Chapter 3 Potentials (Special Techniques) EM
3.1 Laplace’s Equation: 3.1.1 Introduction Tsun-Hsu Chang

Poisson’s equation: V°J = —Lp(r)

€y
Very often, we are interested in finding the potential in a
region where p= 0.

There may be plenty of charge elsewhere, but we're
confining our attention to places where there is no charge.

Laplace’s equation:  V?) = ()
0%V 9V 9V

In Cartesian coordinates, + + —
ox> oy 0z°
X 3% yA
| Introduction to Laplace and Poisson Equations:
| https [lwww.youtube.com/watch?v=IsY7zYaezto




3.1.2. Laplace’s Equation in 1D

Suppose V' depends on only one variable, x.
d*v
dx?

Two features of this solution:

0 — V(ix)=mx+b

1. Laplace’s equation is a kind of averaging instruction.

Vix)= %(V(x —a)+V(x+a)) foranya

2. Laplace’s equation tolerates no local maxima or minima,
since the second derivative must be zero.



3.1.3. Laplace’s Equation in 2D

Suppose V' depends on two variables, x and y.

%V 9%V 0 ‘a partial differential equation (PDE);
| — <
x> Iy’ ‘not an ordinary differential equation (ODE).

Harmonic functions in two dimensions have the same
properties that we noted in one dimension:

V A




Features of Harmonic Function in 2D

1. The value of J at a point (x, y) is the average of those
around the point.

Vix,y)= Z;R ¢ Vd/?

circle

2. V has no local maxima or minima. All extrema occur at
the boundaries. VA

(5




3.1.4. Laplace’s Equation in 3D
0V 9V 9V
)

In three dimensions we can neither provide you with an

explicit solution nor offer a suggestive physical example to
guide your intuition.

=0 (partial differential equation (PDE))

Nevertheless, the same two properties remain true.

1. The value of V' at a point r is the average value of I
over a spherical surface of radius R centered at r:

|
Vir)= Vda
47 R? C"S

sphere




No Local Maxima or Minima in 3D

2. V has no local maxima or minima: the extreme values
must occur at the boundaries.

Ex. For a single point charge ¢ located outside the sphere
of radius R as shown in the figure, find the potential at the
origin.

Sol: 1V = : 1 _ : 5 > 1 7 !
dmey v AmEY (z°+ R“ —2zRcosO)
1 g R? sin 0d6d ¢
SO Vaye(r=0)=——> 2 . o2 1/2
4wR” 47y 7 (z°+ R“ —2zR cos 0)
1 g —d cos @ da

2 4re (22 +R? —2zR cos 6’)1/2

= L 4 (22 + R? —2zR cos 6’)1/2
2ZR 472'50 0

I ¢ q
= z+R)—(z—R)) =
2Z2R 471'50 (( ) ( )) 471'802 6



3.1.5. Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V; a
suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to
determine the answer and yet not so strong as to generate
iInconsistencies? It is not easy to see.

For a given set of boundary conditions, is V' uniquely
determined? Yes, it is. =» uniqueness theorem



Boundary Conditions and Uniqueness Theorems

First uniqueness theorem: the solution to Laplace’s
equation in some volume is uniquely determined if V'is
specified on the boundary surface.

Proof:

Suppose there were two solutions to
Laplace's equation: V2V1 =0 and V* Vo =0
Therr difference 1s:V5 =V, = V5.

This obays Laplace's equation, VZV3 —()  onthi

surface (S)

V wanted 1n
this volume

(V)

V specitied

. ° . \L
Since V5 1s zero on all boundaries and

Laplace's equation suggests that all extrema
occur on the boundary, so V3 =0 = V;=/;.



Uniqueness Theorems with Charges Inside

VI, =—L and VI, =L Let ,=V,-V, = V¥, =0
€0 €0

Since V5 1s zero on all boundaries and Laplace's equation suggests
that all extrema occur on the boundaries, so V3 =0. = V=V,

Corollary: The potential in a volume is uniquely determined
If (a) the charge density throughout the region, and (b) the
value of V' on all boundaries, are specified.

The uniqgueness theorem frees your imagination. It doesn't
matter how you come by your solution; if (a) it satisfies

Laplace’s equation and (b) it has the correct value on the
boundaries, then it is right.



optional 3.1.6. Conductors and the Second Uniqueness

Theorem

The simplest way to set the boundary conditions for an
electrostatic problem is to specify the value of J on all
surfaces surrounding the region of interest.

However, there are other circumstances in which we don't
know the potential at the boundaries rather the charges on

various conducting surfaces. Is the electric field still
uniquely determined?

9 S eCO n d u n |q u e n Integration surfaces

Outer boundary-
could be at infinity 10



optional Second Uniqueness Theorem

In @ volume surrounded by conductors and containing a
specified charge density, the electric field is uniquely
determined if the total charge on each conductor is given.

Integration surfaces

Proof:
Suppose there are two solutions: A =

V'El :ﬁ and VEz :ﬁ
£€() £€()

—
—
—_—
—_— = —

Both obey Gauss's law 1n integral form,

Outer boundary-
could be at infinity

| |
§ Eoda=10 awmd  § E,da=-0
ith conducting €0 ith conducting £0
surface surface

Likewise, for the outer boundary

1 1
CJS El -da = Qtot and C_“) EZ -da = QtOi
E E

outer 0 outer 0

boundary boundary 1



optional

As betore, we examine the difference E; = E; —-E,

which obeys V-E; =0 in the region between the conductors, and

<_‘5E3 -da =0 over each boundary surface.

Although we don't know how the charge distributes itself over
the conducting surface, we do know that each conductor 1s an
equipotential, and hence ;3 = 0.

Invoking product rule, we find that
2
V-(E3)=T3(V-E3)+E3- VI3 =—(E3)

=0
| <V-<V3E3>>dr=<j>@ da=|-(E;)’dr
1% S 1%

-.E3; =0 everywhere. Consequently, E; = E,.

12



3.2 The Method of Images: EM

3.2.1 The Infinite Grounded Conducting Plane "¢ “"and

Suppose a point charge ¢ is held a distance 4 above an
infinite grounded conducting plane. \What is the potential in
the region above the plane?

The boundary conditions of this case are:

1. V' =0 when z =0 (since the conducting plane 1s grounded).
2. V — 0 far from the charge.

13



The Image Charge

We can easily find a solution which
satisfies the boundary conditions as in the
figure.

The uniqueness theory guarantees that
this case is got to be the right answer.

The potential can then be written down as

1 q q
V(x,y,z)=
0 | 2 42 +(z—d)? xR+ (z+d)

Can we use this potential to find out the electric field,
surface charge distribution, and the force? Yes.

forz>0

14

o



3.2.2 Induced Surface Charge

It is straightforward to compute the surface charge o
induced on the conductor.

1 o A
( bove - Ebelow ):_
| ~ .V g g()
i =( since z<0
|____ __________ [
:—VV n=—a—V forz>0
e o e e o 0 n__ ____ '
%14 %14
OC=—€ —=—E —
on 0z |._,
11 2(z—d)q 2(z+d)q
A 2 | (x*+y*+(z=d)’)"” (X +y*+(z+d)’)"”"
“1-1  —4gd -1 qd

Ar 2 (P4 +dP? 2 (P + v +dP)Y?

-



Total Induced Charge

The total induced charge is (use the polar coordinate)

o= —1 qd - =1 qd
2 (x> +y° +d*)"”? 2« (r2+d2)3/2
2z —1
IO'da j J;) 7 +d )3/2 rdrd@
> —qd . qd g

— 0 2(7‘2+d2)3/2 (r2+d2)1/2

16



3.2.3 Force and Energy

The charge ¢ is attracted toward the plane, because of the
negative induced charge.

The force and the energy of this system can be analogous
to the case of two point charges.

2 2
I q . w1 4

F = Z
ATtey Ad* Arey 2d

Unlike the two point charges system, there is no field in the
conductor. Handle must be care.

17



Work and Energy

Consider the work required to bring ¢ in from infinity.

1 7 1 g
1 —dz = 1
Are, 4z dre, 4d

which is half of that of the two point charge system.

[ o=

This Is because the conducting plane Iis grounded.

If the plane is not grounded, what would happen?

18



3.2.4 The Grounded Spherical Conducting Shell

Any stationary charge distribution near a grounded conducting
plane can be treated in the same way, by introducing its mirror
iImage---method of images.

The image charges have opposite sign; this is what
guarantees that the plane will be at potential zero.

Can this method be applied to a curved surface? Yes.

Here is an example. A point charge is situated in front of a
grounded conducting sphere.

19



Example 3.2 A point charge is situated a distance a from the
center of a grounded conducting sphere of radius R. Find the
potential outside the sphere.

20



Sol: Assume the image charge ¢~ is placed at a distance b from
the center of the sphere. The potential 1s

V(r)=

1

472'80

A

R,

\

)
/uz\/r2+a2—2mcosé’
forr > R

L/z,'=\/r2 +b% —2rbcosd

It 1s equipotential on the surface of a grounded sphere.
Using two boundary conditions at A and 5.

21



/ )

1
At B;: 1+ 9 y—g
Ay R-b a-R

- two equations and two unknowns (¢~ and b)

1 /
At P;: (-1 —+—1 =0
472'80 R+b a+R

R . R

b=—, ¢=——¢
d d

J

The force of attraction between charge and the sphere 1s

1 qq’ -1 g’°Ra

F: p—
4re, (a—b)> 4me, (a° —R*)’

If the sphere is connected to a fixed potential, can this method
still be applied? Yes.

Just imagine another image charge situated at the center of
the sphere, which provides a constant potential at the surface.

22



optional

Ex. Two equal conducting spheres with radius R, each
carries a total charge 01 and 02 at a distance d from each
other. Find the electric field outside the conducting spheres.

Sol:

Ql oror” QYQ2 Q2

Assume the charges are located at the respective centers.
Using the image charge method, calculate the first level
Induced charges. Then, calculated the second level induced
charges, and so on. The series should converges rather fast.

23



3.3 Separation of Variables

We shall attack Laplace's equation directly, using the
method of separation of variables, which is the physicist's
favorite tool for solving partial differential equations.

Applicabllity: The method is applicable in the circumstances
where the potential (V) or the charge density (o) is
specified on the boundaries of some region, and we are
asked to find the potential in the region where p=0.

Laplace’s equation:  V* = ()

Basic strategy: Look for solutions that are products of
functions, each of which depends on only one of the

coordinates. Vix,v,z)= X(x)Y(1)Z(2)

EM
Tsun-Hsu Chang

24



3.3.1 Cartesian Coordinates

Example 3.3 Two infinite grounded metal plates lie parallel
to the xz plane, one at y = 0, and the other at y = a. The left
end, at x = 0, Is closed off with an infinite strip insulated
from the two plates and maintained at a specific potential
V,(v). Find the potential inside this “slot”.

25



Boundary Conditions

The configuration is independent of z, so Laplace’s equation
reduces to two dimensions.

0%V 8V

> = ()
ox By

The potential inside is subject to the boundary conditions.
(1) V' =0 when y =0,

(11) V¥ =0 when y =a,

() V' =V,(y) when x =0,
(1v) V' —> 0as x — oo,

26



Separation of Variables

The first step is to look for solutions in the form of products:

Vix,y)=X(x)Y(y)
Substituting into Laplace’s equation, we obtain
2 2 2 2
X Y 1 1 X 1 Y
(Y a +X d =0) X — d + d =
& B XY X dx* Y &

The first term depends only on x and the second only on y.
The sum of these two functions is zero, which implies these
two functions must both be constant.

0

2 2
1dX=CO ond 1dY=
X dx” Y dy?

_CO

27



A Simple Solution

Let C, equal %°, for reasons that will appear in a moment.

9 =0 (Iv)
)1( cil )2( =k =  X(x)F A +Be™™
X
> =0 (i)
;Z 12/=—k2 = Y(y)=Csmky+/Dcosky
Y

Vi(x,y)=(A4e" + Be ™) (Csinky + Dcosky)

The boundary condition (iv) requires that 4 equal zero,
and condition (1) demands that D equal zero.

Meanwhile (11) yields sinka =0, from which 1t follows that
nw

k=—, n=1, 2, 3,... Why not n=07
a

V(x,y)=BC e n* sin k,y = Z Ce ™" x/a sin(nzy/a)

C, n=I1 28



A Complete Solution in Fourier Series

Now we have an infinite set of solutions.

Vi(x,y)= Z Cne_mx/a sin(nrry/a)

n=I
Can we use the remaining boundary condition (iii) to
determine the coefficients C 7 Yes.

/(0.9)= Y C,sin(ny/a) =V, ()

This is a Fourier sine series. Virtually any function V,(y)---
can be expanded in such a series. iz -4 4 |

We can use the so-called “Fourier’s trick” to find out the
coefficients C,.

29



The Fourier Trick

ZCI sin(nzry/a)sin(n'’zy/a)dy = j Vo(y)sin(n'zy/a)dy

The integral on the left 1s

j: sin(nzry/a)sin(n’ry/a)dy

-

0, ifn'#n

—j (cos((n — n)”y) cos((n+n)Z )a’y—<

a .
—, ifn'=n
2

=2 [“Vy(»)sin(n'my/a)dy
d

30



A Concrete Example

For a constant potential /),

C,= il jasin(nﬂy/a)dy 2
a *0

So V(x,y)= nudl Z

n=1,3.5....

T

v 0, 1f#n 1seven
O (1-cosnz) = A
T

, 1fn 1s odd

n

nzw

1 e "™ sin (nay/a)
n

L‘FJ'I-H::I D._ﬁl é

31



EM
Completeness and Orthogonality Tsun-Hsu Chang

The success of this method hinges on two extraordinary
properties, I.e., completeness and orthogonality.

Completeness: If any other function f{y) can be expressed
as a linear combination of a complete function set 1 (y):

f(y)= i C. /. (»)

Orthogonality: If the integral of the product of any two
different members of the set is zero:

[o e S ()dy =0 for n’#n

This allows us to Kill off all terms but one (#n"=#) in the

infinite series and thereby solve for the coefficient C..
32



Rectangular Metal Pipe

Example 3.5 An infinitely long rectangular metal pipe (sides
a and b) Is grounded, but one end, at x =0, is maintained at
a specified potential V,(y, z), as shown in the figure. Find the
potential inside the pipe.

J L
|

Vo(v.2) — | \ 1/&
L/ X

b

33



Boundary Condition

This i1s a genuinely three-dimensional problem,

BV BV BV
ox” ay az

The potential inside is subject to the boundary conditions.

(1) V=0 when y =0,

I (ii) ¥ =0 when y = a,
| | ﬂ (iii) ¥ = 0 when z = 0,
0V, 2) —|~ .
| " P4 = (IV) V:OWhenZ:b,
bt (v) V =Vy(,2) when x =0,

(vi) V' — 0 as x — oo,

34



Separation of Variables

The first step is to look for solutions in the form of products:
V(x,y,2)=X(x)Y(y)£(z)

Substituting into Laplace’s equation, we obtain

1 d*°X 1d%Y 1d*Z
+ + =0
X dx* Y &? Zd?

It follows that
2 2 2
| dX:(k2+£2), 1dY=_k2,1dZ=

_p?
X dx? Y dy? Z dz*

How do we know”? Any other possibility?

35



A Simple Solution

=0 (vi)
2
)1( aa ‘;( — (k2 +£2) — X(x) — e\/k2+£236 +Be—\/k2+£2)€
1 azxy 0
Y 3.2 =—k* = Y(y)=Csmky+ Dcosky
V

=0 (iii)
1 BZZ 9) : [
=—{° = Z(z)=Esmnlz+/coslz

Z 3z°
Meanwhile (11) and (1v) yields sin ka =0 and sin /b =0,
from which 1t follows that

nw mri

k=—, n=123,... V= , m=123,...
a b

36



A Complete Solution in Fourier Series

The solution is
Vix,y,z)= BCEe_ﬂ\/(g) 0 sin (nmy/a)sin(mmz/b),

where n and m are unspecified integers.

Completeness: The solution can be written as

V(a2 =3 3 C, eV D in (nay fa)sin (mz /b)

n=l m=l1

Use the boundary condition (v) and the orthogonality to find
out the coefficients C, ,,.

V(0,y,z)= i i C, nsin(nzy/a)sin(mzz/b) =Vy(y,z)

n=1m=1

37



The Fourier Trick & Constant Voltage Solution

i i Com I: sin(nzry/a)sin (n'ﬂ'y/a)dyj-é? sin(mzz/b)sin(m’mwz/b)dz

n=1m=l1

a b . |
B IO Io Vo(y,z)sin(n'my/a)sin(m'zz/b)dyd:z

b
Crom = hd j(f jo Vo (v, z)sin(nzy/a)sin(mzz/b)dydz
ab

V=0
[t the end of the tube 1s a conductor at constant potential V/ 1Ly
<
4V, 2a 2b 16V, .
cC =—2 2 =—— if nand m are odd. Vov-2) —fl 1/&
’ ab nwt mx nmx , — 7
=0 if n or m are even. {1
V=0

1 - 1 ()2 () x . . )
V(x,y,z)= 612/0 Z —e V) sin(nzy/a)sin (mnz/b)
T n,m=1,3.3,... nm

38



Homework of Chap. 3 (part I)

Problem 3.11 Two semi-infinite grounded conducting planes meet at right angles.

In the region between them, there 1s a point charge g, situated as shown 1n Fig. 3.15.
Set up the image configuration, and calculate the potential in this region. What
charges do you need, and where should they be located? What 1s the force on g? yi

How much work did 1t take to bring ¢ 1n from infinity? Suppose the planes met N .

at some angle other than 90°; would you still be able to solve the problem by the |

method of 1mages? If not, for what particular angles does the method work? o .
V=0

Problem 3.13 Find the potential in the infinite slot of Ex. 3.3 if the boundary at FIGURE 3.15

x = 0 consists of two metal strips: one, fromy =0 to y = a/2, 1s held at a constant
potential V}, and the other, from y = a/2 to y = a, 1s at potential —V.

Problem 3.16 A cubical box (sides of length a) consists of five metal plates, which

are welded together and grounded (Fig. 3.23). The top 1s made of a separate sheet ‘ V,
of metal, insulated from the others, and held at a constant potential V},. Find the 7
potential inside the box. [What should the potential at the center (a/2, a/2, a/2) a

f

be? Check numerically that your formula 1s consistent with this Value.]11

X -

FIGURE 3.23

-

39



Homework of Chap. 3 (part I)

Problem 3.54 For the infinite rectangular pipe in Ex. 3.4, suppose the potential on
the bottom (y = 0) and the two sides (x ==xb) 1s zero, but the potential on the top

(v = a)1s anonzero constant V. Find the potential inside the pipe. [Note: This 1s a
rotated version of Prob. 3.15(b), but set 1t up as in Ex. 3.4, using sinusoidal functions
in y and hyperbolics 1n x. It 1s an unusual case in which £ = 0 must be included.

Begin by finding the general solution to Eq. 3.26 when & = 0.]*°

( )

i sin(nzry / a) |. Alternatively, using sinusoidal
a "=l n cosh(nzb/a) )

y 2 Zoo (=1)" cosh(nzx/a)

Answer:

Wy e (=) sinh(@,)
b “~n=l g sinh(c,a)

functions of x and hyperbolics in y, — cos(a,x), where

o, =12n-1)7/2b|

40



3.3.2 Spherical Coordinates

For round objects spherical coordinates are more suitable.

In the spherical system, Laplace’s equation reads

1 0 ,dV 1 0 514 1 9V
| 6 =0
2o o) sine 90 30 i 6 90

We will first treat the problem with azimuthal symmetry,
so that the potential is independent of ¢.

i(r2 BV) | : (sm&’a—V) 0
or dr  sin@ 068

EM
Tsun-Hsu Chang

41



Separation of Variables

The first step is to look for solutions in the form of products:
V(r,0)=R(r)O(0)

Substituting into spherical Laplace’s equation, we obtain

(rz dR)+ : (51n¢9d®) 0
Rdr dr ©Osin6@dé do

The first term depends only on » and the second only on 6.
The sum of these two functions is zero, which implies these
two functions must both be constant.

(r2 dR 1 dO

L(l+1 sin @ =—0(L+1
R dr dr) ( ) Osin @ dé’( dé’) ( )

Again, how do we know? Any other possibility”?
42



Simplest Case: A Metal Sphere

Example: A metal sphere of radius R, maintains a specified
potential V,. Find the potential outside the sphere.

Sol: The potential is independent of #and ¢.

The Laplace’s equation is: L d (r* d_R):()
Rdr dr

i(rzd—R)zO = rzd—R:—A

dr  dr dr

d—R: Ai — R:A - B

dr r r

(R(r—R)—A FB=V R

< R, " = R(r)=V,22
R(r=o0)=B=0 ”




A Simple Solution & Legendre Polynomials

The general solutions for R and © are

2a’R) ((L+)R = R=Ar*+B :

E(F dr r£+1
| d®

(sm 0—)=—£(£+1)© The solutions are not simple.
siné dé do

The solutions are Legendre polynomials in the variable cosé.

See lecture notes
@(‘9) — PE (COS ‘9) of Jackson Chap.3

The polynomial is most conveniently defined by the
Rodrigues formula (generating function):

P == () (=)

44



Rodrigues Formula

Prove: }}(x) = ( ) (x> =1)", x =cos@
2" 01 dx
where : (sm v oF, (cos 9)) =—(({+1)P,(cos 6)
sinf 06 06
Sol: https://youtu.be/Zm3iVO2d 2c

Let v=(x"-1)
V=20x(x* =1 x(x*-=1)
= (1-x" W +20xv=0

(1=x" W =2xv"+20xv' +20v =0

1=x"W +2(/=Dxv'+1(2/=0)v =0

1=x" W +2(0=2)xv"+2(2¢0 -1 =0

(I=x" W2 +2(0 =k =Dxv™ + (k+1)(20 = k'™ =0




d' (x> =1)
dx'

S(l=x) " =2xu"+ 00+ Du =0

d’ P,(cos 6) 5. dP, (cos 6)
dx’ dx

Let k=/¢ and u =" = = P (cos0)(2" ")

— (1-cos” 6)

(L +1)P (cos8)=0

" dP,(cos 6) - dP/(cosf)dfé 1 dP(cos0b)

dx do dx sinf  dé
dzﬂ(cosﬁ)_i( 1 d@(cos@))( ] )
dx’ d6é sm6@ db sin &

1 d°P(cos®) cos8 dP (cosb)
- sin“8  d@’ sin" @ d6

46



(1-cos O)] 1  d°P(cos@) cos@ dP (cosb)
sin“ 8 d&’ sin" @ d6
2 cosd—— 1 dP (cosf)
siné  deé

Fl(¢{+1)P,(cosB)

]

|+ /4(£+1)P, (cos 6)

B d’ P,(cos 6) ~cos @ dPF,(cos0)
d6>  sin@®  dé

_ 1 d (siné’dpg(mse)) (L +1)P (cos@) =0

 sin@ d@ do

1 d'(cos”@-1)
2°01  d(cos8) +#

P (cosf) =

47



Properties of Legendre Polynomials
The first few Legendre polynomials are listed

EM
Tsun-Hsu Chang

Fy(x)=1 l

R(x)=x
P(x)=(Gx*-1)/2 ol
Py(x)=(5x> =3x)/2
Py(x)=(35x" =30x* +3)/8
P.(x)=(63x" —70x° +15x) /8

0 —

Pn(x)

-0.5

T T TDTTTD
A AR E R A
A -
St M M b Bt Bt

P)(x): an (th-order polynomial mx *

Completeness: The Legendre polynomlals constltute a
complete set of functions, on the interval —1< x <1.

0.5

Orthogonality The polynomials are orthogonal functions:

I Pyp(x)Pp(x)dx = I Pp(cos@)Py(cosB)sin6do

0 if 0 %4
=«
2 ifl =4
26+1

48



A Complete Solution in Legendre Polynomials

The Rodrigues formula generates only one solution. \What
and where are other solutions?

These “other solutions” blow up at =0 and/or 6= r, are
therefore unacceptable on physical grounds.

|
. ( See lecture notes
V(?‘, 9) - (AF +5 r€+1 )P€ (COS (9) of Jackson Chap.3

The general solution is the linear combination of separable
solutions.

V(r,0)= Z(Aﬂ + B, Zlﬂ )P, (cos 6) é
(=0 r

49



Example 3.6 The potential (R,6) = V,sin*(82) is specified on
the surface of a hollow sphere, of radius R. Find the potential
Inside the sphere V'(7,0).

. - 1
Sol: p(r,6) = ZZ&)(AM + B, i )P, (cos 6)
In this case B, =0 for all ¢ --- otherwise the potential would

blow up at the origin. Thus, V(r,0)= Z AMPg(cos 0)

- /=0
Z AKRKPK (cos@)=V(R,0)
=0 . Ref. p.48
+ 7 .
A== j V(R,0)P,(cos 0)sin 0d6
2411 pr L0 .
= R jo V, sin (E)Q(cosﬁ)sm&’d@
2411 g
2 jo
2041 1
2 R

0

% (1-cos@)P (cosB)sinOdb

0

jn % (B (cos@)—F(cosB))P (cosB)sinOdb
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A4, =

20+1 1 ¢~
I

R % (P, (cos@)— P(cosO))P,(cos)sinBd o

0

(

I 0 ifl -/
[ POP@dE=1_2 o,
20+1




Example 3.8 An uncharged metal i \ ! } /
sphere of radius R is placed in an
otherwise uniform electric field E = E,z 2
Find the potential in the region outside
the sphere. / \

Sol: The sphere is an equipotential---we may as well set it
to zero.

The potential is azimuthally symmetric and by symmetry the
entire xy plane is at potential zero.

In addition, the potential is not zero at large z.

Boundary conditions are:
(1) V' =0 when r = R,
(n) V= —Eyrcos@ torr> R.
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V(r,0)= Z (A" +Br """ P (cos 9)

B.C. (i): V(R,0)= Z(A R'+B,R )P (cos8)=0
:>B ——A Rzm
B.C. (ii): V(r,0)= Z (A,r" )P (cos@)=—E,rcosb

= A, = —EO, all other A4, are zero.

3
(V(r,0)=—Ey(r——5)cos® Why the electric field
r? . IS enhanced?
E‘I:R =-VV =FE)(1+ 2%)(:056’ r=3E,cos@r

c(0)=¢€y(3EycosOr)-r =3¢yE,cosb

____________________

\

| B Y4 n B . Y4
L ::V_ K-r_l _=0Osincez<0 "1 53



3.4 Multipole Expansion Fsun-Heu Chang
3.4.1 Approximate Potential at Large Distance

If you are very far from a localized charge distribution, it
“looks” like a point charge, and the potential is---to good

approximation—(1/4n&,)O/r, where Q is the total charge.
But what if O Is zero?

Develop a systematic expansion for the potential of an
arbitrary localized charge distribution, in powers of 1/.

V()= p(r)dr

1 1
4re, I|r—r'

Using the law of cosines,

__________________________________

1 ] 'Note, for simplicity,:

|r —r'| i \/(7’2 +(r")" =2rr’ cos @) r=rz i
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Large Distance Approximation

L _ : —l(1+<~5‘)‘”2

‘r — 1',‘ \/(r2 +7” =21 cos@) F

4 4
vV r ; -
where £€=—(——2cos8’) Taylor’s expansion

4 I’
| | 3 5
—(l+e)yP=—(-=—e+=¢° £ +... ,
r( ) r( 2 8 16 )
So =1 L7 (- —2cos &) 3(’” (’” 2c0s8))
— 4 2r r 8 r r
2 (—(E=2cos@)) +..))
16 ror
(3005 —1)

—(1 ( )cosH ( )( )+...)

2
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Legendre Polynomials & Multipole Expansion

: ;(1 (L )cose +(= ) ((3“’52 & —1)

)+...)

! i )P (cos8)

V(r) = j Z( )P(Cosg)p(r nde  This is the desired result.

47[87/60 r
_ ] j(r) P (cos@)p(r)dt’
471'8r€ — '

l J' o(r)dt' 4 12 j r'cos@p(r’ydt’
A A

or more explicitly,

_ :3 j (r')%%cos2 H'—%)p(r')dr'+...

The multipole expansion of V' in powers of 1/r.
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Legendre Polynomials & Multipole Expansion

V(l‘)

= jp(r ydt’ : 1 r "cos @p(r )d2'+ I(r ( cos” & ——),0(1‘ NdT +...)

- -

— +
Monopole Dipole Quadrupole Octopole
~1/7) (V ~ 1/r?) (V ~1/r) (V~1r?)
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Dipoles

What is dipole? The arrangement of a pair - : .
of equal and opposite charges separated by Q —— Cg
some distance Is called an electric dipole.

Permanent dipole: such as molecules of HCI, CO, and H,0.

Induced dipole: An electric field may also induce a charge
separation in an atom or a nonpolar molecule.
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Example 3.10 An electric dipole consists of
two equal and opposite charges separated
by a distance d. Find the approximate
potential V" at points far from the dipole.

Sol:
| | _ _
V()= () = ((1+&) P = (1-&)")
47[80 I — B Z r ) Z 47[807'
I/‘, I/', d . 7/ / d
where £€=—(——-2cosf)=——cosf (since —<landr =—)
ror r A 2
V(r)=——((1+&) 2 ~(1-£)""?)
472'507’
q (d cos6) = 1 qgdcos@

Aregr 7 Arey  p?
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The Electric Field of a Dipole
Why??

Just a convention.

2 2

1 gdcosé@ 1 r- cos &
vry=—1 4 _ p__7 /
dre, r dre, r dre, r

where p=¢gd T pointing from the negative charge to the positive charge.

E=_VV(r)= D (2(:03st 8111396 O¢?)
dre, r r
= (2cos&’r+sm6’0) iVT:a—TI? | : aTé | — Ai
4%6 r ____Or rdf  rsinfdg |

(a) Field of a “pure” dipole (b) Field of a “physical™ dipole 60



Some Important Properties of Dipole
Potential and field due to a dipole:

p=0d(——+) o
Y (r) = - [ cos Op(r')dz - <o~
I 47[80 4 | "—ﬂ’_, o |
| Il O
. 1 1 . ., 1 1 . Q
= r- |ro(r)dt = I
: 471'80 r t[ ,U(Y ) ) 47[50 2 p:
: p: dipole moment :
o E=-Vv) . : —r -
1 a uniform field A
Torque in a uniform field: T
T=pXE e —
Potential energy:
it )| I -0

U:—pE =
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Homework of Chap. 3 (part II)

Problem 3.20 Suppose the potential V(&) at the surface of a sphere 1s specified,
and there 1s no charge inside or outside the sphere. Show that the charge density on
the sphere 1s given by

o () = 2“% i (21+1)*C; P (cosb), (3.88)

where

C) = jg’ V, ()P (cos §)sin 8d8. (3.89)

Problem 3.27 A sphere of radius R, centered at the origin, carries charge density

R .
p(r,0)=k — (R—2r)siné,
r
where k 1s a constant, and 7,6 are the usual spherical coordinates. Find the approximate

potential for points on the z axis, far from the sphere.
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Homework of Chap. 3 (part II)

Problem 3.43 A conducting sphere of radius a, at potential ¥, 1s surrounded by a
thin concentric spherical shell of radius b, over which someone has glued a surface
charge
o(8)=k cos 0,
where k 1s a constant and & 1s the usual spherical coordinate.
(a) Find the potential 1in each region: (1) » > b, and (11) a <r <.
(b) Find the induced surface charge o;(6) on the conductor.
(c) What 1s the total charge of this system? Check that your answer 1s consistent
with the behavior of V' at large r.

aVy/r+(b° —a)kcos@/3rkey, r>b
Answer: V(r, ) =+ -

aVy/r+(r —a)kcos8/3r’ey, r<b

\

Problem 3.56 An 1deal electric dipole 1s situated at the origin,
and points 1n the z direction, as 1n Fig. 3.36. An electric charge
1s released from rest at a point 1n the xp plane. Show that it swings

back and forth in a semi-circular arc, as though 1t were a pendulum
8

supported at the origin.2

FIGURE 3.36
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