Chapter 3 Potentials (Special Techniques) EM
3.1 Laplace’s Equation: 3.1.1 Introduction Tsun-Hsu Chang

Poisson’s equation: V2V = : p(r)
0

Very often, we are interested In finding the potential in a
region where p = 0.

There may be plenty of charge elsewhere, but we're
confining our attention to places where there is no charge.

Laplace’s equation: V2V =0
N oV oV

In Cartesian coordinates, + 4 =0

OX* oy* 0z°



http://www.youtube.com/watch?v=lsY7zYaezto

3.1.2. Laplace’s Equation in 1D

Suppose V depends on only one variable, x.
dav
dx?

Two features of this solution:

0 = V(X)=mx+D

1. Laplace’s equation Is a kind of averaging instruction.

V (X) :%(\/(x—a)+V(x+a)) forany a

2. Laplace’s equation tolerates no local maxima or minima,
since the second derivative must be zero.



3.1.3. Laplace’s Equation in 2D

Suppose V depends on two variables, x and .

oV OV _ ) a partial differential equation (PDE);
OX°  Oy? inot an ordinary differential equation (ODE).

Harmonic functions in two dimensions have the same
properties that we noted in one dimension:

V A




Features of Harmonic Function in 2D

1. The value of V at a point (X, y) Is the average of those
around the point.

1
V(X,y)=—" Vdf
(X, V) - $

circle

2.V has no local maxima or minima. All extrema occur at
the boundaries. v A




3.1.4. Laplace’s Equation in 3D
oV 82V aZV

P 8y2 az =0 (partial differential equation (PDE))

In three dimensions we can neither provide you with an
explicit solution nor offer a suggestive physical example to
guide your intuition.

Nevertheless, the same two properties remain true.

1. The value of V at a point r is the average value of V
over a spherical surface of radius R centered at r:

V (r) = <j‘> Vda

2
4T R* sphere



No Local Maxima or Minima in 3D

2.V has no local maxima or minima; the extreme values
must occur at the boundaries.

EX. For a single point charge g located outside the sphere
of radius R as shown in the figure, find the potential at the
origin.

SOIV — L d — - 1 A
dreg r 4meg (22 + R? — 2zR cos0 )12 +
1 RZ sin6dod
S0 Vaye(r=0) = 2 Y : 172
AnR“ 4meg * (z° + R —2zRcos0)
1. g —d cos0 & da
2 4nteg ” (22 + R? —2zR cos0 )12
1
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3.1.5. Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V; a
suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to
determine the answer and yet not so strong as to generate
Inconsistencies? It Is not easy to see.

For a given set of boundary conditions, Is V uniquely
determined? Yes, It IS. =» unigueness theorem



Boundary Conditions and Unigueness Theorems

First unigueness theorem: the solution to Laplace’s
equation in some volume iIs uniquely determined If V Is
specified on the boundary surface.

Proof:

Suppose there were two solutions to
Laplace's equation: V4V;=0 and V2V, =0
Their difference I1s:V45 =V —V>.

V specified

This obays Laplace’s equation, V4Vz =0 ontis
Since V3 is zero on all boundaries and T
Laplace's equation suggests that all extrema

occur on the boundary, soV3=0 = V;=V,.



Uniqueness Theorems with Charges Inside

2 2
VAV =+ and VAV, =+ | g Vo=V -V, = V4%/3=0
&0 &0
Since V3 Is zero on all boundaries and Laplace's equation suggests
that all extrema occur on the boundaries, soV3=0. = V; =V,

Corollary: The potential in a volume is uniquely determined
If (a) the charge density throughout the region, and (b) the
value of V on all boundaries, are specified.

The uniqgueness theorem frees your imagination. It doesn't
matter how you come by your solution; if (a) It satisfies
Laplace’s equation and (b) it has the correct value on the
boundaries, then it is right.



optional 3.1.6. Conductors and the Second Unigueness

Theorem

The simplest way to set the boundary conditions for an
electrostatic problem is to specify the value of V on all
surfaces surrounding the region of interest.

However, there are other circumstances in which we don't
know the potential at the boundaries rather the charges on

various conducting surfaces. Is the electric field still
uniguely determined?

9 S eCO n d U n |q U e n - Integration surfaces
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optional Second Uniqueness Theorem

In a volume surrounded by conductors and containing a
specified charge density, the electric field is uniquely
determined If the total charge on each conductor Is given.

Integration surfaces

Proof:
Suppose there are two solutions: P m—
V-Elz—p— and VoEZ:-Q . :
€0 €0 49 =
Both obey Gauss's law in integral form, 7 _ AN

could be at infinity

1
j Ei-da=—"Q; and J Ez-dalei
Ith conducting ©0 Ith conducting ©0
surface surface
Likewise, for the outer boundary
1
I Ei-da="Q¢ and j E, .da:thot

& &
outer 0 outer 0

boundary boundary 4



optional

As before, we examine the difference Es= E;1—E»
which obeys V- E3 =0 in the region between the conductors, and

_[Eg -da =0 over each boundary surface.

Although we don't know how the charge distributes itself over
the conducting surface, we do know that each conductor Is an
equipotential, and hence V5 =0.

Invoking product rule, we find that
V- (V3E3) =V3(V -E3) + E3-VV3 = —(E3)*

=0
j(V(VsEg))dT = @.da = j—(E:a)sz

S
..E3 =0 everywhere. Consequently, E1 =E»>.

12



3.2 The Method of Images: M
3.2.1 The Infinite Grounded Conducting Plane >~ ¢

Suppose a point charge g is held a distance d above an
infinite grounded conducting plane. What is the potential in
the region above the plane?

The boundary conditions of this case are:

1. V =0 when z =0 (since the conducting plane Is grounded).
2. V — 0 far from the charge.

13



The Image Charge

We can easily find a solution which
satisfies the boundary conditions as in the
figure.

The unigueness theory guarantees that
this case Is got to be the right answer.

The potential can then be written down as

V(X y,7) = — . .

4TEQ _\/x2 +y2 +(z-d)>? \/x2 +y4+(z+d)*

Can we use this potential to find out the electric field,
surface charge distribution, and the force? Yes.

forz>0

14
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3.2.2 Induced Surface Charge

It Is straightforward to compute the surface charge o

iInduced on the conductor. )
B e™ Etpw )= i
above b éw ) =
: . 0
| =0 since z<0
|____ __________ [
:—VV-ﬁz—ﬁlforzzo:
L on |
oV oV
O =—¢y = ~&
on OZ |,_
-1l 2(z—d)q B 2(z+d)q |
A 2 | (P +Yy2+(z—-d)?)¥2 (X*+y*+(z +d)2)3’2JZZO
=1 -1 —4qd _ =1 qd
At 2 (X +y2+d?)¥? 21w (x* +y? +d?)¥?

-t



Total Induced Charge

The total induced charge Is (use the polar coordinate)

- — -] qd -1 qd
275 (X 2 d2)3/2 275 (r2 d2)3/2
2T —1
Q=|ocda=| | o +d a7 1Ordg
0 —qd : qgd |
— - dr = :—q
0 2(r*+d?*)¥3 (r*+d?)"?|

16



3.2.3 Force and Energy

The charge ¢ Is attracted toward the plane, because of the
negative induced charge.

The force and the energy of this system can be analogous
to the case of two point charges.

2 2
F=—_1 4 ;. w=-_1021
drieq 4d 2 e, 2d

Unlike the two point charges system, there is no field in the
conductor. Handle must be care.

17



Work and Energy

Consider the work required to bring g in from Infinity.

(R ; 1 g
dme, 427 ° 7 4, 4d

which is half of that of the two point charge system.

==

This Is because the conducting plane is grounded.

If the plane Is not grounded, what would happen?

18



3.2.4 The Grounded Spherical Conducting Shell

Any stationary charge distribution near a grounded conducting
plane can be treated in the same way, by introducing its mirror
Image---method of Images.

The iImage charges have opposite sign; this is what
guarantees that the plane will be at potential zero.

Can this method be applied to a curved surface? Yes.

Here Is an example. A point charge Is situated In front of a
grounded conducting sphere.

19



Example 3.2 A point charge Is situated a distance a from the
center of a grounded conducting sphere of radius R. Find the
potential outside the sphere.

20



Sol: Assume the image charge g’ Is placed at a distance b from
the center of the sphere. The potential Is

V(r) = 1 (q | Ol'j %(\P=\/r2+a2—2racose
~ T Ut"=\/r2+b2—2rbcose

forr >R

4ﬂ80

It IS equipotential on the surface of a grounded sphere.
Using two boundary conditions at B, and P;.

21



3

atR: —— (%—=+—9—)-0
47'[80 R— a—R

1 , » two equations and two unknowns (q" and b)
AtP,: 99 y_o
dneg R+ b a+R J
RZ R
b =—, (0 =—"-¢
a a

The force of attraction between charge and the sphere is
c- 1 a9 _ -1 q°Ra
dne, (a—b)* 4mneg, (a° —R?)?

If the sphere Is connected to a fixed potential, can this method
still be applied? Yes.

Just Imagine another image charge situated at the center of
the sphere, which provides a constant potential at the surface.

22



optional

Ex. Two equal conducting spheres with radius R, each
carries a total charge Q1 and Q2 at a distance d from each
other. Find the electric field outside the conducting spheres.

Sol:

e ———————————————————)

an LN

Ql QrQr’ Q2Q2 Q2
Assume the charges are located at the respective centers.
Using the image charge method, calculate the first level
Induced charges. Then, calculated the second level induced
charges, and so on. The series should converges rather fast.

23



3.3 Separation of Variables Fsun-Heu Chang

We shall attack Laplace’s equation directly, using the
method of separation of variables, which iIs the physicist's
favorite tool for solving partial differential equations.

Applicabllity: The method is applicable in the circumstances

where the potential (V) or the charge density (o) Is
specified on the boundaries of some region, and we are
asked to find the potential in the region where p =0.

Laplace’s equation: V2V =0

Basic strategy: Look for solutions that are products of
functions, each of which depends on only one of the

coordinates. V(X,V,2) = X(X)Y(y)Z(z)

24



3.3.1 Cartesian Coordinates

Example 3.3 Two Infinite grounded metal plates lie parallel
to the xz plane, one at y = 0, and the other at y = a. The left
end, at x = 0, Is closed off with an infinite strip insulated
from the two plates and maintained at a specific potential
Vo(Y). Find the potential inside this “slot”.

25



Boundary Conditions

The configuration Is independent of z, so Laplace’s equation
reduces to two dimensions.

2 2
N AV _

0
OX*  0y°

The potential inside Is subject to the boundary conditions.
(NV =0when y =0,

M“Z (ii)V =0when y = a,

(Vv =V, (y) when x =0,
(Iv)V —> 0as x — .

26



Separation of Variables

The first step Is to look for solutions in the form of products:

V(X y)=X(X)Y(y)
Substituting into Laplace’s equation, we obtain
2 2 2 2
(YdX+Xd_Y:O)><i :>1dX+1dY:
dx¢  dy? XY X dx? Y dy?

The first term depends only on x and the second only ony.
The sum of these two functions is zero, which implies these
two functions must both be constant.

0

1 d2X 1 d2y
= =Cnh and = —
X dx? ) Y dy?

_CO

27



A Simple Solution

Let C, equal k?, for reasons that will appear in a moment.
1 d2x >=0 (iv)
—k? = X(x) 7/Ae" +Be ™
X dx?

1 dZY ) _ /{—":O (1)
= =—K Y (y) =Csinky +/D cosk

Y a2 = Y(y) y y

V (X, y) = (Ae®* + Be ™ X)(Csinky + D cosky)

The boundary condition (iv) requires that A equal zero,
and condition (1) demands that D equal zero.

Meanwhile (i1) yields sinka =0, from which it follows that

k =1
a

V(X y)=8C e~ "X sin kny = Z C,e " X/a sin(nity/a)

Cn n=1 28

, nh=1 2, 3,.. Why notn=07?



A Complete Solution Iin Fourier Series

Now we have an Infinite set of solutions.

V(x,y)=> C,e™" X3 sin(nrty /a)
n=1
Can we use the remaining boundary condition (i) to
determine the coefficients C,? Yes.

V(0,y) =icn sin (nmy,/a) =V, (y)

This Is a Fourier sine series. Virtually any function Vy(y)---
can be expanded in such a series. 7= [ (HET!

We can use the so-called “Fourier’s trick” to find out the
coefficients C,.

29



The Fourier Trick

0 a d
ZanO sin(nty/a)sin(n'ny/a)dy = jo Vo(y)sin(n'my/a)dy
n=1
The integral on the left Is
j:lsin (hmy/a)sin(nt y/a)dy
[0, ifn'#=n

|
\

IO

_ %j;‘ (cos((n — n,)n_ay) —cos((n+ n’)n—a\l)dy 5 if n'=n
2

2 ¢ .
Co == [, Vo(¥)sin (n'm y /2)dy

30



A Concrete Example

For a constant potential Vj

-

_ 2V 3 2Vo _
C, " .[o sin(nty/a)dy = - (1-cosnm) =

So V(xy)=e ¥ ie—mx/asin(nny/a)

0,

4V,

Lnm

If N 1S even

If n 1S odd

31



: EM
Completeness and Orthogonality Tsun-Hsu Chang

The success of this method hinges on two extraordinary
properties, I.e., completeness and orthogonality.

Completeness: If any other function f(y) can be expressed
as a linear combination of a complete function set f.(y):

f(y) = Zc £ (y)

Orthogonality: If the integral of the product of any two
different members of the set Is zero:

a
.[o f.(y) f(y)dy=0 for n"=n

This allows us to kill off all terms but one (n'=n) in the

Infinite series and thereby solve for the coefficient C,..
32



Rectangular Metal Pipe

Example 3.5 An infinitely long rectangular metal pipe (sides
a and b) Is grounded, but one end, at x =0, Is maintained at

a specified potential Vy(y, z), as shown In the figure. Find the
potential inside the pipe.

b -/ X

33



Boundary Condition
This is a genuinely three-dimensional problem,
2 2 2
oV N oV N oV _

0
OX* 0oy* 017°

The potential Iinside Is subject to the boundary conditions.

(i) V =0 wheny =0,
115G () V =0wheny =a,
.= ﬁ (iii) V = 0 when z = 0,

R ——— (iv) V=0whenz=bh,
T (V) V =Vq(y, z) when x =0,
(Vi) V —> 0 as X —> o,

34



Separation of Variables

The first step Is to look for solutions in the form of products:

V(xY,2) = X(X)Y(y)Z(2)
Substituting into Laplace’s equation, we obtain
1d°X  1d%Y  1d“Z

=0
X dx¢ Y dy? Z dZ?
It follows that
2 2 2
X dx? Y dy? Z dz°

How do we know? Any other possibility?

35



A Simple Solution

=0 (vi1)
2
];a >; _(k2+12) = X(X) = e\/k2+12X_|_Be—\/k2+12X
Y 2 = k¢ = Y(y):Csinky+)ZgI<;/
y

10°7

»=0 (i)
7 2 -1° = Z(z):Esinlz+A@z
Z

Meanwhile (i1) and (iv) yields sinka =0andsintb =0,
from which it follows that

N
k_TC
a

- n=123,.. { = mbn - m=12,3,..

36



A Complete Solution Iin Fourier Series

The solution Is
V(X,y,z) =BCEe™ DY sin (nmty/a)sin (mnz/b),
where n and m are unspecified integers.

Completeness: The solution can be written as

V(x,y,2)=> ¥ C, .e" O™ 5in (ny/a) sin (mrz /b)

n=1 m=1

Use the boundary condition (v) and the orthogonality to find
out the coefficients C,, .

V(0,y,2) = > > Cymsin(nmy/a)sin(mrz/b) =Vo(y,2)
n=1m=1



The Fourier Trick & Constant Voltage Solution

i i Crm j;Si” (nty/a)sin(n'n y/a)dy_[:sin (mmz/b)sin (m'n z/b)dz

Nn=1m=1

_ jj_[;v@(y, z)sin (n'my/a)sin (m'r z/b)dydz

4 2.0 . .
Cim = ™ jo _[OVO(y, z)sin(nt y/a)sin(mm z /b)dydz

Y+ v=0
If the end of the tube Is a conductor at constant potentialV, Ay
|

C = Wo2a 2b _ 16Vo 4 and m are odd. Vo(y. 2) — | }/&
7 abnmmr nmm? , 'j 7

=0 If nor mareeven. f

. V=0

_ 1 (D)2 H(M)2x . . g
V(X,Y,2)= 16\2/0 Z - g @) sin (nwy/a) sin (mmnz/b)

n n,m=1,35,.. nim

38



Homework of Chap. 3 (part I)

Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles.
In the region between them, there is a point charge q, situated as shown in Fig. 3.15.
Set up the image configuration, and calculate the potential in this region. What

charges do you need, and where should they be located? What is the force on g? .
How much work did it take to bring g in from infinity? Suppose the planes met |
at some angle other than 90°; would you still be able to solve the problem by the

method of images? If not, for what particular angles does the method work?

L,
\\ T
s

Problem 3.13 Find the potential in the infinite slot of Ex. 3.3 if the boundary at FIGURE 3.15
X = 0 consists of two metal strips: one, fromy =0toy =a/2, is held at a constant
potential Vj, and the other, fromy =a/2 toy = a, Is at potential —V,.

Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which

are welded together and grounded (Fig. 3.23). The top is made of a separate sheet ‘ Ve

of metal, insulated from the others, and held at a constant potential V. Find the /

potential inside the box. [What should the potential at the center (a/2, a/2, a/2) a
I / 4

X -

be? Check numerically that your formula is consistent with this value.

FIGURE 3.23

39



Homework of Chap. 3 (part 1)

Problem 3.54 For the infinite rectangular pipe in EX. 3.4, suppose the potential on
the bottom (y = 0) and the two sides (x = xb) is zero, but the potential on the top

(y = a) is anonzero constant Vj. Find the potential inside the pipe. [Note: This is a
rotated version of Prob. 3.15(b), but set it up as in Ex. 3.4, using sinusoidal functions
In y and hyperbolics In x. It I1s an unusual case in which k =0 must be included.

Begin by finding the general solution to Eq. 3.26 when k = 0.]°

o (= 1)n cosh(nm x/ a)
cosh(nth/a)

sin(nty/a) i Alternatively, using sinusoidal

/ y 9
Answer: V,
L o|a* w2

_1\Nci
functions of x and hyperbolics in y, —%Zw (=1)" sinh(ony)

_ cos(o, X), where
=1 o, sinh(o,) (nX)

oy =(2n-1)m /Zb]

40



3.3.2 Spherical Coordinates

For round objects spherical coordinates are more suitable.

In the spherical system, Laplace’s equation reads

L0 2V, 1 ¢ ezav 1 &V _,
re or 8r)+r 2sin® 06 (SN )+r sin‘0 o¢°

We will first treat the problem with azimuthal symmetry,
so that the potential is independent of .

—)+ L (sme —) 0
or sin® o006 00

0 (2 OV
or

EM
Tsun-Hsu Chang

41



Separation of Variables

The first step Is to look for solutions in the form of products:
V(r,0)=R(r)®(0)

Substituting iInto spherical Laplace’s eguation, we obtain
(rz dR 1
R dr dr @sm@ do

d®
siInG —) =0
( e)

The first term depends only on r and the second only on 0.
The sum of these two functions is zero, which implies these
two functions must both be constant.

1 d dR
(r2 Ty=1(1 +1), L4 6ing _@):_1(1 1)
R dr ar ®sinO do do

Again, how do we know? Any other possibility?
42



Simplest Case: A Metal Sphere

Example: A metal sphere of radius R, maintains a specified
potential V,. Find the potential outside the sphere.

Sol: The potential is independent of 6 and ¢.

The Laplace’s equation is: 1d (r? dR) 0
Rdr dr

i(r2 dR) 0 = rzd—R:—A

dr dr

aR ——Az — R:A+B

dr r r

R(r=R)=A iB=v R

< S = R(r)=V,—

43



A Simple Solution & Legendre Polynomials

The general solutions for R and ® are

d dR
a(r2 “H=11+)R = R=Arl +Brl+1

L (sme —) =—1(1 +1)® The solutions are not simple.
SinG do do

The solutions are Legendre polynomials in the variable coso.

See lecture notes
@(9) =P (COSG) of Jackson Chap.3

The polynomial iIs most conveniently defined by the
Rodrigues formula (generating function):

& )(X -1)’

R0 = 5

44



Rodrigues Formula
Prove: P’Z(X)_zm( ) (x? =1)*, x =cos6

where L (sm@ o (cosH)

sin® 00 00
Sol: https://youtu.be/Zm3ivO2d_2c

Let v=(x*-1)
v =28x(x* -1t x(x® -1)
= (1-x*)V' + 28xv =0

)=—1({+1)P,(cosO)

(1-x2 W' =2xv' + 28xv' + 28v =0
(1-x*W'+2(2-1)xv' +1(2£-0)v =0
(I-x*W"+2(8-2)xv'+2(2f-1)v' =0

(1-x2)v**2 + 2(8 =k =1)xv¥* + (k +1)(2L - k)v™*) =0

45



0 d? (X2 _1)2
dx’
(= xAWU=2xu"+£(£ +1)u =0

Let k={ and u =P, (cos0)(2 £!)

2
— (1-c0s°0) d Hd(cf 50) 2X d—P“(gOSO) +£(£+1)P,(cosB) =0
X X

 dP,(cos®) _ dR(cos0)dd _ 1 dPR(cosb)

dx do dx SinB do
d“P,(cosb) d ( 1 dﬂ(cos@))( 1 )
dx2  do " sin®@  do sind

1 d°R(cosB) cos® dP,(cosO)
\ sin?@  dB? sin®  do

46



1 d°P(cosO) cosO dB(cosG)]
sin’ 0 do 2 sin® 0 do

—2¢0s0] L dP‘f(COSO)] -¢(£ +1)P,(cosO)

(1-cos” 0)[

sSind do
2
_ G B(CSSO) : c_os@ dPF(COSQ)+[(£ )P, (cosO)
do sSind
1 d , . . dP(cosO)
= sing — (2 +1)P,(cosB) =0
g de(: ) +t(t+1)P,(cosb)
¢ 20 1\
P (c0s0) = 1 d*(cos 0 -1)

tpl ;
2t d(cosO) H

47



Properties of Legendre Polynomials
The first few Legendre polynomials are listed

Po(x) =1
B (X) =X

P,(x) = (3x% -1)/ 2
Py(x) = (5x3 —3x) / 2

P, (x) = (35x* —30x% +3) /8
R (x) = (63x° — 70x3 +15x) / 8

Py (x): an £th-order polynomial inx

Completeness: The Legendre polynomlals constitute a
complete set of functions, on the interval —1< x <1.

EM
Tsun-Hsu Chang

1

0.5 —

0

Pn(x)

-0.5

TTTTDTTDTD
A B A B S
A - - -
N e e e s s

0.5

Orthogonality The polynomials are orthogonal functions:

_[ By (x)Pyr (x)dx = _f A (cosO )R (cosO )sinBdo

R

0
2

21 +1

ifl =1

,If 1

=1

48



A Complete Solution in Legendre Polynomials

The Rodrigues formula generates only one solution. \What
and where are other solutions?

These “other solutions” blow up at 0 =0 and/or 6 = &, are
therefore unacceptable on physical grounds.

V (r,e) — (Arf + B rz_]:rl) Pg (COS@) See lecture notes

of Jackson Chap.3

The general solution Is the linear combination of separable
solutions.

00 , L
V(r,@):g(A(r +B, .1)P(cosb) é’

49



Example 3.6 The potential V(R,0) = V,sin?(0/2) is specified on
the surface of a hollow sphere, of radius R. Find the potential
inside the sphere V(r,0).

Sol: v(r,0) = KZ(:)(A” + By ﬁ)P[ (cosB)
In this case By =0 for allt --- otherwise the potential would

blow up at the origin. Thus, V(r,0)= > ArPy(cosd)

o {=0
> AR'P (cosH) =V (R,0)
= 22 . Ref. p.48
A - + = V(R 0)P, (cosb)sin6do
2[-|—1 1 J‘ SInZ(E)H(COSO)Si”OdG
_2£+1 1

. Wjo ~-(1-c0s0)P, (c0s0)sinbde
_2t+1 1

. WIZ\%(PO (cosB) — P,(cosB))P,(cosh ) sinfdo

10



A

_2[+1i m

\%(PO (cosO ) — P,(cos0))P, (cosO )sinBdo

2 R'Jo
1 (‘ 0 iff #¢
LPz (X)Pz'(x)dx =4 2 ifY =t
20+1
V, -
AV 21" R

o1



Example 3.8 An uncharged metal : ‘\ A ) :
sphere of radius R Is placed in an
otherwise uniform electric field E = E,Z e
Find the potential in the region outside

the sphere. / \ \

Sol: The sphere Is an equipotential---we may as well set it
to zero.

The potential is azimuthally symmetric and by symmetry the
entire xy plane is at potential zero.

In addition, the potential is not zero at large z.

Boundary conditions are:

() V =0whenr =R,
() V —> —Egrcosd® forr R.
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V(r,0)= i(Az r' +B,r “")P, (cos0)

B.C. (i): V(RO)=Y (AR +BR )P, (cosd) =0
— B{ I—A_\[RZ[H
B.C. (ii): V(r,@)zi(Azl’z)F’[(COS@)=—EOFCOSO

= A =-Eq, , all other A, are zero.

(V(r,0) = —Eq(r — ) cosé Why the electric field
r ; is enhanced?
R . .
E| _,=-VV =Ey(l+ Zﬁ) cosO  =3EgcosO 7
O 0) =¢q(3EpcosOT) -1 =3gyEq cosH
(EL - el o
'( alo e Efi)_ O w )_ l
| € |

:_ =—VV 1N =0 since z<0

__________________d
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3.4 Multipole Expansion
3.4.1 Approximate Potential at Large Distance

If you are very far from a localized charge distribution, it
“looks” like a point charge, and the potential is---to good

approximation—(1/4re,)Q/r, where Q Is the total charge.
But what If Q IS zero?

Develop a systematic expansion for the potential of an
arbitrary localized charge distribution, in powers of 1/r.

—p(r')dt’

V(r)_4n80 '[‘ —~

Using the law of cosines,
1 1 ‘Note, for simplicity,

\/(r (2 —2rr'cos) F=rz. e

24



Large Distance Approximation

L _ = L 21(1+8)_1/2
r—r \/(rz +r'2-2rr'cos@’) T
r’ r’ , )
where & = (——2cos0’) Taylor’s expansion

r r

1 1 1.3 5
r( 2 R L T @

So . =1(1—11'(L—2C089')+Q(L(L—ZCOSQ'))Z
\r—r’ r 21 r 8'r r
5 ' r
— — —2¢c0s0)° +...
16(r(r ) +...)

0'-1))

r’ ’
— L1+ (DYoo + (Fyz(3€08
r r r 2

)
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Legendre Polynomials & Multipole Expansion

L1014 (E)coshr+ (Dy2((Bc0s”0'-1),

r—r| r r r 9
1o, Iy ,
= Z( )" P, (cos0 ")
V(r) = j Z( ) P, (cos6")p (r')dt’ This Is the desired result.

4n%r
L j ()P, (cos0")p (r)d< /
47‘[8 o

. —jp(r )dt’ +—_[rcos(9 o(r')dt’

47‘580 l%j(r) (3
T 2

or more explicitly, |V (r) =

C0s° 0’ — )p(r)dr +o |

The multipole expansion of V in powers of 1/r.
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Legendre Polynomials & Multipole Expansion

V()

_ 1 ( Ip(r)dt +—jrc036 'p(r)dt’ +— (r)( cosze'——)p(r)dr +...)

7,

- +

- +
Monopole Dipole Quadrupole Octopole
(V~1/r) (V ~ 1/r?) (V~1/r) (V~1/r%

S/



Dipoles

What is dipole? The arrangement of a pair - .
of equal and opposite charges separated by Q — Q
some distance is called an electric dipole. '

Permanent dipole: such as molecules of HCI, CO, and H,O0.

Induced dipole: An electric fleld may also induce a charge
separation in an atom or a nonpolar molecule.

@ ¥ v~
- (a)
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Example 3.10 An electric dipole consists of
two equal and opposite charges separated
by a distance d. Find the approximate
potential V at points far from the dipole.

Sol:
vin=-3 (2 Ly= 0 (@re)y 2 - (1-e)1?)
4Teg |r_gz| |r+gz| Artegr
' / i r, ' d
where & =+ (& —20036);—9(:036 (since — landr'=_")
r r r r 2
V(r) = ——((1+&) M2 - (1-¢)2)
47'[80|"
B d 5 1 qdcosO
4n80r(rcos )_4n80 re
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The Electric Field of a Dipole

1 gdcos® 1 rp __p cos6 Why?
drg, I° dre, I’ 4dng, I° Just a convention.
where p=qd T pointing from the negative charge to the positive charge.

2C0SO . SInO A A
E=-VV(r)= P ( —r+—__—0+00)
Arte, I I

V (r) =

______________________________

— 4715 = (2.cosOr” +sinbo ) vr=Tp,1dTg, 1 gy
; | or r 00 rsinG op !

(a) Field of a “pure” dipole (b) Field of a “physical™ dipole 60



p=Qd (——>+)
V (r) = L ijr’cos@’p(r’)dr’
g, I
) 4711?80 r12 - Jrp(ryde’
p: dipole moment
E=-VV(r)

Some Important Properties of Dipole
Potential and field due to a dipole:

Torque In a uniform field:

T=pxE

Potential energy:

U=-p-E

| =
|
' B L
I - B '
| o
|
|
|
|
|
: /) —>F P
o/ ) A
- 1 \>E
Vallk
e |
F—
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Homework of Chap. 3 (part II)

Problem 3.20 Suppose the potential Vy(0) at the surface of a sphere is specified,
and there iIs no charge inside or outside the sphere. Show that the charge density on
the sphere is given by

c(0) = 8—0i (2l +1)2C| R (cos0), (3.88)
2R =
where
C, = ngO(G))H (cos0)sin0do . (3.89)

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density
p(r,0) =k —v(R - 2r)sing,
r

where k Is a constant, and r,0 are the usual spherical coordinates. Find the approximate
potential for points on the z axis, far from the sphere.
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Homework of Chap. 3 (part 1)

Problem 3.43 A conducting sphere of radius a, at potential Vj, Is surrounded by a
thin concentric spherical shell of radius b, over which someone has glued a surface
charge
c(0)=k cos 0,
where k is a constant and O is the usual spherical coordinate.
(a) Find the potential in each region: (i) r > b, and (i) a <r <b.
(b) Find the induced surface charge ;(0) on the conductor.
(c) What is the total charge of this system? Check that your answer is consistent
with the behavior of V at larger.

|V / 1+ (b% —a®)k cosO /3r2ey, r>bl]|

Answer: V (r, 0) =1 0 ( ) °0 }' |

| \aV0/r+(r3—a3)k coso /3r280, rsbljh
Problem 3.56 An ideal electric dipole Is situated at the origin, g

and points in the z direction, as in Fig. 3.36. An electric charge

IS released from rest at a point in the xy plane. Show that it swings
back and forth in a semi-circular arc, as though it were a pendulum

supported at the origin.2®

FIGURE 3.36
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