
Chapter 4 Electric Fields in Matter
4.1 Polarization:  4.1.1 Dielectrics

1

Most everyday objects belong to one of two large classes: 
conductors and insulators (or dielectrics)

Conductors: Substances contain an “unlimited” supply of 
charges that are free to move about through the material.

Dielectrics: All charges are attached to specific atoms or 
molecules. All they can do is move a bit within the atom or 
molecule.
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Dielectrics
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Dielectrics: Microscopic displacements are not as 
dramatics as the wholesale rearrangement of charge in 
conductor, but their cumulative effects account for the 
characteristic behavior of dielectric materials.

There are actually two principal mechanisms by which
electric fields can distort the charge distribution of a 
dielectric atom or molecule: rotating and stretching.



4.1.2 Induced Dipoles
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What happens to a neutral atom when it is placed in an 
electric field E ?

Although the atom as a whole is electrically neutral, there is 
a positively charged core (the nucleus) and a negatively
charged electron cloud surrounding it.

Thus, the nucleus is pushed in the direction of the field, and 
the electron the opposite way.

The electric fields pull the electrons and the nucleus apart, 
their mutual attraction drawing them together - reach 
balance, leaving the atom polarized.



4.1.2 Induced Dipoles

4

The atom or molecule now has a tiny dipole moment p, 
which points in the same direction as E and is proportional 
to the field.

p = αE,    α = atomic polarizability
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Example 4.1 A primitive model for an atom consists of a point 
nucleus (+q) surrounded by a uniformly charged spherical 
cloud (–q) of radius a. Calculate the atomic polarizability of 
such an atom.

Sol. The actual displacements involved are extremely small. It 
is reasonable to assume that the electron cloud retains its 
spherical shape.

The equilibrium occurs when the nucleus is displaced a 
distance d from the center of the sphere. 
The external field pushing the nucleus to the right exactly 
balances the internal field pulling it to the left. 
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Example 4.3 If we have two spheres of charge: a positive
sphere and a negative sphere. When the material is uniformly
polarized, all the plus charges move slightly upward (the z-
direction), all the minus charges move slightly downward. The
two sphere no longer overlap perfectly. Find the polarizability.
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Prob.4.2 According to quantum mechanics, the electron 
cloud for a hydrogen atom in ground state has a charge 
density

where q is the charge of the electron and a is the Bohr 
radius. Find the atomic polarizability of such an atom. [Hint: 
First calculate the electric field of the electron cloud, Ee(r); 
then expand the exponential, assume r <<a.
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Sol. For a more sophisticated approach, see W. A. Bowers, 
Am. J. Phys. 54, 347 (1986).



Polarizability of Molecules
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For molecules the situation is not quite so simple, because 
frequently they polarize more readily in some directions 
than others.
For instance, carbon dioxide CO2

When the field is at some angle to the axis, you must resolve 
it into parallel and perpendicular components, and multiply 
each by the pertinent polarizability:

p = α⊥E ⊥ +α∥E∥

In this case the induced dipole moment may not even be in 
the same direction as E.



Polarizability Tensor
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CO2 is relatively simple, as molecules go, since the atoms 
at least arrange themselves in a straight line.
For a complete asymmetrical molecule, a more general 
linear relation between E and p.

The set of nine constants αij constitute the polarizability 
tensor for the molecule.
It is always possible to choose “principal” axes such that 
the off-diagonal terms vanish, leaving just three nonzero 
polarizabilities.



4.1.3. Alignment of Polar Molecules
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The neutral atom has no dipole moment to start with---
p was induced by the applied field E. However, some 
molecules have built-in, permanent dipole moment.

The dipole moment of water is usually large : 6.1*10-30

C⋅m, which accounts for its effectiveness as solvent.
What happens when polar molecules are placed in an 
electric field? Rotating



Torque for a Permanent Dipole in Uniform Field
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In a uniform field, the force on the positive end, F = qE, 
exactly cancels the force on the negative end. However, 
there will be a torque:
N = (r+ × F+) + (r– × F–)

= [(d/2) × (qE) + (–d/2) × (–qE)] 
= qd × E

This dipole p = qd in a uniform field experiences a torque 
N = p × E
N is in such a direction as to line p up parallel to E.

A polar molecule that is free to rotate will swing around 
until it points in the direction of the applied field.



Net Force due to Field Nonuniformity
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If the field is nonuniform, so that F+ does not exactly 
balance F–; There will be a net force on the dipole.

Of course, E must change rather abruptly for there to be 
significant in the space of one molecule, so this is not 
ordinarily a major consideration in discussing the behavior 
of dielectrics.
The formula for the force on a dipole in a nonuniform field 
is of some interest

F = F+ + F– = q(E+ – E–) = q(∆E) ≅ q((d．∇)E)
F ≅ (p．∇)E

Evaluated at different positions



4.1.4. Polarization
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What happens to a piece of dielectric material when it is 
placed in an electric field?

•Neutral atoms: Inducing tiny dipole moment, pointing in 
the same direction as the field (stretching).

•Polar molecules: experiencing a torque, tending to line it 
up along the field direction (rotating).

Results: A lot of little dipoles point along the direction of the 
field and the material becomes polarized.

A convenient measure of this effect is
P ≡ dipole moment per unit volume, which is called the 
polarization.



4.2 The Field of a Polarized Object  
4.2.1 Bound Charges
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Suppose we have a piece of polarized material with 
polarization P. What is the field produced by this object? 
(It is easier to work with potential.)

For a single dipole p, the potential is
where is the vector from the dipole to the point at which 
we are evaluating the potential.
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Example 3.10 An electric dipole consists of
two equal and opposite charges separated 
by a distance d. Find the approximate 
potential V at points far from the dipole.
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4.2.1 Bound Charges
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For an infinitesimal dipole moment dp = Pdτ, the total 
potential is

0
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Bound Charges
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n̂bσ = ⋅P
surface charge

bρ ′= −∇ ⋅P
volume charge
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Bound Surface and Volume Charges
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This means that the potential of a polarized object is the 
same as that produced by a surface charge density plus a 
volume charge density.

bρ P′= −∇ ⋅

Ex. 4.2 Find the electric field produced by 
a uniformly polarized sphere of radius R.
Sol: See the next three pages.
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Electric Field of a Uniformly Polarized Sphere
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4.2.2 Physical Interpretation of Bound Charges
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What is the physical meaning of the bound charge?
Consider a long string of dipoles.

The net charge at the ends is called the bound charge. The 
bound charge is no different from any other kind.
Consider a “tube” of dielectric with a given polarization P.
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Nonuniform Polarization 
 The Bound Volume Charge
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If the polarization is nonuniform, we get accumulations of 
bound charge within the material as well as on the surface.
The net bound charge in a given volume is equal and 
opposite to the amount that has been pushed out through 
the surface.

This is true for any volume 
bound charge. 

Gauss’s laws



4.2.3 The Field Inside a Dielectric
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What kind of dipole is we actually dealing with, “pure” 
dipole or “physical” dipole?

Outside the dielectric there is no real problem, since we 
are far away from the molecules.

Inside the dielectric, however, we can hardly pretend to be 
far from all the dipoles.



4.2.3 The Field Inside a Dielectric
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The electric field inside matter must be very complicated, 
on the microscopic level, which would be utterly 
impossible to calculate, nor would it be of much interest.

The macroscopic field is defined as the average field over 
regions large enough to contain many thousands of atoms.

The macroscopic field smoothes over the uninteresting 
microscopic fluctuation and is what people mean when 
they speak of “the field inside matter”.
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 According to quantum mechanics, the electron cloud for a hydrogen
atom in the ground state has a charge density
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the charge of the electron and  is the Bohr radius. Find the atomic
polarizability of such an atom. [ : First calculate the electric field of the electron
cloud, ( ); then expand the exponential, e
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 Suppose the field inside a large piece of dielectric is , so that the
electric displacement is  + .
(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. 

ε=
Problem 4.16 E

D E P

0
0

Find
      the field at the center of the cavity in terms of  and . Also find the displacement
      at the center of the cavity in terms of  and . Assume the polarization
      is "frozen in," so 

E P
D P

it doesn't change when the cavity is excavated.
(b) Do the same for a long needle-shaped cavity running parallel to  (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to  (Fig

P
P

0 0

. 4.19c).
Assume the cavities are small enough that , , and  are essentially uniform.
[ : Carving out a cavity is the same as superimposing an object of the same
shape but opposite polarization.]
Hint

P E D

 A dielectric cube of side , centered at the origin, carries a "frozenin"
polarization , where  is a constant. Find all the bound charges, and check
that they add up to zero.

a
k k=

Problem 4.33
P r

Homework of Chap. 4 (part I)



4.3 The Electric Displacement
4.3.1 Gauss’s Law in the Presence of Dielectric

28

The effect of polarization is to produce accumulations of bound 
charge,                   within the dielectric and                   on the 
surface.  

bρ = −∇ ⋅ P n̂bσ = ⋅P

Now we are going to treat the field caused by both bound 
charge and free charge.
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f b

f
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ρ ε
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where E is now the total field, not just that portion generated 
by polarization . 0
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Let                       the electric displacement
Gauss’s law reads 

PED += 0ε
fρ∇⋅ =D
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Gauss’s Law in the Presence of Dielectric

29

The total free charge 
enclosed in the volume

In a typical problem, we know ρf , but not ρb. So this 
equation allows us to deal with the information at hand. 

What is the contribution of the bound surface charge?

The bound surface charge σb can be considered as ρb
varies rapidly but smoothly within the “skin”. So Gauss’s 
law can be applied elsewhere.

encf fd Qρ∇ ⋅ =  ⋅ =D D a



4.3.2  A Deceptive Parallel

30

“To solve problems involving dielectrics, you just forget 
all about the bound charge ─ calculate the field as you 
ordinarily would, only call the answer D instead of E” 

↑ This conclusion is false.

The divergence alone is insufficient to determine a vector 
field; you need to know the curl as well. 

←not always zero
Since the curl of D is not always zero, D cannot be 
expressed as the gradient of a scalar.

Advice: If the problem exhibits spherical, cylindrical, or 
plane symmetry, then you can get D directly from the 
generalized Gauss’s law i.e.,

( ) PPED ×∇=×∇+×∇=×∇ 0ε

fρ∇⋅ =D



4.3.3  Boundary Conditions

0
above belowE E σ

ε
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The electrostatic boundary condition in terms of E

The electrostatic boundary condition in terms of D

0above below− =E E  0=×∇ E

above below fD D σ⊥ ⊥− = fρ=⋅∇ D

above below above below− = −D D P P    PD ×∇=×∇



4.4 Linear Dielectric
4.4.1 Susceptibility and Permittivity

0 eε χ=P E

32

For many substances, the polarization is proportional to 
the field, provided E is not too strong. 

Materials that obey above equation are called linear dielectrics.

The total field E may be due in part to free charges and in 
part to the polarization itself.

: the electric susceptibility of the mediumeχ

dimensionless
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Permittivity and Dielectric Constant

33

We cannot compute P directly from this equation: 

0 0→E P

the external field 
will polarize the 
material this polarization will 

produce its own field and 
contribute to the total field.

The new total 
field will polarize 
the material.

PEEP ′Δ+→ 00

000 PPEE ′Δ+→′Δ+ P

Will this series converge? Depends.



Linear Media & Dielectric Constant
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In linear media ,

where 

Permittivity of the material Relative permittivity 
or dielectric constant



Example 4.4 A thin long straight wire, 
carrying uniform line charge density λ, is 
surrounded by rubber insulation out to a 
radius a. Find the electric displacement. 
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Sol: Drawing a cylindrical Gaussian surface, of radius s and 
length L, and applying the new Gauss’s law, we find
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Example 4.5 A metal sphere of radius a carries a charge Q. It 
is surrounded, out to radius b , by linear dielectric material of 
permittivity ε. Find the potential at the center (relative to infinity).
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Sol: Use the generalized Gauss’s law

for all points   r > a

for   a < r < b

for   r > b

The metal sphere is equalpotential
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The surface bound charge at inner surface is negative. It is 
this layer of negative charge that reduces the field, within 
the dielectric by a factor of      .

volume bound charge

surface bound charge at the outer surface

at the inner surface

In this respect a dielectric is rather like an imperfect conductor.
rε

r̂+
Note that     always points outward with respect to the dielectric , 
which is       at b but      at a .r̂−

n̂

0
0 2 2

ˆ ˆ
14 4
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Stokes’ Theorem for the Polarization

38

In general, linear dielectrics 
cannot escape the defect that

However, if the space is entirely filled with a homogenous 
linear dielectric, then this objection is void. 

Remark : When all the space is filled with a homogenous 
linear dielectric, the field everywhere is simply reduced by 
a factor of one over the dielectric constant .
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1 1
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Shielding Effect & Susceptibility Tensor 
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The polarization of the medium partially 
“shields” the charge, by surrounding it 
with bound charge of the opposite sign.

For some material, it is generally easier to polarize in some 
directions than in others . 

general case
the susceptibility tensor

linear dielectric0 eε χ=P E



Prob. 4.18 The space between the planes of a parallel-plate 
capacitor is filled with two slabs of linear dielectric material. Each 
slab has thickness a, so the total distance between the plates is 2a. 
Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric 
constant of 1.5 the free charge density on the top plate is σ and on 
the bottom plate –σ.
(a) Find the electric displacement D in each slab.
(b) Find the electric field E in each slab.
(c) Find the polarization P in each slab.
(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.
(f) Now that you know all the charge (free and bound), recalculate 
the field in each slab, and confirm your answer to (d).

40



4.4.2  Boundary Value Problems 
with Linear Dielectrics

41

The boundary conditions that make reference only to the 
free charge . 

Relation between bound charge and free charge 

← in a homogenous
linear dielectric

shielding effect
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Example 4.7 A sphere of homogeneous linear dielectric 
material is placed in a uniform electric field E. Find the 
resultant electric field.

The boundary conditions

Sol: Look at Ex. 3.8 an uncharged conducting sphere. In 
that case the field of the induced charge completely
canceled E within the sphere; However, in a dielectric the 
cancellation is only partial.

no free charge 
at the surface
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Partial Image Charge
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Sol: The surface bound charge on the xy plane is of opposite 
sign to q , so the force will be attractive.

Example 4.8 Suppose the entire region below the plane z = 0 is 
filled with uniform linear dielectric material of susceptibility      . 
Calculate the force on a point charge q situated at distance d
above the origin.
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4.4.3  Energy in Dielectric systems
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How to express the energy for a dielectric filled capacitor?

The work done on the incremental free charge is :

the resulting change in D

surface integral vanish if we 
integrate over entire space. 

0

Suppose we bring in the free charge, a bit at a time. As      is 
increased by an amount       , the polarization will change and 
with it the bound charge distribution.  
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Which Formula is Correct?
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What do we mean by “the energy of a system“?

1) Bring in all the charges (free and bound), one by one, 
with tweezers, and glue each one down in its proper final 
position (Chap. 2).

2) Bring in the free charges, with the unpolarized dielectric in 
place, one by one, allowing the dielectric to respond as it 
sees fit (Chap. 4).

derived in Chap. 4

derived in Chap. 2
speak to somewhat 
different question.

0
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W d
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It is the work required to assemble the system.
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4.4.4  Forces on Dielectric
The dielectric is attracted into an electric field, just like 
conductor: the bound charge tends to accumulate near the 
free charge of the opposite sign.

How to calculate the forces on dielectrics?

Consider the case of a slab of linear 
dielectric material, partially inserted 
between the plates of a parallel-plate 
capacitor.

If the field is perpendicular to the 
plates, no force would exert on the 
dielectric. Is that true?
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The Fringing Field Effect

Fringing field are difficult to calculate, so we 
adapt the following ingenious method. 
The energy stored in the capacitor is:
The electric force on the slab is:

In reality a fringing field around the edges 
is responsible for the whole effect.
It is this nonuniform fringing field that pulls 
the dielectric into the capacitor.
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indicates that the force is in the negative
x direction; the dielectric is pulled into the capacitor.

work done by the battery

Fixed voltage
To maintain a constant voltage, the battery must do work. 

Fixed charge
2

2 20
2

1 1
2 2 2

ewdW Q dC dCF V V
dx dx dx dC

ε χ= − = = = −

20 0
2

ewF V
d

ε χ= > The dielectric will be pushed out of 
the capacitor.
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 A certain coaxial cable consists of a copper wire, radius ,
surrounded by a concentric copper tube of inner radius  (Fig. 4.26). The
space between is partially filled (from  out to ) wi

a
c

b c

Problem 4.21

th material of dielectric
constant , as shown. Find the capacitance per unit length of this cable.rε

 Two long coaxial cylindrical metal tubes (inner
radius , outer radius ) stand vertically in a tank of dielectric
oil (susceptibility , mass density ). The inner one is maintained
at pot

e

a b
χ ρ

Problem 4.28

ential , and the outer one is grounded (Fig. 4.32). To what
height ( ) does the oil rise, in the space between the tubes?

V
h

Homework of Chap. 4 (part II)

2 1 2 1

At the interface between one linear dielectric and another, 
the electric field lines bend (see Fig. 4.34). Show that
                                               tan / tan / ,    θ θ ε ε=

Problem 4.36 

                    (4.68)
assuming there is no  charge at the boundary. [ : Eq. 4.68
is reminiscent of Snell's law in optics.Would a convex "lens" of dielectric
material tend to "focus," or "

free Comment

defocus," the electric field?]
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0 A conducting sphere at potential  is half embedded in linear
dielectric material of susceptibility , which occupies the region  < 0 (Fig. 4.35).

: the potential everywhere is exac
e

V
z

Claim
χ

Problem 4.39

0

tly the same as it would have been in the
absence of the dielectric! Check this claim, as follows:
(a) Write down the formula for the proposed potential ( ), in terms of , ,
      and  . Use it to d

V r V R
r etermine the field, the polarization, the bound charge, and the

      free charge distribution on the sphere.
(b) Show that the resulting charge configuration would indeed produce the potential
      (V r).
(c) Appeal to the uniqueness theorem in Prob. 4.38 to complete the argument.
(d) Could you solve the configurations in Fig. 4.36 with the same potential?
      If not, explain .why

Homework of Chap. 4 (part II)


