
Chapter 3 Potentials (Special Techniques)
3.1 Laplace’s Equation:  3.1.1 Introduction
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Very often, we are interested in finding the potential in a 
region where ρ = 0. 
There may be plenty of charge elsewhere, but we’re 
confining our attention to places where there is no charge.
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Introduction to Laplace and Poisson Equations:      
https://www.youtube.com/watch?v=lsY7zYaezto
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3.1.2. Laplace’s Equation in 1D
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Suppose V depends on only one variable, x. 

Two features of this solution:
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2. Laplace’s equation tolerates no local maxima or minima, 
since the second derivative must be zero.

1. Laplace’s equation is a kind of averaging instruction.
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3.1.3. Laplace’s Equation in 2D
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Suppose V depends on two variables, x and y. 

Harmonic functions in two dimensions have the same 
properties that we noted in one dimension:
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a partial differential equation (PDE);
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not an ordinary differential equation (ODE).
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Features of Harmonic Function in 2D
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2. V has no local maxima or minima. All extrema occur at 
the boundaries. 

1. The value of V at a point (x, y) is the average of those 
around the point.
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3.1.4. Laplace’s Equation in 3D
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In three dimensions we can neither provide you with an 
explicit solution nor offer a suggestive physical example to 
guide your intuition. 
Nevertheless, the same two properties remain true.
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1. The value of V at a point r is the average value of V
over a spherical surface of radius R centered at r:
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No Local Maxima or Minima in 3D
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Ex. For a single point charge q located outside the sphere 
of radius R as shown in the figure, find the potential at the 
origin. 
Sol: 2 2 1/2
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2. V has no local maxima or minima; the extreme values 
must occur at the boundaries. 



3.1.5. Boundary Conditions and Uniqueness Theorems
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Laplace’s equation does not by itself determine V; a 
suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to 
determine the answer and yet not so strong as to generate 
inconsistencies? It is not easy to see.

For a given set of boundary conditions, is V uniquely 
determined?  Yes, it is.  uniqueness theorem



Boundary Conditions and Uniqueness Theorems
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First uniqueness theorem: the solution to Laplace’s 
equation in some volume is uniquely determined if V is 
specified on the boundary surface.
Proof:
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Uniqueness Theorems with Charges Inside
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Corollary: The potential in a volume is uniquely determined
if (a) the charge density throughout the region, and (b) the
value of V on all boundaries, are specified.
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Since  is zero on all boundaries and Laplace's equation suggests 
that all extrema occur on the boundaries,  so 0.   
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The uniqueness theorem frees your imagination. It doesn’t
matter how you come by your solution; if (a) it satisfies
Laplace’s equation and (b) it has the correct value on the
boundaries, then it is right.



3.1.6. Conductors and the Second Uniqueness
Theorem
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The simplest way to set the boundary conditions for an 
electrostatic problem is to specify the value of V on all 
surfaces surrounding the region of interest. 

However, there are other circumstances in which we don’t 
know the potential at the boundaries rather the charges on 
various conducting surfaces. Is the electric field still 
uniquely determined? 
 Second uniqueness theorem.

optional



Second Uniqueness Theorem
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In a volume surrounded by conductors and containing a 
specified charge density, the electric field is uniquely 
determined if the total charge on each conductor is given.
Proof:

optional
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Although we don't know how the charge distributes itself over 
the conducting surface, we do know that each conductor is an 
equipotential, and hence .
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3.2 The Method of Images:  
3.2.1 The Infinite Grounded Conducting Plane
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The boundary conditions of this case are:

Suppose a point charge q is held a distance d above an
infinite grounded conducting plane. What is the potential in
the region above the plane?

1.  0 when 0 (since the conducting plane is grounded).
2.  0 far from the charge. 
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The Image Charge
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We can easily find a solution which 
satisfies the boundary conditions as in the 
figure. 
The uniqueness theory guarantees that 
this case is got to be the right answer.

The potential can then be written down as
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Can we use this potential to find out the electric field, 
surface charge distribution, and the force? Yes.



3.2.2 Induced Surface Charge
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It is straightforward to compute the surface charge σ
induced on the conductor. 
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Total Induced Charge
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The total induced charge is (use the polar coordinate)
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3.2.3 Force and Energy
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The charge q is attracted toward the plane, because of the 
negative induced charge.
The force and the energy of this system can be analogous 
to the case of two point charges.

Unlike the two point charges system, there is no field in the 
conductor. Handle must be care.
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Work and Energy
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Consider the work required to bring q in from infinity. 
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which is half of that of the two point charge system.

This is because the conducting plane is grounded.
If the plane is not grounded, what would happen?



3.2.4 The Grounded Spherical Conducting Shell
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The image charges have opposite sign; this is what 
guarantees that the plane will be at potential zero.

Any stationary charge distribution near a grounded conducting 
plane can be treated in the same way, by introducing its mirror 
image---method of images.

Can this method be applied to a curved surface? Yes.

Here is an example. A point charge is situated in front of a 
grounded conducting sphere.
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Example 3.2 A point charge is situated a distance a from the 
center of a grounded conducting sphere of radius R.  Find the 
potential outside the sphere.
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 Sol: Assume the image charge  is placed at a distance  from 
         the center of the sphere.  The potential is
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         It is equipotential on the surface of a grounded sphere. 
         Using two boundary conditions at  and .P P
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If the sphere is connected to a fixed potential, can this method 
still be applied? Yes.

Just imagine another image charge situated at the center of 
the sphere, which provides a constant potential at the surface.
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Ex. Two equal conducting spheres with radius R, each
carries a total charge Q1 and Q2 at a distance d from each
other. Find the electric field outside the conducting spheres.
Sol:

Assume the charges are located at the respective centers.
Using the image charge method, calculate the first level
induced charges. Then, calculated the second level induced
charges, and so on. The series should converges rather fast.

optional



3.3 Separation of Variables
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We shall attack Laplace’s equation directly, using the
method of separation of variables, which is the physicist’s
favorite tool for solving partial differential equations.

02 =∇ VLaplace’s equation: 

Basic strategy: Look for solutions that are products of 
functions, each of which depends on only one of the 
coordinates. )()()(),,( zZyYxXzyxV =

Applicability: The method is applicable in the circumstances
where the potential (V) or the charge density (σ) is
specified on the boundaries of some region, and we are
asked to find the potential in the region where ρ = 0.
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3.3.1 Cartesian Coordinates
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Example 3.3 Two infinite grounded metal plates lie parallel
to the xz plane, one at y = 0, and the other at y = a. The left
end, at x = 0, is closed off with an infinite strip insulated
from the two plates and maintained at a specific potential
V0(y). Find the potential inside this “slot”.



Boundary Conditions

26

The configuration is independent of z, so Laplace’s equation 
reduces to two dimensions. 
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Separation of Variables

27

The first step is to look for solutions in the form of products: 

2 2

2 2
1 1 0d X d Y
X Ydx dy

+ =

The first term depends only on x and the second only on y. 
The sum of these two functions is zero, which implies these 
two functions must both be constant.
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Substituting into Laplace’s equation, we obtain
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A Simple Solution
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Let C0 equal k2, for reasons that will appear in a moment.

The boundary condition (iv) requires that A equal zero, 
and condition (i) demands that D equal zero.
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A Complete Solution in Fourier Series
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Now we have an infinite set of solutions. 

This is a Fourier sine series. Virtually any function V0(y)---
can be expanded in such a series. 這麼神奇!
We can use the so-called “Fourier’s trick” to find out the 
coefficients Cn.
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Can we use the remaining boundary condition (iii) to 
determine the coefficients Cn? Yes.
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The Fourier Trick
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A Concrete Example
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Completeness and Orthogonality
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The success of this method hinges on two extraordinary 
properties, i.e., completeness and orthogonality.
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Completeness: If any other function f(y) can be expressed 
as a linear combination of a complete function set  fn(y):
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Orthogonality: If the integral of the product of any two 
different members of the set is zero:

This allows us to kill off all terms but one (         ) in the 
infinite series and thereby solve for the coefficient Cn.
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Rectangular Metal Pipe
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Example 3.5 An infinitely long rectangular metal pipe (sides 
a and b) is grounded, but one end, at x = 0, is maintained at 
a specified potential V0(y, z), as shown in the figure. Find the 
potential inside the pipe.



Boundary Condition
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This is a genuinely three-dimensional problem,
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Separation of Variables
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The first step is to look for solutions in the form of products: 
)()()(),,( zZyYxXzyxV =
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A Simple Solution
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A Complete Solution in Fourier Series
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The solution is 

Use the boundary condition (v) and the orthogonality to find 
out the coefficients Cn,m.
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The Fourier Trick & Constant Voltage Solution
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 Two semi-infinite grounded conducting planes meet at right angles.
In the region between them, there is a point charge , situated as shown in Fig. 3.15.
Set up the image configuration, and

q
Problem 3.11

 calculate the potential in this region. What
charges do you need, and where should they be located? What is the force on ?
How much work did it take to bring  in from infinity? Suppose the planes met

q
q

at some angle other than 90 ; would you still be able to solve the problem by the
method of images? If not, for what particular angles  the method work?does

°

0

Find the potential in the infinite slot of Ex. 3.3 if the boundary at
 = 0 consists of two metal strips: one, from  = 0 to  = /2, is held at a constant

potential , and the other, from
x y y a

V

Problem 3.13 

0  = /2 to  = , is at potential .y a y a V−

 A cubical box (sides of length ) consists of five metal plates, which
are welded together and grounded (Fig. 3.23). The top is made of a separate sheet
of metal, insulated from the others,

aProblem 3.16

0

1

 and held at a constant potential . Find the
potential inside the box. [What should the potential at the center ( /2, /2, /2)
be? Check numerically that your formula is consistent with this value.]

V
a a a
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Homework of Chap. 3 (part I)
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0

 For the infinite rectangular pipe in Ex. 3.4, suppose the potential on
the bottom (  = 0) and the two sides (  ) is zero, but the potential on the top
(   ) is a nonzero constant . F
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Problem 3.54

ind the potential inside the pipe. [ : This is a
rotated version of Prob. 3.15(b), but set it up as in Ex. 3.4, using sinusoidal functions
in  and hyperbolics in . It is an unusual case in which  
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Begin by finding the general solution to Eq. 3.26 when  = 0.]
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3.3.2 Spherical Coordinates
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For round objects spherical coordinates are more suitable. 
In the spherical system, Laplace’s equation reads
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We will first treat the problem with azimuthal symmetry, 
so that the potential is independent of φ.
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Separation of Variables
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The first step is to look for solutions in the form of products: 

The first term depends only on r and the second only on θ. 
The sum of these two functions is zero, which implies these 
two functions must both be constant.

)()(),( θθ Θ= rRrV

Substituting into spherical Laplace’s equation, we obtain

21 1( ) (sin ) 0
sin

d dR d dr
R dr dr d d

θ
θ θ θ

Θ
Θ

+ =

21 1( ) ( 1),         (sin ) ( 1)
sin

d dR d dr
R dr dr d d

θ
θ θ θ

Θ
Θ

= + = − +   

Again, how do we know? Any other possibility? 



Simplest Case: A Metal Sphere
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Example: A metal sphere of radius R, maintains a specified 
potential V0. Find the potential outside the sphere.

Sol: The potential is independent of θ and φ. 
The Laplace’s equation is: 21 ( ) 0d dRr

R dr dr
=

2 2

2

0 0 0
00

( ) 0    

               

( )
     ( )

( ) 0

d dR dRr r A
dr dr dr
dR A AR B
dr r r

AR r R B V RR r VR
rR r B

=  = −

= −  = +

 = = + =  =
 = ∞ = =



A Simple Solution & Legendre Polynomials
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The solutions are Legendre polynomials in the variable cosθ.


 

)1()(
!2

1)( 2 −= x
dx
dxP

2
1

1( ) ( 1)        d dRr R R Ar B
dr dr r += +  = +  

1 (sin ) ( 1)    The solutions are not simple.
sin

d d
d d

θ
θ θ θ

Θ Θ= − + 

The general solutions for R and Θ are

( ) (cos )Pθ θ= Θ

The polynomial is most conveniently defined by the 
Rodrigues formula (generating function):

See lecture notes 
of Jackson Chap.3



Rodrigues Formula
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21Prove:     ( ) ( ) ( 1) ,    = cos  
2 !

(cos )1where (sin ) ( 1) (cos )  
sin

dP x x x
dx
P P

θ

θθ θ
θ θ θ

= −

∂∂ = − +
∂ ∂

 
 






 

Sol:
2

2 1 2

2

2

2

2

Let     ( 1)
          2 ( 1)      ( 1) 
         (1 ) 2 0 

          (1 ) 2 2 2 0 
          (1 ) 2( 1) 1(2 0) 0
          (1 ) 2( 2) 2(2 1)

v x
v x x x

x v xv

x v xv xv v
x v xv v
x v xv v

−

= −
′ = − × −

′ − + =

′′ ′ ′− − + + =
′′ ′− + − + − =
′′′ ′′ ′− + − + − =






 
 
 

2 ( 2) ( 1) ( )
0

      (1 ) 2( 1) ( 1)(2 ) 0k k kx v k xv k k v+ +− + − − + + − =  

https://youtu.be/Zm3iVO2d_2c
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2
( )

2

2
2

2

2

2

( 1)Let    and  (cos )(2 !)

(1 ) 2 ( 1) 0
(cos ) (cos )(1 cos ) 2 ( 1) (cos ) 0

(cos ) (cos ) (cos )1
sin

(cos ) 1(
sin

d xk u v P
dx

x u xu u
d P dPx P

dx dx

dP dP dPd
dx d dx d

d P dPd
dx d

θ

θ θθ θ

θ θ θθ
θ θ θ

θ
θ θ

−= = = =

′′ ′∴ − − + + =

 − − + + =

= = −

= −

 
 



 


  

 

 

 

 

2

2 2 3

(cos ) 1)( )
sin

(cos ) (cos )1 cos                  
sin sin

d
d P dP

d d

θ
θ θ

θ θθ
θ θ θ θ

−

= − 
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2
2

2 2 3

2

2

(cos ) (cos )1 cos(1 cos )[ ]
sin sin

(cos )1                                   2cos [ ] ( 1) (cos )
sin

(cos ) (cos )cos ( 1) (cos )
sin

(cos )1 (sin
sin

d P dP
d d

dP P
d

d P dP P
d d

dPd
d d

θ θθθ
θ θ θ θ

θθ θ
θ θ

θ θθ θ
θ θ θ

θθ
θ θ θ

− −

− − + +

= + + +

=

 




 




 

 

) ( 1) (cos ) 0

        

P θ+ + = 

21 (cos 1)    (cos )
2 ! (cos )

dP
d

θθ
θ

−∴ =
 

  



Properties of Legendre Polynomials
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1
1 0

( ) ( ) (cos ) (cos )sin

0       if 
                            2 ,  if   

2 1

P x P x dx P P d
π

θ θ θ θ′ ′−
=

′ ≠
=  ′ = +

    

 

 


The first few Legendre polynomials are listed

( ): an th-order polynomial in P x x 
Completeness: The Legendre polynomials constitute a 
complete set of functions, on the interval –1≤ x ≤1.
Orthogonality: The polynomials are orthogonal functions:

EM
Tsun-Hsu Chang

0
1

2
2

3
3

4 2
4

5 3
5

( ) 1
( )
( ) (3 1) / 2
( ) (5 3 ) / 2
( ) (35 30 3) / 8
( ) (63 70 15 ) / 8

P x
P x x
P x x
P x x x
P x x x
P x x x x

=
=
= −
= −
= − +
= − +



A Complete Solution in Legendre Polynomials
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The Rodrigues formula generates only one solution. What 
and where are other solutions?
These ”other solutions” blow up at θ = 0 and/or θ = π, are 
therefore unacceptable on physical grounds.

The general solution is the linear combination of separable 
solutions.

)(cos)1(),( 1 θθ 
 P

r
BArrV ++=

1
0

1( , ) ( ) (cos )V r A r B P
r

θ θ
∞

+
=

= + 
  



See lecture notes 
of Jackson Chap.3



50

Example 3.6 The potential V(R,θ) = V0sin2(θ/2) is specified on
the surface of a hollow sphere, of radius R. Find the potential
inside the sphere V(r,θ).

1
0

1 ( , ) ( ) (cos )V r A r B P
r

θ θ
∞

+
=

= + 
  



Sol:

In this case           for all   --- otherwise the potential would 

blow up at the origin. Thus,

0

2
00

0
0

0
0 10

2 1 1 ( , ) (cos )sin
2

2 1 1 sin ( ) (cos )sin
2 2

2 1 1 (1 cos ) (cos )sin
2 2

2 1 1 ( (cos ) (cos )) (cos )sin
2 2

A V R P d
R

V P d
R

V P d
R

V P P P d
R

π

π

π

π

θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ θ θ

+=

+=

+= −

+= −









 















0
( , ) (cos )V r A r Pθ θ

∞

=
=  

 


0
(cos ) ( , )A R P V Rθ θ

∞

=
= 

 
 Ref. p.48

0B = 
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



 −=

−=

=
θθ cos1

2
),(        

2

2 0

0
1

0
0

R
rVrV

R
VA

VA

0
0 10

2 1 1 ( (cos ) (cos )) (cos )sin
2 2

VA P P P d
R

π
θ θ θ θ θ+= − 









=′
+

≠′
=− ′    if ,

12
2

 if       0
)()(

1

1 



 dxxPxP
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Sol: The sphere is an equipotential---we may as well set it 
to zero. 
The potential is azimuthally symmetric and by symmetry the 
entire xy plane is at potential zero. 
In addition, the potential is not zero at large z.
Boundary conditions are: 

Example 3.8 An uncharged metal 
sphere of radius R is placed in an 
otherwise uniform electric field 
Find the potential in the region outside 
the sphere.

zE ˆ 0E=

0

(i) 0 when ,
(ii) cos   for .

V r R
V E r r Rθ

= =
→ − 
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( 1)

0

( 1)

0
2 1

0
0

1 0

 ( , ) ( ) (cos )

B.C. (i):  ( , ) ( ) (cos ) 0

               

B.C. (ii):  ( , ) ( ) (cos ) cos

               ,    all other  a

V r A r B r P

V R A R B R P

B A R

V r A r P E r

A E A

θ θ

θ θ

θ θ θ

∞
− +

=
∞

− +

=
+

∞

=

= +

= + =

 = −

= = −

 = −







 
  



 
  




 


 



 re zero.
3

0 2

3

0 03

0 0 0 0

( , ) ( ) cos

ˆ ˆ(1 2 ) cos  3 cos  

ˆ ˆ( ) (3 cos ) 3 cos
r R

RV r E r
r

RV E E
R

E E

θ θ

θ θ

σ θ ε θ ε θ

E r r

r r
=

= − −

= −∇ = + =

= ⋅ =

above below
0ˆ 0 since 0

( )
V z

E E σ
ε

⊥ ⊥

=−∇ ⋅ = <

− =
n

 

Why the electric field 
is enhanced?



3.4 Multipole Expansion
3.4.1 Approximate Potential at Large Distance

54

If you are very far from a localized charge distribution, it 
“looks” like a point charge, and the potential is---to good 
approximation—(1/4πε0)Q/r, where Q is the total charge. 
But what if Q is zero?
Develop a systematic expansion for the potential of an 
arbitrary localized charge distribution, in powers of 1/r.

τρ
πε

′′
′−

=  dV )(1
4

1)(
0

r
rr

r

)cos2)((
11

  cosines, of law  theUsing

22 θ ′′−′+
=

′− rrrrrr
Note, for simplicity,

ˆr=r z

EM
Tsun-Hsu Chang



Large Distance Approximation
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1/2
2 2

1/2 2 3

2

1 1 1 (1 )
( 2 cos )

where  ( 2cos )

1 1 1 3 5(1 ) (1 ),    if 1
2 8 16

1 1 1 3So  (1 ( 2cos ) ( ( 2cos ))
2 8
5                          ( ( 2c

16

rr r rr
r r
r r

r r
r r r r

r r r r r
r r
r r

ε
θ

ε θ

ε ε ε ε ε

θ θ

−

−

= = +
′− ′ ′ ′+ −

′ ′ ′= −

+ = − + − + <<

′ ′ ′ ′′ ′= − − + −
′−

′ ′
− −

r r

r r



3

2
2

os )) )

1 (3cos 1)                 (1 ( )cos ( ) ( ) )
2

r r
r r r

θ

θθ

′ +

′ ′ ′ −′= + + +





Taylor’s expansion



Legendre Polynomials & Multipole Expansion
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2
2

0

1 1 (3cos 1)(1 ( )cos ( ) ( ) )
2

1 ( ) (cos )

r r
r r r

r P
r r

θθ

θ
∞

=

′ ′ ′ −′= + + +
′−

′ ′= 

r r








00

00

2

2 20
3

1( ) ( ) (cos ) ( )
4

1 1        ( ) (cos ) ( )
4

1 1( ) cos ( )1or more explicitly, ( ) 1 3 14 ( ) ( cos ) ( )
2 2

rV P d
r r

r P d
r r

d r d
r rV

r d
r

θ ρ τ
πε

θ ρ τ
πε

ρ τ θ ρ τ

πε θ ρ τ

∞

=
∞

=

′ ′ ′ ′=

′ ′ ′ ′=

 ′ ′ ′ ′ ′ ′+ 
=  

 ′ ′ ′ ′+ − +
 



 

 



r r

r

r r
r

r













The multipole expansion of V in powers of 1/r.

This is the desired result.



Legendre Polynomials & Multipole Expansion

57

2 2
2 3

0

( )
1 1 1 1 3 1( ( ) cos ( ) ( ) ( cos ) ( ) )

4 2 2

V

d r d r d
r r r

ρ τ θ ρ τ θ ρ τ
πε

′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − +  
r

r r r 



Dipoles
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What is dipole? The arrangement of a pair 
of equal and opposite charges separated by 
some distance is called an electric dipole.

Permanent dipole: such as molecules of HCl, CO, and H2O.

Induced dipole: An electric field may also induce a charge 
separation in an atom or a nonpolar molecule.
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Sol:

Example 3.10 An electric dipole consists of
two equal and opposite charges separated 
by a distance d. Find the approximate 
potential V at points far from the dipole.

1/2 1/2

0 02 2

1/2 1/2

0

2
0 0

( 2cos ) cos     (s

1 1( ) ( )

ince 1 and )

((1 ) (1 ) )
4 4ˆ ˆ

where  

( ) ((1 ) (1 ) )
4

1 cos        ( cos )
4

2

4

d d

r r d r dr

q qV
r

qV
r

q d qd
r

r

r

r

r

r r
ε θ

ε ε
πε πε

ε ε
πε

θθ
πε

θ

πε

− −

− −

′ ′ ′ ′=

= − = + − −
− +

= + − −

= =

− ≅ − =

r
r z r z

r





The Electric Field of a Dipole
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2 2 2
0 0 0

ˆ1 cos 1 cos( )    
4 4 4

where   pointing from the negative charge to the positive charge.

qd pV
r r r

qd

θ θ
πε πε πε

⋅= = =

= ↑

r pr

p

3 3
0

3
0

2cos sin ˆ ˆˆ( ) ( 0 )   
4

ˆˆ(2cos sin )  
4

pV
r r

p
r

θ θ
πε

θ θ
πε

= −∇ = + +

= +

E r r  

r  

θ

θ

φ

Why?
Just a convention.

1 1ˆ ˆˆ
sin

T T TT r
r r r

θ φ
θ θ φ

∂ ∂ ∂∇ = + +
∂ ∂ ∂



Some Important Properties of Dipole
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Potential and field due to a dipole:

Torque in a uniform field:
Epτ ×=

(  )Q= − → +p d

Potential energy:

Ep ⋅−=U

2
0

2 2
0 0

: dipole moment

1 1( ) cos ( )
4

1 1 1 1ˆ ˆ( )
4 4

( )

V r d
r

d
r r

V

θ ρ τ
πε

ρ τ
πε πε

′ ′ ′ ′=

′ ′ ′= ⋅ = ⋅

= −∇




p

r r

r r r r p

E r


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0 Suppose the potential ( ) at the surface of a sphere is specified,
and there is no charge inside or outside the sphere. Show that the charge density on
the sphere is given by

             

V θProblem 3.20

20

0

00

                  ( ) (2 1) (cos ),                          (3.88)
2

where

                              ( ) (cos )sin .                                (3.89)

l l
l

l l

l C P
R

C V P d
π

εσ θ θ

θ θ θ θ

∞

=
= +

=





2

A sphere of radius , centered at the origin, carries charge density

                                           ( , ) ( 2 )sin ,

where  is a constant, and ,  are the usual spherical

R
Rr k R r
r

k r

ρ θ θ

θ

= −

Problem 3.27

coordinates. Find the approximate
potential for points on the  axis, far from the sphere.z

Homework of Chap. 3 (part II)
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0 A conducting sphere of radius , at potential , is surrounded by a
thin concentric spherical shell of radius , over which someone has glued a surface
charge
                              

a V
b

Problem 3.43

                      ( ) =  cos ,
where  is a constant and  is the usual spherical coordinate.
(a) Find the potential in each region: (i)  > , and (ii)  <  < .
(b) Find the induced surface cha

k
k

r b a r b

σ θ θ
θ

3 3 2
0 0

0

rge ( ) on the conductor.
(c) What is the total charge of this system? Check that your answer is consistent
      with the behavior of  at large .

/ ( ) cos / 3 ,    
: ( , )

/

i

V r

aV r b a k r r b
Answer V r

aV r

σ θ

θ ε
θ

+ − ≥
=

3 3 2
0( ) cos / 3 ,    r a k r r bθ ε

     
 + − ≤   

 An ideal electric dipole is situated at the origin,
and points in the  direction, as in Fig. 3.36. An electric charge
is released from rest at a point in the plane. Show that it swings
b

z
xy

Problem 3.56

28
ack and forth in a semi-circular arc, as though it were a pendulum

supported at the origin.

Homework of Chap. 3 (part II)


