, Ez
The set of nine constants o; constitute the polarizability
tensor for the molecule.

It is always possible to choose “principal” axes such that
the off-diagonal terms vanish, leaving just three nonzero
polarizabilities.



4.1.3. Alignment of Polar Molecules

The neutral atom has no dipole moment to start with---
p was induced by the applied field E. However, some
molecules have built-in, permanent dipole moment.

TP
+
L >
X 105°
g
N
O_

The dipole moment of water is usually large : 6.1*10-30
C-m, which accounts for its effectiveness as solvent.

What happens when polar molecules are placedin an
electric field?  Rotating
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Torque for a Permanent Dipole in Uniform Field

In a uniform field, the force on the positive end, F = gE,
exactly cancels the force on the negative end. However,
there will be a torque: +q ,

N=(r.xF)+(r_xF)
= [(d/2) x (qE) + (=d/2) x (-qE)]
= CId x E F —q

This dipole p = gd in a uniform field experiences a torque
N=pxE

N Is in such a direction as to line p up parallel to E.

A polar molecule that is free to rotate will swing around
until it points in the direction of the applied field.
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Net Force due to Field Nonuniformity

If the field is nonuniform, so that F, does not exactly
balance F_; There will be a net force on the dipole.

Of course, E must change rather abruptly for there to be
significant in the space of one molecule, so this is not
ordinarily a major consideration in discussing the behavior

of dielectrics.

The formula for the force on a dipole in a nonuniform field
IS of some interest

Evaluated at different positions
PN

F=F.,+F. =q(E.-E)=0q(AE)=q((d . V)E)
F=(p.V)E
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4.1.4. Polarization

What happens to a piece of dielectric material when it is
placed in an electric field?

*Neutral atoms: Inducing tiny dipole moment, pointing in
the same direction as the field (stretching).

*Polar molecules: experiencing a torque, tending to line it
up along the field direction (rotating).

Results: A lot of little dipoles point along the direction of the
field and the material becomes polarized.

A convenient measure of this effect is

P = dipole moment per unit volume, which is called the
polarization.
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4.2 The Field of a Polarized Object Fsun-Hey Chang
4.2.1 Bound Charges

Suppose we have a piece of polarized material with
polarization P. \WWhat is the field produced by this object?
(It is easier to work with potential.)

1 r-p
For a single dipole p, the potential is V(r) = 4 2
ne, P

where r is the vector from the dipole to the point at which
we are evaluating the potential.

el

Ref. Sec. 3.4
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Example 3.10 An electric dipole consists of

two equal and opposite charges separated +q
by a distance d. Find the approximate "
potential V at points far from the dipole.

—q

1 1
Sol: V(1) = ——( )= ((1+e) 2 — (1-g)2)
4meg |r—g2 |r+%2 Arregl
' ' _ r’ ’ d
where & =+ (- —-2¢0s0) = dosp  (since = landr'=12)
rr r r 2
V(r) = ——((1+&) Y2 - (1-£)12)
47'580r
. q 1 qdcosO
" dmegr r OO T 4 T 2
1 qdcos6 cosO 1 r-
V (r) — . . — P . — 2p
e, T Adrtg, I dre, T

where p=qd pointing from negative charge to positive charge.



4.2.1 Bound Charges

For an infinitesimal dipole moment dp = Pdr, the total
potential Is

1 r-d 1 r-P(r'), ,
V (r) = j 2p = J' 2( )dr
dre, | T Amte, r

V

1y_ P withrespectto
_I\E))te that  v'(2)= —, the source coordinate.
r=r-r r r
V = j V(e Ly dr’
Ame,

Integrating by parts, using product rule, gives

o (Ay_ 1 .
V()= E(V-A) +A-V(—), Ref. Sec. 1.2.6



Bound Charges

V=——[P.v/() dt’
Ame, | r
P.V/(1)=V'(Z)-V"P
R AU SR S :

v_4n80[jv (Bydr —j—(v' P) dt’ ]

vV

_[— da' +

j =(=-V'-P)dt’
47180S vr

| |
Oh =P-n th::-—ﬁ7’.F>

surface charge volume charge

41g,
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Bound Surface and Volume Charges

{GbZP'ﬁ j_da ' Pb gy
ppb=-V'-P 47180 . 471:80 vor

This means that the potential of a polarized object is the
same as that produced by a surface charge density plus a
volume charge density.

Ex. 4.2 Find the electric field produced by 6
a uniformly polarized sphere of radius R. PT R

Sol: See the next three pages.
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Il I I I - S S S S S S S S S S S S - .y

<”ob =P-fi=PcosO’ da’ = (RdO")(Rsind d¢y) !
pp=—-V"-P=0 i = R*sin6'd0'd¢’ i
V(r) = L j PCOSOLZnR “sin0'do’
Ateg, 70 r
L 1N Rup oy oom o
ro r%( r) Fh(cos)  T=R '8 angle between |

. It will be easier if we let r lie on the z axis, so that the angle |
nbetween them changes from 3 t0 O .

lZ( )" P (cos®’) r=R
" Ref. Sec. 3.4

1 & I
= —)"P.(cosO) r<R
2 2 ()" Pi(cost)
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V(r,0,0) = 1 _[ 1Z(B)n P (cosb')PcosO'2ntR?sin6'd6’ r>R
Ame, o I
1 113, R
= =y (—)" P.(cosO)Pcosd 2w R*d cosO
o LSy et e 2
1 1 PR’ , ,_ 1 PR® orthogonality
:2_80 T 0520 d cosO —380 - (on|yn 1surv|ve}
V (r, 0, 0) _4 _f Z( )" P (cosO')PcosO'2nR%sin0'd0’ r<R
e,
= L _[ ( )P(cos@)Pcos@’ZnR dcosO’
dre, 1R R
P (orthogonallty \‘
3¢, onlyn 1SUFVIV6)
( 3
____________________ 31 Prlj cosO® (r=R)
IAIIowraO -dependence. : V(r, 6,0)=1 (;0
"""""""""" —— rcos6 (r <R)
135, 20




Electric Field of a Uniformly Polarized Sphere
P RS
V(r) = |
(r) = T cosd (outside) %\N

(—7Z'R3P)
V(r) = 1 '3 ———C0s0 @ D
477:80 I YYYYVYVYY
P P

V(r) = 2 rcose = 2 £ (inside) Why are the field
&0 %0 lines not continuous?

E=—VV=—_"_2 uniformly

3¢,
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4.2.2 Physical Interpretation of Bound Charges Tsun_HES'l\fChang

What is the physical meaning of the bound charge?

Consider a long string of dipoles.

" ~00>00 00 +00+00>0 — O . -9
- 4= = = = - + - +

The net charge at the ends is called the bound charge. The
bound charge is no different from any other kind.

Consider a “tube” of dielectric with a given polarization P.

a Op = 1 _Pcosf=P-n

| Aend
-: :-

\

A7

n
. Ao
| >
- B ¢
A —q +q \

Aend
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Nonuniform Polarization
- The Bound Volume Charge

If the polarization is nonuniform, we get accumulations of
bound charge within the material as well as on the surface.

The net bound charge in a given volume is equal and
opposite to the amount that has been pushed out through

the surface.

| pdr=— [P-da=] (-V-P)dt

Gauss’s laws

This is true for any volume . ><>< 4
bound charge. & ><><
Dy = -V-P + +

23



4.2.3 The Field Inside a Dielectric

What kind of dipole is we actually dealing with, “pure”
dipole or “physical” dipole”?

Outside the dielectric there is no real problem, since we
are far away from the molecules.

Inside the dielectric, however, we can hardly pretend to be
far from all the dipoles.

(a) Field of a "pure” dipole (a) Field of a "physical” dipole

24



4.2.3 The Field Inside a Dielectric

The electric field inside matter must be very complicated,
on the microscopic level, which would be utterly
impossible to calculate, nor would it be of much interest.

The macroscopic field is defined as the average field over
regions large enough to contain many thousands of atoms.

The macroscopic field smoothes over the uninteresting
microscopic fluctuation and is what people mean when
they speak of “the field inside matter”.

25



Homework of Chap. 4 (part 1)

Problem 4.2 According to guantum mechanics, the electron cloud for a hydrogen
atom In the ground state has a charge density

p(r) _ q3 e—2r/a’
ma
where g Is the charge of the electron and a is the Bohr radius. Find the atomic

polarizability of such an atom. [Hint: First calculate the electric field of the electron

cloud, E.(r); then expand the exponential, assumingr ~ a.!

Problem 4.9 A dipole p is a distance r from a point charge ¢, and oriented so that
p makes an angle 6 with the vector r from q to p.

(a) What is the force on p?

(b) What is the force on g?

Problem 4.10 A sphere of radius R carries a polarization
P(r) =kr,

where k Is a constant and r Is the vector from the center.

(a) Calculate the bound charges o, and py,.

(b) Find the field inside and outside the sphere.

26



Homework of Chap. 4 (part 1)

Problem 4.16 Suppose the field inside a large piece of dielectric is Eg, so that the
electric displacement is Dy =¢gEg + P.
(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find
the field at the center of the cavity in terms of Eg and P. Also find the displacement
at the center of the cavity in terms of Dy and P. Assume the polarization
IS "frozen In," so It doesn't change when the cavity Is excavated.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19c).

Assume the cavities are small enough that P, Eg, and Dy are essentially uniform.
[Hint: Carving out a cavity Is the same as superlmposmg an object of the same

shape but opposite polarization.]

!
(a) Sphere (b) Needle (c) Wafer

FIGURE 4.19

Problem 4.33 A dielectric cube of side a, centered at the origin, carries a "frozenin
polarization P = kr, where k Is a constant. Find all the bound charges, and check

that they add up to zero.
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4.3 The Electric Displacement M
4.3.1 Gauss’s Law in the Presence of Dielectric — ~  °

The effect of polarization is to produce accumulations of bound
charge, pp =—V - P within the dielectricand o, =P-n on the
surface.

Now we are going to treat the field caused by both bound
charge and free charge. p =p¢ + pp

= Pf -V-P 280V° E
where E is now the total field, not just that portion generated
by polarization . egV-E+V-P=p;
V-(egE+P)=pj

Let D=¢,E + P the electric displacement

Gauss'slawreads V. = o
28



Gauss’s Law In the Presence of Dielectric

The total free charge
/ .
V-D=p: = CJ; D-da=Qsene enclosed in the volume

In a typical problem, we know p;, but not p,. So this
equation allows us to deal with the information at hand.

What is the contribution of the bound surface charge?

The bound surface charge G, can be considered as py

varies rapidly but smoothly within the “skin”. So Gauss’s
law can be applied elsewhere.

29



4.3.2 A Deceptive Parallel

“To solve problems involving dielectrics, you just forget
all about the bound charge — calculate the field as you
ordinarily would, only call the answer D instead of E”

T This conclusion is false.

The divergence alone is insufficient to determine a vector
field; you need to know the curl as well.

VX Dzso(VxE)+V><P:V><P «—not always zero

Since the curl of D is not always zero, D cannot be
expressed as the gradient of a scalar.

Advice: If the problem exhibits spherical, cylindrical, or
plane symmetry, then you can get D directly from the

generalized Gauss’slaw i.e., V-D =pjy
30



4.3.3 Boundary Conditions

The electrostatic boundary condition in terms of E

1 O
Eabove o Ebelow - V-E= =
S0 €0
el _El =0 VxE=0 \/
bEIOW T Ny 1/

above

The electrostatic boundary condition in terms of D

1
Dabove — Dbelow =0 g V-D=p; U

| Nl _pll _pll _
Dabove Dbelow_ I:)above below VxD=VxP

31



. . . EM
4.4 Linear Dielectric Tsun-Hsu Chang

4.4.1 Susceptibility and Permittivity

For many substances, the polarization is proportional to
the field, provided E is not too strong.

P=¢gpyeE Xe:the electric susceptibility of the medium
dimenLionIess

Materials that obey above equation are called linear dielectrics.

The total field E may be due in part to free charges and in
part to the polarization itself.

32



Permittivity and Dielectric Constant

We cannot compute P directly from this equation:

the external field
will polarize the
material

this polarization will
produce its own field and

contribute to the total field.
E, > P,

The new total
P, > E,+AE: field will polarize
the maternal.

E,+AE: > P, + AP,

Will this series converge? Depends.
33



Linear Media & Dielectric Constant

In linear media ,

D=ggE+P =ggE+gqYE =¢¢ (1+ ¢ )JE=¢€E

where c% =g (1+ %e )

Permittivity of the material

Er = & =1+ 7%,

&0

Relative permittivity
or dielectric constant

Dielectric Dielectric
Material Constant  Material Constant
Vacuum 1 Benzene 2.28
Helium 1.000065 Diamond 5.7-5.9
Neon 1.00013 Salt 5.9
Hydrogen (H,) 1.000254  Silicon 11.7
Argon 1.000517  Methanol 33.0
Air (dry) 1.000536  Water 80.1
Nitrogen (N») 1.000548  Ice (-30° C) 104
Water vapor (100° C)  1.00589 KTaNbO3 (0° C) 34,000

34



Example 4.4 A thin long straight wire,
carrying uniform line charge density A, is
surrounded by rubber insulation out to a
radius a. Find the electric displacement.

Gaussian surface

Sol: Drawing a cylindrical Gaussian surface, of radius s and
length L, and applying the new Gauss’s law, we find

V°D:pf — _[D'da:Qfenc

Inside (s<a) D(2rsL)=AL = D= A s E= —2 ¢

2TTS 2T SE €,

Outside (s > a) D(ZnsL)sz = D= A S ~E= A S

2TTS 27T SE,
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Example 4.5 A metal sphere of radius a carries a charge Q. It
IS surrounded, out to radius b , by linear dielectric material of

permittivity €. Find the potential at the center (relative to infinity).

Sol: Use the generalized Gauss’s law

B Q . _ b
D = el for all points r>a 0 :"
- Q

ypral for a<r<b -
E=
Q r
0

The metal sphere Is equalpotential

( )
Q 4. Q1,1 1

H a
v :_IaE'dIZ_I ? zdr_jb Ul =
» OO4TCSOr 47T808rr 47-580 \b Era grb/
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[ A
EZSOXEQ ’r\.: Q Xe

5 f for a<r<b
dner®  Amrc \ 1+ e

P=¢gpXe

Q Xe (V.iz): Qe 63(r)

volume bound charge pp=-V-P =

A1t 1+ Y. r 1+ Xe
( £0%eQ
surface bound charge P at the outer surface
Gb — P . ﬁ — < TCS Q
—& ]
OXeZ at the inner surface
L4n8a

Note that n always points outward with respect to the dielectric,
whichis +Tr atb but —f ata.

The surface bound charge at inner surface is negative. It is
this layer of negative charge that reduces the field, within
the dielectric by a factor of € , .

In this respect a dielectric is rather like an imperfect conductor.

37



Stokes’ Theorem for the Polarization

P=0

¢

In general, linear dielectrics UxP £ Veeun

cannot escape the defect that Dielectric —

However, if the space is entirely filled with a homogenous
linear dielectric, then this objection is void.

V-D=p; —'D="F

VxD=0 w'

Remark : When all the space is filled with a homogenous
linear dielectric, the field everywhere is simply reduced by
a factor of one over the dielectric constant .
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Shielding Effect & Susceptibility Tensor

+

1/

+ o————e— q.

The polarization of the medium partially +\
“shields” the charge, by surrounding it
with bound charge of the opposite sign. /———\

+

_l_

+

+
For some material, it is generally easier to polarize in some
directions than in others .

P==¢cqyeE linear dielectric

P = €0 (Mexx Ex + Xexy Ey + Xexz Ez)
P, = &0 (Y oyx Ex + E, + v, E,) 9€neral case

y = R0 Meyx Ex T Keyy By T Reyz =2 the susceptibility tensor
P, =€0(XezxEx + XezyEy + XezzEz)
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Prob. 4.18 The space between the planes of a parallel-plate
capacitor is filled with two slabs of linear dielectric material. Each
slab has thickness a, so the total distance between the plates is 2a.
Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric
constant of 1.5 the free charge density on the top plate is ¢ and on
the bottom plate -o.

(a) Find the electric displacement D in each slab.
(b) Find the electric field E in each slab.

(c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.

(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate
the field in each slab, and confirm your answer to (d).

+0
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4.4.2 Boundary Value Problems EM
with Linear Dielectrics Tsun-Hsu Chang

Relation between bound charge and free charge

pp=—V-P=-V- (SOXe j

1+ Pf <« in @a homogenous
/ Le linear dielectric

shielding effect

The boundary conditions that make reference only to the
free charge .

1 _ 1 _
Dabove —Dpelow =Cf = €apove Eabove — Epelow Ebelow = O

(€aboveV Vabove — €pelowV Vbelow) = —0 N
OVabove _c aVbeIOW) =0+

or (€above below

on on

where 9Vabove _ yv .4
on

41



Homogeneous Linear Dielectric Sphere

Example 4.7 A sphere of homogeneous linear dielectric
material is placed in a uniform electric field E. Find the
resultant electric field.

Sol: Look at Ex. 3.8 an uncharged conducting sphere. In
that case the field of the induced charge completely
canceled E within the sphere; However, in a dielectric the
cancellation is only partial.

The boundary conditions
(D Vin =Vout atr =R
_ no free charge

. NVin . NV B
() & o 05 AN =R—=""" 4t the surface
(iii)Voyy = —Eqrcos® for r  R|]
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%

V(r,0)= i (Apr! + Br~ 1))y (cosh)

{=0
Vi (r,0) = Y ArtR (cosd) r<R
{=0
Vot (r,0) =—Egrcoso + Z Bgr‘(m) P (cosO) r=R
{=0
B.C. (iii)

B.C. (i): A\R*P; =—EyRcos0 + ByR~ (1P,

=2

AR=-EgR+BR?2 £=1
L AR =B,R (D) L #1

B.C. (ii): & LARY" 1Py =—EycosO — (£ +1)B,R~ (),

=2

[ g A =—Ey-2BR3 P =1
AR =—(0+1)B,R(H2) E#1
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JAIR - _E,R+B,R? =1
L AtRE _ BZR_(Hl) 2 ¢1

__ B0 g _Erlpse g
— g +2 e +2
A =B; =0 £ =1
(" EO
Vin(r,0) = r coso
Er +2
3
Vout (r,0) = —Egr coso (gr _1)R3Eor‘2 C0sO
J Er +2
Eiy = —VVi = — 50 i
in =—VVi, = Z <« uniform

[ &A=-E-2BR"
¢ AR

{=1

~(£+1)B,R"™? =1

|

-
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Partial Image Charge

Example 4.8 Suppose the entire region below the planez=0is
filled with uniform linear dielectric material of susceptibility X..

Calculate the force on a point charge g situated at distance d
above the origin.

Sol: The surface bound charge on the xy plane is of opposite

signh to g, so the force will be attractive. _ )
750 Vet % 2 |
AT, ,/x +Y? +(z d)’ \/ y*+(z+d) ‘

2<0 V= L (9+3,) <« why?

4T, \/x +y?+(z—d)’

i 1 Because Vapove = Vipelow <

Dabove DkJ)_ek)W =0 = €0 EaLbove = (1-|- A e )80 E@\Jf whenz =0

= —gg TVabove| (1 5, )go PVoelow
52 Z=O+ @Z

z=0" = 45



Partial Image Charge (Contd.)

—gg SVAbOVe | _ (14 7,)gp PMbelow
0Z |, g+ 07 |,_o-
@-ap)d  _(+%e)(@+@)d o xe
(2 +y2 +d2)32 (x4 y2 +2)32 b e+ 2
\
f0B, i =eoE,  +P = P=—g D N = e =
= = OLl,gt OZLl,.g ) — 21\ Ye+2 (

=Pn = 1( Le W « 3
2m Xe+2)( by +d2y

Double check!

_ )
O = 27tj - 21( Xezj ik e rdr———_[ 2 ik 3 drzz_( XGZJOI
r= + + -
T %e 6+d2)/2 X €+d2y2 Xe
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4.4.3 Energy in Dielectric systems

How to express the energy for a dielectric filled capacitor?
Suppose we bring in the free charge, a bit at a time. As P+ Is
increased by an amount Ap;, the polarization will change and

with it the bound charge distribution.
The work done on the incremental free charge is :

AW = I(Apf )Vdt
V-D=p; = Ap; =V-(AD)«—the resulting change in D
0
AW = [ (V-AD)Vdr = | (v-zide _VV -AD)dr

surface integral vanish if we
integrate over entire space.

AW = [E-ADdr = [A€E?)dt  ~W = [ (E-D)ds
2 :
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Which Formula is Correct?
W = %I(SOE .E)dt derived in Chap. 2

speak to somewhat
different question.

W = %I(E D)dt  derived in Chap. 4

What do we mean by “the energy of a system"?

It is the work required to assemble the system.

1) Bring in all the charges (free and bound), one by one,
with tweezers, and glue each one down In its proper final
position (Chap. 2).

2) Bring in the free charges, with the unpolarized dielectric in

place, one by one, allowing the dielectric to respond as it
sees fit (Chap. 4).
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4.4.4 Forces on Dielectric

The dielectric is attracted into an electric field, just like
conductor: the bound charge tends to accumulate near the
free charge of the opposite sign.

How to calculate the forces on dielectrics?

Consider the case of a slab of linear &

dielectric material, partially inserted
between the plates of a parallel-plate
capacitor. q}

If the field is perpendicular to the | _ f _
plates, no force would exert on the dielectric
dielectric. Is that true?
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The Fringing Field Effect

In reality a fringing field around the edges !
IS responsible for the whole effect. : * *

It is this nonuniform fringing field that pulls
the dielectric into the capacitor. /

Fringing field are difficult to calculate, so we 55,3,(,1:0 .
adapt the fOIIOWing ingenious method. Fringing region

The energy stored in the capacitoris: W ==CV?’=_—"—

The electric force onthe slabis: F = _d—
X

eqWX €oe WL —X) gqw
C=Cy+Cy === il d( ):OT

(erf — %eX)
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Fixed charge
2
c-_dW _1Q°dC _Evzd_C_ SoXeWVZ

dx 2c2dx 2 dx = 2d

__S0XeWy,2
F o V
X direction; the dielectric is pulled into the capacitor.

<0 indicates that the force is in the negative

Fixed voltage
To maintain a constant voltage, the battery must do work.
e work done by the battery
dW = Fdx+VdQ
= dW Ry dQ _ 1,2 d_C_V2 dC _ 12 dC _ £0XeW,, 2
dx dx. 2  dx dx 2 dX 2d

£ = €0XeWy 2 ¢ The dielectric will be pushed out of
92 the capacitor.
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Homework of Chap. 4 (part 1)

Problem 4.21 A certain coaxial cable consists of a copper wire, radius a,
surrounded by a concentric copper tube of inner radius ¢ (Fig. 4.26). The

space between is partially filled (from b out to ¢) with material of dielectric

constant ., as shown. Find the capacitance per unit length of this cable.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner
radius a, outer radius b) stand vertically in a tank of dielectric

oil (susceptibility y., mass density p). The inner one is maintained
at potential V, and the outer one is grounded (Fig. 4.32). To what
height (h) does the oil rise, in the space between the tubes?

Problem 4.36 At the interface between one linear dielectric and another,
the electric field lines bend (see Fig. 4.34). Show that

tan 0,/ tan0 =&, /¢4, (4.68)
assuming there is no free charge at the boundary. [Comment: Eq. 4.68
IS reminiscent of Snell's law In optics.Would a convex "lens" of dielectric
material tend to "focus," or "defocus," the electric field?]
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FIGURE 4.26

f
I‘J y)

/
|
_f—
|
/I
/6,

FIGURE 4.34
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Homework of Chap. 4 (part 1)

Problem 4.39 A conducting sphere at potential V Is half embedded in linear
dielectric material of susceptibility y., which occupies the region z < 0 (Fig. 4.35).
Claim: the potential everywhere is exactly the same as it would have been in the
absence of the dielectric! Check this claim, as follows:
(a) Write down the formula for the proposed potential V (r), in terms of V, R,
and r . Use it to determine the field, the polarization, the bound charge, and the
free charge distribution on the sphere.

(b) Show that the resulting charge configuration would indeed produce the potential
V (r).

(c) Appeal to the unigueness theorem in Prob. 4.38 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential?
If not, explain why.

Wy Vo ¥ Vo
© r X

(a) (b)
FIGURE 4.35
FIGURE 4.36
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