
Chapter 3 Potentials (Special Techniques)
3.1 Laplace’s Equation: 3.1.1 Introduction

1

Very often, we are interested in finding the potential in a 

region where  = 0.

There may be plenty of charge elsewhere, but we’re 

confining our attention to places where there is no charge.

0

Poisson’s equation: 2V = −
1

(r)

2V = 0Laplace’s equation:

In Cartesian coordinates, = 0
x2

+
y2

+
z2

2V 2V 2V

Introduction to Laplace and Poisson Equations: 

https://www.youtube.com/watch?v=lsY7zYaezto
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3.1.2. Laplace’s Equation in 1D

Suppose V depends on only one variable, x.

d 2V
= 0  V (x) = mx + b

dx2

Two features of this solution:

1. Laplace’s equation is a kind of averaging instruction.

2

2. Laplace’s equation tolerates no local maxima or minima, 

since the second derivative must be zero.

2

V (x) =
1

(V (x − a) +V (x + a)) for any a



3.1.3. Laplace’s Equation in 2D

Suppose V depends on two variables, x and y.

Harmonic functions in two dimensions have the same 

properties that we noted in one dimension:

2V
+

2V
=

x2 y2

3

a partial differential equation (PDE);
0 

not an ordinary differential equation (ODE).



Features of Harmonic Function in 2D

1. The value of V at a point (x, y) is the average of those 

around the point.

2. V has no local maxima or minima. All extrema occur at 

the boundaries.

2R
circle

V (x, y) =
1

Vdℓ
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3.1.4. Laplace’s Equation in 3D

In three dimensions we can neither provide you with an 

explicit solution nor offer a suggestive physical example to 

guide your intuition.

Nevertheless, the same two properties remain true.

1. The value of V at a point r is the average value of V

over a spherical surface of radius R centered at r:

0 (partial differential equation (PDE))
2V

+
2V

+
2V

=
x2 y2 z2

4R2
sphere

V (r) =
1

Vda

5



No Local Maxima or Minima in 3D

6

Sol:V =
40 (z2 + R2 − 2zR cos )1/2

1 q
=

1 q

40 r

2. V has no local maxima or minima; the extreme values 

must occur at the boundaries.

Ex. For a single point charge q located outside the sphere

of radius R as shown in the figure, find the potential at the

origin.

R2 sindd
so Vave(r = 0) =

2 2 2 1/2
0

(z2 + R2 − 2zR cos )1/2

0
(z2 + R2 − 2zR cos )1/2 

1 q

44R

2 40

1 q

(z + R − 2zR cos )

=



=
1 q


−d cos

2zR 40

1 q

2zR 40 40z
((z + R) − (z − R)) =

q
=
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3.1.5. Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V; a 

suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to 

determine the answer and yet not so strong as to generate 

inconsistencies? It is not easy to see.

For a given set of boundary conditions, is V uniquely 

determined? Yes, it is.➔ uniqueness theorem



Boundary Conditions and Uniqueness Theorems

8

First uniqueness theorem: the solution to Laplace’s 

equation in some volume is uniquely determined if V is 

specified on the boundary surface.

Proof:

Suppose there were two solutions to

Laplace's equation: 2V1 = 0 and 2V2 = 0 

Their difference is:V3  V1 −V2.

This obays Laplace's equation, 2V3 = 0 

Since V3 is zero on all boundaries and 

Laplace's equation suggests that all extrema

occur on the boundary, so V3 = 0  V1 = V2.
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Uniqueness Theorems with Charges Inside

2V1 = −
 

and 2V2 = −
 

.
0 0

Since V3 is zero on all boundaries and Laplace's equation suggests 

that all extrema occur on the boundaries, so V3 = 0.  V1 = V2

Corollary: The potential in a volume is uniquely determined

if (a) the charge density throughout the region, and (b) the

value of V on all boundaries, are specified.

The uniqueness theorem frees your imagination. It doesn’t

matter how you come by your solution; if (a) it satisfies

Laplace’s equation and (b) it has the correct value on the

boundaries, then it is right.

Let V3  V1 −V2  2V3 = 0



3.1.6. Conductors and the Second Uniqueness 
Theorem

The simplest way to set the boundary conditions for an 

electrostatic problem is to specify the value of V on all 

surfaces surrounding the region of interest.

However, there are other circumstances in which we don’t 

know the potential at the boundaries rather the charges on 

various conducting surfaces. Is the electric field still 

uniquely determined?

➔ Second uniqueness theorem.

optional
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Second Uniqueness Theorem
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In a volume surrounded by conductors and containing a 

specified charge density, the electric field is uniquely 

determined if the total charge on each conductor is given.

Proof:
Suppose there are two solutions:

optional

0 0

 E1 =
 

and  E2 =
 

0

E2  da =
1

Qi
ith conducting 
surface

E1  da =
1

Qi and
0


ith conducting 
surface

Both obey Gauss's law in integral form,

Likewise, for the outer boundary

0

E2  da =
1

Qtot
outer 
boundary

E1  da =
1

Qtot and
0


outer 
boundary



3 3 3 3 3( (V E ))d = (V E ) da = −(E )2 d

v S v

E3 = 0 everywhere. Consequently, E1 = E2.

  
= 0

optional

As before, we examine the difference E3  E1 − E2

which obeys  E3 = 0 in the region between the conductors, and

E3  da = 0 over each boundary surface.

Although we don't know how the charge distributes itself over

the conducting surface, we do know that each conductor is an

equipotential, and hence V3 = 0.

Invoking product rule, we find that

 (V3E3) = V3(E3) + E3 V3 = −(E3)2

12



3.2 The Method of Images:
3.2.1 The Infinite Grounded Conducting Plane

Suppose a point charge q is held a distance d above an

infinite grounded conducting plane. What is the potential in

the region above the plane?

The boundary conditions of this case are:

1. V = 0 when z = 0 (since the conducting plane is grounded).

2. V → 0 far from the charge.
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The Image Charge

We can easily find a solution which 

satisfies the boundary conditions as in the 

figure.

The uniqueness theory guarantees that 

this case is got to be the right answer.

1 q

The potential can then be written down as


for z  0

q


V (x, y, z) = −
40  x2 + y2 + (z − d )2 x2 + y2 + (z + d )2 

 

Can we use this potential to find out the electric field, 

surface charge distribution, and the force? Yes.

14



3.2.2 Induced Surface Charge

It is straightforward to compute the surface charge 

induced on the conductor.

2 (x2 + y2 + d 2 )3/ 24 2 (x2 + y2 + d 2 )3/ 2

2 3/ 222

z=0

0 0

=
 −1  −1 − 4qd

=
 −1

4 2

n z
 = −

V
= −

V 


 + y + (z + d ) )

qd

(x2 + y2 + (z − d )2 )3/ 2 (x
=

 −1  −1 2(z − d )q
−

2(z + d )q 

 z=0

−V  n̂  −
V

for z  0
 n

(E⊥ −
above

 

0
=0 since z0

) =E⊥
b elo w
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Total Induced Charge

The total induced charge is (use the polar coordinate)

= −q

16

dr =

rdrd
2 (r 2 + d 2 )3/ 2

=
−1 qd

2 (r 2 + d 2 )3/ 22 (x2 + y2 + d 2 )3/ 2

qd

=

 =
 −1






0

 0 0

2  −1 qd
Q = da =

0

2

(r 2 + d 2 )1/ 2

− qd qd

2(r 2 + d 2 )3/ 2



3.2.3 Force and Energy

The charge q is attracted toward the plane, because of the 

negative induced charge.

The force and the energy of this system can be analogous 

to the case of two point charges.

Unlike the two point charges system, there is no field in the 

conductor. Handle must be care.

2

17

0 0

1 1
ˆ

q2 q2
z ; W = −

4 2d
F = −

4 4d



Work and Energy

Consider the work required to bring q in from infinity.

Fdz =

18

W =
dd 1 1q2 q2

0 04 4z 2
dz = −

4 4d 

which is half of that of the two point charge system.

This is because the conducting plane is grounded. 

If the plane is not grounded, what would happen?
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3.2.4 The Grounded Spherical Conducting Shell

Any stationary charge distribution near a grounded conducting

plane can be treated in the same way, by introducing its mirror

image---method of images.

The image charges have opposite sign; this is what 

guarantees that the plane will be at potential zero.

Can this method be applied to a curved surface? Yes.

Here is an example. A point charge is situated in front of a 

grounded conducting sphere.



Example 3.2 A point charge is situated a distance a from the 

center of a grounded conducting sphere of radius R. Find the 

potential outside the sphere.

20



2 2

r2 + a2 − 2ra cos

Sol: Assume the image charge q is placed at a distance b from 

the center of the sphere. The potential is

1  q
for r  R

− 2rb cos

q 

r =


r = r + b

+ 0  

V (r) =
4 r r

It is equipotential on the surface of a grounded sphere. 

Using two boundary conditions at P1 and P2 .

21



At P1:

At P2:

R2

1
(

q
+

q
) = 0



40 R − b a − R

1 q q

40

( + ) = 0
R + b a + R

R
q

a a


 two equations and two unknowns (q and b)



b = , q = −

0 0

22

−1 q2 Ra1 qq =
4 (a2 − R2 )2

F =
4 (a − b)2

The force of attraction between charge and the sphere is

If the sphere is connected to a fixed potential, can this method 

still be applied? Yes.

Just imagine another image charge situated at the center of 

the sphere, which provides a constant potential at the surface.



Ex. Two equal conducting spheres with radius R, each

carries a total charge Q1 and Q2 at a distance d from each

other. Find the electric field outside the conducting spheres.

Sol:

Assume the charges are located at the respective centers.

Using the image charge method, calculate the first level

induced charges. Then, calculated the second level induced

charges, and so on. The series should converges rather fast.

optional

23
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3.3 Separation of Variables

We shall attack Laplace’s equation directly, using the

method of separation of variables, which is the physicist’s

favorite tool for solving partial differential equations.

Applicability: The method is applicable in the circumstances

where the potential (V) or the charge density () is
specified on the boundaries of some region, and we are

asked to find the potential in the region where  = 0.

2V = 0Laplace’s equation:

Basic strategy: Look for solutions that are products of 

functions, each of which depends on only one of the

coordinates.
V (x, y, z) = X (x)Y (y)Z (z)

EM
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3.3.1 Cartesian Coordinates

Example 3.3 Two infinite grounded metal plates lie parallel

to the xz plane, one at y = 0, and the other at y = a. The left

end, at x = 0, is closed off with an infinite strip insulated

from the two plates and maintained at a specific potential

V0(y). Find the potential inside this “slot”.

25



Boundary Conditions

The configuration is independent of z, so Laplace’s equation 

reduces to two dimensions.

0
2V

+
2V

=
x2 y2

The potential inside is subject to the boundary conditions.

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = V0 (y) when x = 0,

(iv) V → 0 as x → .

26



Separation of Variables

The first step is to look for solutions in the form of products:

V (x, y) = X (x)Y (y)

Substituting into Laplace’s equation, we obtain

1 d 2X 1 d 2Y

The first term depends only on x and the second only on y. 

The sum of these two functions is zero, which implies these 

two functions must both be constant.

1 d 2X
=

1 d 2Y
C0 and

Y dy2
= −C0

X dx2

1

27

d2X d2Y

XY X
(Y + X =0)  + = 0

dx2 dy2 dx2 Y dy2




A Simple Solution

28

Let C0 equal k2, for reasons that will appear in a moment.

1 d 2X 2

dx2

21 d 2Y
= −

Y dy2

V (x, y) = (Aekx + Be−kx )(C sin ky + Dcosky)

The boundary condition (iv) requires that A equal zero, 

and condition (i) demands that D equal zero.

Meanwhile (ii) yields sin ka = 0, from which it follows that

= k  X (x) = Ae + Be−kx

X

n =1, 2, 3 ,… Why not n = 0?
a

k =
n

,

=0 (i)

k  Y ( y) = C sin ky + Dcosky

=0 (iv)
kx

−knx
V (x, y) = çBC e sin kn y

Cn

sin(n y a)nC e


−n x a
n=1





A Complete Solution in Fourier Series

Now we have an infinite set of solutions.

This is a Fourier sine series. Virtually any function V0(y)---

can be expanded in such a series.這麼神奇!

We can use the so-called “Fourier’s trick” to find out the 

coefficients Cn.

V (x, y) = sin(n y a)nC e−n x a


n=1





29

Can we use the remaining boundary condition (iii) to 

determine the coefficients Cn? Yes.

V (0, y) = Cn sin (ny a) = V0(y)
n=1



The Fourier Trick

0

30

0 0

0

0

00

a

sin (n y a) sin (n y a)dy =
a

V ( y) sin (n y a)dy

The integral on the left is

sin (n y a) sin (n y a)dy

2

a

V ( y) sin (n y a)dy

n

a

n

C

a a
=

1 a
(cos((n − n)

 y
) − cos((n + n)

 y
)dy =


a

,

0, if n  n

if n = n2

a
C  =

2



n=1



  









A Concrete Example

For a constant potential V0

0 

 0, if n is even

(1− cosn ) =
, if n is odd

a2V 2V
sin (nnC

a

0 

n
= 0  y a)dy =0


4V
n




n=1,3,5,... n

1
e−nx a sin (ny a)So V (x, y) =

4V0



31
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Completeness and Orthogonality

The success of this method hinges on two extraordinary 

properties, i.e., completeness and orthogonality.



Completeness: If any other function f(y) can be expressed 

as a linear combination of a complete function set fn(y):

f (y) = Cn fn (y)
n=1

for n  n
a

0 n nf ( y) f ( y)dy = 0

Orthogonality: If the integral of the product of any two 

different members of the set is zero:

This allows us to kill off all terms but one ( n = n) in the 

infinite series and thereby solve for the coefficient Cn.

EM
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Rectangular Metal Pipe

Example 3.5 An infinitely long rectangular metal pipe (sides 

a and b) is grounded, but one end, at x = 0, is maintained at 

a specified potential V0(y, z), as shown in the figure. Find the 

potential inside the pipe.

33



Boundary Condition

This is a genuinely three-dimensional problem,

0
2V

+
2V

+
2V

=
x2 y2 z2

The potential inside is subject to the boundary conditions.

(i) V = 0 when y = 0,

(ii) V = 0 when y = a,

(iii) V = 0 when z = 0,

(iv) V = 0 when z = b,

(v) V = V0(y, z) when x = 0,

(vi) V → 0 as x → .

34



Separation of Variables

The first step is to look for solutions in the form of products:

V (x, y, z) = X (x)Y (y)Z (z)

Substituting into Laplace’s equation, we obtain

1 d 2X
+

1 d 2Y
+

1 d 2Z
=

X dx2 Y dy2 Z dz2

It follows that

0

1 d 2Z

35

2 2 2 2

2 2X Ydx2 dy

1 d 2X
=

1 d 2Y
(k + l ), = −k ,

Z dz
= −l

How do we know? Any other possibility?



A Simple Solution

1 2 X
= 2(k + l2 )  X (x) = Ae k2+l2 x + Be− k2+l2 x

Y y2

2

X x2

1 2Y
= −k 2

1 2Z
= −

Z z2

Meanwhile (ii) and (iv) yields sin ka = 0 and sin ℓb = 0,

from which it follows that

n =1,2,3,… m =1,2,3,…
a b

k =
n

, ℓ =
m

,

=0 (vi)

=0 (i)

 Y (y) = C sin ky + D cos ky

=0 (iii)

l  Z (z) = E sin lz + F cos lz
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A Complete Solution in Fourier Series

The solution is
2 2) xm

ba
n

y a) sin (mz b),
( ) +(

V (x, y, z) = BCEe
−

sin (n

where n and m are unspecified integers.

Completeness: The solution can be written as

n=1 m=1

n,m

 

V (x, y, z) = C sin (ny a) sin (mz b)
22 ) xm 

ba
n

e
− ( ) +(

Use the boundary condition (v) and the orthogonality to find 

out the coefficients Cn,m.
 

V (0, y, z) =   Cn,m sin(n y a)sin(m z b) = V0( y, z)

n=1m=1

37



The Fourier Trick & Constant Voltage Solution

n,m 0 0

00 0

n,m 00 0

a

sin (n y a)sin (n y a)dy
b

sin (m z b)sin (m z b)dz

a b

V ( y, z)sin(n y a)sin(m z b)dydz

a b

V ( y, z)sin (n y a)sin (m z b)dydz

=
4

C

C
ab

 

n=1m=1

=

   

 

 

if n or m are even.

=
4V0 2a 2b

=
16V0

ab n m nm 2

= 0

if n and m are odd.

If the end of the tube is a conductor at constant potentialV0

C
n,m




n,m=1,3,5,… nm

( ) +(1
e

−
V (x, y, z) =

16V0

 2
sin (n z b)y a) sin (m

22 ) xm 
ba

n
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Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles. 

In the region between them, there is a point charge q, situated as shown in Fig. 3.15. 

Set up the image configuration, and calculate the potential in this region. What 

charges do you need, and where should they be located? What is the force on q?

How much work did it take to bring q in from infinity? Suppose the planes met 

at some angle other than 90; would you still be able to solve the problem by the 

method of images? If not, for what particular angles does the method work?

Problem 3.13 Find the potential in the infinite slot of Ex. 3.3 if the boundary at

x = 0 consists of two metal strips: one, from y = 0 to y = a/2, is held at a constant 

potential V0, and the other, from y = a/2 to y = a, is at potential −V0.

Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which 

are welded together and grounded (Fig. 3.23). The top is made of a separate sheet 

of metal, insulated from the others, and held at a constant potential V0. Find the 

potential inside the box. [What should the potential at the center (a/2, a/2, a/2)

be? Check numerically that your formula is consistent with this value.]11

Homework of Chap. 3 (part I)
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Problem 3.54 For the infinite rectangular pipe in Ex. 3.4, suppose the potential on 

the bottom (y = 0) and the two sides (x = b) is zero, but the potential on the top

(y = a) is a nonzero constant V0. Find the potential inside the pipe. [Note: This is a

rotated version of Prob. 3.15(b), but set it up as in Ex. 3.4, using sinusoidal functions 

in y and hyperbolics in x. It is an unusual case in which k = 0 must be included.

Begin by finding the general solution to Eq. 3.26 when k = 0.]26

0
2

a 



n=1

functions of x and hyperbolics in y, −

n  (2n −1) / 2b

 y (−1)n cosh(n x / a)
Answer: V +

n cosh(nb / a)
sin(n y / a)


. Alternatively, using sinusoidal









2V0

40

cos(nx), where


n=1



(−1)n sinh(n y)

n sinh(na)b


Homework of Chap. 3 (part I)



3.3.2 Spherical Coordinates

For round objects spherical coordinates are more suitable. 

In the spherical system, Laplace’s equation reads

= 0
1  2 V 1  V 1 2V

r
) +

r 2 sin 
(sin


) +

r 2 sin2   2r
(r

r 2

We will first treat the problem with azimuthal symmetry, 

so that the potential is independent of .

sin  

41


(sin

V
) = 0

 
(r 2 V

) +
1

r r
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Separation of Variables

The first step is to look for solutions in the form of products:

V (r, ) = R(r)( )

Substituting into spherical Laplace’s equation, we obtain

The first term depends only on r and the second only on . 

The sum of these two functions is zero, which implies these 

two functions must both be constant.

1 d
(r2 dR

) +
1

sin d d

d
(sin

d
) = 0

R dr dr

1 d
(r2 dR

) = l ( l +1),
R dr dr
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1

sin d d

d
(sin

d
) = −l(l +1)

Again, how do we know? Any other possibility?



Simplest Case: A Metal Sphere

Example: A metal sphere of radius R, maintains a specified 

potential V0. Find the potential outside the sphere.

Sol: The potential is independent of  and .

The Laplace’s equation is:
1 d

(r2 dR
) = 0

R dr dr

0 0

00
 R(r) = V

dr dr dr

r2

d
(r2 dR

) = 0  r2 dR
= −A

dR
= −

A

dr r
 R =

A
+ B

R
0

r
R


R(r = R ) =

A
+ B =V


R(r = ) = B = 0
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A Simple Solution & Legendre Polynomials

The solutions are Legendre polynomials in the variable cos.

2ℓ ℓ! dx
(

d
)ℓ (x2 −1)ℓ

ℓ

1
P (x) =

d
(r2 dR

) = l ( l +1)R  R = Arl + B 
dr dr

1

rl+1

1

44

The solutions are not simple.
sin d d

d
(sin

d
) = −l(l +1)

The general solutions for R and  are

( ) = Pl (cos )

The polynomial is most conveniently defined by the

Rodrigues formula (generating function):

See lecture notes 

of Jackson Chap.3



Rodrigues Formula

1

45

Prove: P (x) =

P (cos )1 

sin 
where

Sol:

(sin


(
d

)ℓ (x2 −1)ℓ , x = cosℓ

ℓ

2ℓ ℓ! dx

ℓ
) = −ℓ(ℓ +1)P (cos )

Let v = (x2 −1)ℓ

v = 2ℓx(x2 −1)ℓ−1 (x2 −1)

 (1− x2 )v + 2ℓxv = 0

(1− x2 )v− 2xv + 2ℓxv + 2ℓv = 0

(1− x2 )v+ 2(ℓ −1)xv +1(2ℓ − 0)v = 0 

(1− x2 )v+ 2(ℓ − 2)xv  + 2(2ℓ −1)v = 0

(1− x2 )v(k +2) + 2(ℓ − k −1)xv(k +1) + (k +1)(2ℓ − k)v(k ) = 0

https://youtu.be/Zm3iVO2d_2c



d ℓ (x2 −1)ℓ
(ℓ)

2
2

dx2 dx

2

Let k = ℓ and u = v =

d P (cos ) dP (cos )
 (1− cos ) − 2x + ℓ(ℓ +1)Pℓ (cos ) = 0

dPℓ (cos )
=

dPℓ (cos ) d
= −

d 1

d dx sin

= ( −

1 dPℓ (cos )

d

dxℓ

(1− x2 )u− 2xu + ℓ(ℓ +1)u = 0

dx

dx2

d P (cos )

ℓ

ℓ
= P (cos )(2 ℓ!)

ℓ ℓ

ℓ

2

1ℓ )(
dP (cos )

sind sin d

1 d P (cos ) cos dP (cos )

sin3  d

− )

= −ℓ

sin2  d 2

ℓ

46



2

2

2

(1− cos  )[

) cos
+ ℓ(ℓ +1)Pℓ (cos )

1 d

d P (cos

(sin
sin d

dP

cos dP (cos )1 d 2P (cos ) 

sin2  d 2 sin3  d
1 (cos )

sin d
dP (cos )

sin d
dP (cos )

d

d

− 2cos[−

ℓ − ℓ ]

= +

=

ℓ
ℓ

ℓ ℓ

ℓ

]+ ℓ(ℓ +1)P (cos )

ℓ
) + ℓ(ℓ +1)P (cos ) = 0

1 d ℓ (cos2  −1)ℓ

d (cos )ℓ
 Pℓ (cos ) =

2ℓ ℓ!
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Properties of Legendre Polynomials

48

1

0


P (cos )P (cos )sind

, if l  = l2l +1

P (x)P (x)dx =−1


=


 2

 l l

0 if l   l

l l

The first few Legendre polynomials are listed
P0(x) =1

P1(x) = x

P2(x) = (3x2 −1) / 2

P3(x) = (5x3 − 3x) / 2

P4(x) = (35x4 − 30x2 + 3) / 8

P5(x) = (63x5 − 70x3 +15x) / 8

Pℓ(x): an ℓth-order polynomial in x

Completeness: The Legendre polynomials constitute a 

complete set of functions, on the interval –1 x 1.

Orthogonality: The polynomials are orthogonal functions:

EM

Tsun-Hsu Chang



A Complete Solution in Legendre Polynomials

The Rodrigues formula generates only one solution. What 

and where are other solutions?

These ”other solutions” blow up at  = 0 and/or  = , are 
therefore unacceptable on physical grounds.

49

The general solution is the linear combination of separable 

solutions.

ℓr ℓ+1
V (r, ) = (Arℓ + B

1
)P (cos )

1
V (r, ) = (A r )P (cos )+ Bℓ rℓ+1




ℓ=0

ℓ

ℓ ℓ

See lecture notes 

of Jackson Chap.3
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Example 3.6 The potential V(R,) = V0sin2(/2) is specified on

the surface of a hollow sphere, of radius R. Find the potential

inside the sphere V(r,).

1
V (r, ) = (A r )P (cos )



+ B ℓ
ℓ ℓℓ

rℓ+1
ℓ=0

Sol:

blow up at the origin. Thus,

2

0

0

0

V (R, )P (cos )sind
2

V sin
2 2

(1− cos )P (cos )sind
2 2

(P (cos ) − P (cos ))P (cos )sind
0 1 ℓ

2 2

V

V



Rℓ 0
A =

2ℓ +1 1



Rℓ 0
=

2ℓ +1 1



Rℓ 0
=

2ℓ +1 1



Rℓ 0
=

2ℓ +1 1


( )P (cos )sind

ℓ ℓ

ℓ

ℓ



V (r, ) =  Aℓr
ℓPℓ (cos )

ℓ=0

In this case Bℓ = 0 for all ℓ --- otherwise the potential would

A R P (cos ) = V (R, )



ℓ=0

ℓ
ℓ ℓ

Ref. p.48






2

0

2R

0A =

R

 V (r, ) =
V0 

−
r

cos 

2 1
V

A1 = − 0

V

0
0

) − P1(cos ))Pℓ (cos(P (cos )sind
2 2

V

Rℓ 0
A =

2ℓ +1 1
ℓ



51

 
2

2ℓ+1

 0 if ℓ  ℓ

, if ℓ = ℓ

1

−1
ℓℓP (x)P (x)dx =



Example 3.8 An uncharged metal 
sphere of radius R is placed in an 

otherwise uniform electric field E = E0ẑ
Find the potential in the region outside 
the sphere.

Sol: The sphere is an equipotential---we may as well set it 

to zero.

The potential is azimuthally symmetric and by symmetry the 

entire xy plane is at potential zero.

In addition, the potential is not zero at large z. 

Boundary conditions are:

(i) V = 0 when r = R,

(ii) V → −E0r cos for r R.
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−(ℓ+1)V (r, ) = (A r )P (cos )

B.C. (i): V (R, ) = (A R )P (cos ) = 0

B.C. (ii): V (r, ) = (A r )P (cos ) = −E r cos

are zero.

Why the electric field 

is enhanced?

+ B r

+ B R−(ℓ+1)

 B = −A R






ℓ=0


ℓ=0



2ℓ+1

ℓ

ℓ ℓ ℓ

ℓ

ℓ ℓ ℓ

ℓ ℓ



ℓ=0

 A1 = −E0 ,
3

all other Aℓ

ℓ

ℓ ℓ 0

r2
V (r, ) = −E0 (r −

R
) cos

3

0

 ( ) = 0 (3E0 cos r̂)  r̂ = 30E0 cos

ˆ  ˆr = 3E0 cos r) cos
r=R

E = −V = E (1+ 2
R

R3

0

E⊥

=0 since z0

) =
 

=−V n̂

(E⊥ −
a bo ve b elo w



3.4 Multipole Expansion
3.4.1 Approximate Potential at Large Distance 

If you are very far from a localized charge distribution, it 

“looks” like a point charge, and the potential is---to good 

approximation—(1/40)Q/r, where Q is the total charge. 

But what if Q is zero?

Develop a systematic expansion for the potential of an 

arbitrary localized charge distribution, in powers of 1/r.

r − r
V (r) =

1


1
(r)d 

40

Using the law of cosines,

=
(r 2 + (r)2 − 2rrcos )

1 1

r − r

Note, for simplicity,

r = rẑ

EM

Tsun-Hsu Chang
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Large Distance Approximation

(r2 + r2 − 2rrcos )

2

1

r − r

1

where  =
r

(
r

− 2cos )
r r

3 r r

r 2 r r 8 r r

5 r r

16 r r

r
=

1
(1+  )−1/2=


r 2 8 16

1 1 1 r r  
 

r

So = (1− ( − 2cos ) + ( ( − 2cos ))
r − r

1
(1+  )−1/2 =

1
(1−

1
 +

3
 2 −

5
 3 +… ) , if   1

  3

2=
1

(1+ ( ) (
2

r (3cos2   −1)

rr



r

r

− ( ( − 2cos )) +… )

)cos + ( ) +… )

Taylor’s expansion
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Legendre Polynomials & Multipole Expansion

r 2 (3cos2   −1)

1

r

r

r
( ) P (cos )




1

=
1 r

(1+ ( )cos + ( ) (
r r r 2

) +… )
r − r


= 

ℓ=0

ℓ
ℓ

0

ℓ=00

2

1 3

2

1

2

) P

r


4 r

r

4 r r
  

   

1 



0 + cos2   −
 r 



=
1


1 

1  r  
3 (r) (

2



V (r) = 
1

( (cos ) (r )d

(r ) P (cos ) (r )d

(r)d  +
1

rcos (r)d 
or more explicitly, V (r) = 

4

ℓ

ℓ

ℓ=0

ℓ

ℓr ℓ 

) (r)d  + … 

The multipole expansion of V in powers of 1/r.

This is the desired result.
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Legendre Polynomials & Multipole Expansion

2

57

3

0

V (r)

1
(
1 3

(r ) ( 2

4 2 2
cos2   −

1
)(r)d  +… )

r  r
(r)d  +

1

r
rcos (r)d  +

1
=  



Dipoles

What is dipole? The arrangement of a pair 

of equal and opposite charges separated by 

some distance is called an electric dipole.

Permanent dipole: such as molecules of HCl, CO, and H2O.

Induced dipole: An electric field may also induce a charge 

separation in an atom or a nonpolar molecule.
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Sol:

V (r) =

Example 3.10 An electric dipole consists of 

two equal and opposite charges separated 

by a distance d. Find the approximate 

potential V at points far from the dipole.

((1+  )−1/2 − (1− )−1/2 )
q

40

q

40r
2 2

((1+  )−1/2 − (1−  )−1/2 )
40r

r2
0 0

(since
r

1 and r =
d

)
r 2

1 1
( ) =

r − d ẑ r + d ẑ

V (r) =

q d 1 qd cos

4 r
(

r
cos ) =

4

q
r r r

where  =
r

(
r

− 2cos )  −
d

cos

−

=
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The Electric Field of a Dipole

0 0 0
r2 r2 r2

4 4 4
V (r) =

1 qd cos
=

1 r ̂p
=

p cos

where p = qd  pointing from the negative charge to the positive charge.

0

3

0

E = −V (r) =
4

p
(
2cos

r̂ +
sin

θ̂ + 0̂ )
r3 r3

(2cosrˆ + sinθˆ)
4 r

p
=

Why?

Just a convention.

1 T
̂T =

T
r̂ +

1 T
̂ +

r r  r sin 
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Some Important Properties of Dipole

Potential and field due to a dipole:

p = Qd (− → + )

0

0 0

1 1

1

r 2 r 2

4

1

4
=

r 2 

p: dipole moment

V (r) = rcos (r)d 

1
r̂  r(r)d  =

1
r̂ p

E = −V (r)

Torque in a uniform field:

τ = pE

Potential energy:

U = −p E

 – – 4
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Problem 3.20 Suppose the potential V0( ) at the surface of a sphere is specified, 

and there is no charge inside or outside the sphere. Show that the charge density on 

the sphere is given by

2

0

(3.88)
2R

 ( ) =
0

where

(3.89)

l l(2l +1) C P (cos ),

l 0 lC =


V ()P (cos ) sind .




l=0



Problem 3.27 A sphere of radius R, centered at the origin, carries charge density

62

(r, ) = k
R

(R − 2r) sin ,
r2

where k is a constant, and r, are the usual spherical coordinates. Find the approximate 

potential for points on the z axis, far from the sphere.

Homework of Chap. 3 (part II)



3 3 2

Problem 3.43 A conducting sphere of radius a, at potential V0 , is surrounded by a

thin concentric spherical shell of radius b, over which someone has glued a surface

charge

 ( ) = k cos  ,

where k is a constant and  is the usual spherical coordinate.

(a) Find the potential in each region: (i) r > b, and (ii) a < r < b.

(b) Find the induced surface charge i ( ) on the conductor.

(c) What is the total charge of this system? Check that your answer is consistent 

with the behavior of V at large r.

 aV0 / r + (b3 − a3)k cos / 3r20 , r  b
 Answer: V (r,  ) =  

aV0 / r + (r − a )k cos / 3r 0 ,
 r  b

Problem 3.56 An ideal electric dipole is situated at the origin, 

and points in the z direction, as in Fig. 3.36. An electric charge

is released from rest at a point in the xy plane. Show that it swings 

back and forth in a semi-circular arc, as though it were a pendulum

supported at the origin.28

Homework of Chap. 3 (part II)
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