Chapter 2 Electrostatics
2.1 The Electric Field: 2.1.1 Introduction

What is the force on the test charge O due to a source
charge g7

We shall consider the special case of the electrostatics in
which all the source charges are stationary.

The principle of superposition states that the interaction

between any two charges is completely unaffected by the
presence of others.
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2.1.2 Coulomb’s Law

Coulomb’s law quantitatively describe the interaction of
charges.

Coulomb determined the force law for electrostatic charges
directly by experiment.
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Action at a distance

Coulomb’s law, like Newton's law of gravitation, involves the
concept of action at a distance.

It simply states how the particles interact but provides no
explanation of the mechanism by which the force is
transmitted from one point to the other.

Even Newton himself is not comfortable with this aspect of
his theory.

What is the concept of action at a distance? This leads to the
gravitational, electric, and magnetic fields.



2.1.3 The Electric Field

How does one particle sense the presence of the other?

The electric charge creates an electric field in the space
around Iit. A second charged particle does not interact
directly with the first; rather, it responds to whatever field it
encounters. In this sense, the field acts as an infermediary

between the particles. KK[ 1nte- midr er1] 47
0 . A
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The electric field strength is defined as the force per
unit charge placed at that point.
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Example

On a clear day there is an electric field of approximately
100 N/C directed vertically down at the earth’s surface.
Compare the electrical and gravitational forces on an

electron. | N/C=1V/m=
Solution: IN-m=1C-V=1]
The magnitude of the electrical force is
F,=eE=1.6x10"""x100=1.6x10"1" N. (upward)

The magnitude of the gravitational force is
Fo=mg=9.11 x 107! x 9.8 = 8.9 x 10" N. (downward)



2.1.4 Continuous Charge Distributions

In order to find the electric field due to a continuous distribution
of charge, one must divide the charge distribution into
infinitesimal elements of charge dg which may be considered to
be point charges.

1 dg . | dqg .
PR
471'80 A, 47[5() A
Thus the electric field ofa  p | I/l(l’ )i dr
line charge is 47 5, i
for a surface charge, E(r)= : j J(r’)é da’;
471'80 S @2

| ) .
and for a volume charge, [E(r)= jp(; )m dt’
471'50 o n
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Example 2.1

What is the field strength at a distance R from an infinite

line of charge with linear charge density 4 C/m.

Solution:

Since the charge carrier is infinitely long,
the electric field in y-direction completely
cancels out. Thus the resultant field is
along the x-axis.

1 Acos@di! 1 ARsec’ 8cosf do

dE = —
r 472'80 r2 471'80 (R sec 9)2
1 Acos8d6
471'30 R
1 /2
E, = A j cos 8d 6 = A
471'80 RY—x/2 ZﬂgoR

d! =d(Rtan )

— Rsec’ 6d6
r = Rsec@



Example

Non-conducting disk of radius a has a uniform surface
charge density o C/m<4. What is the field strength at a
distance y from the center along the central axis.

Solution:

The y-component of the field is  dE

kdqg vy

rzl”

dEy =dFE cosf =

* +v? and dg = o(27rxdx)

2xdx

0 (x*+y%)
dxz
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Example: Use cylindrical coordinates

Non-conducting disk of radius a has a uniform surface
charge density o C/m<4. What is the field strength at a
distance z from the center along the central axis.

Solution:  The z-component of the field is
Observer P =(0,0,z) and sources (x,’,0)

m=(=x,—V.2), »° =(x*+ 1V +2%)

<;,:ZZ?§Z:>/1, =(x’ +y2+z )—r2+z2
kdq z
dE. =dE cos0 = > > , where dg = o(27zrdr)
(r* +2°) (2 +2%)
2
E, =rmkoz _[ @ ardr Tkoz _[ ©__dr =27wkoz(

f JZ g
Z ), forz>0
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2.2 Divergence and Curl of Electrostatics Fields Tsun_HitAChang

2.2.1 Field Lines, Flux, and Gauss's Law FEHE RGN

How do we express the magnitude and vector properties of
the field strength?

The field strength at any point could be represented by an
arrow drawn to scale. However, when several charges are
present, the use of arrows of varying length and orientations
becomes confusing. Instead we represent the electric field by
continuous field lines or lines of force.

!
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Field Lines

How do we determine the field strength from the field lines?

The lines are crowed together when the field is strong and
spread apart where the field is weak. The field strength is
proportional to the density of the lines.

11
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Example

Sketch the field lines for two point charges 2¢ and —g.

Solution:

(a)Symmetry
(b)Near field
(c)Far field
(d)Null point

(e)Number of lines

12



Flux

The electric flux ®, through
this surface is defined as

D, =FEAcosb
=E-A

CIDE:_[E-ﬁda

For a nonuniform electric field
\\%“M AAS
E

13
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Flux

Flux leaving a closed surface is positive, whereas flux
entering a closed surface is negative.

The net flux through the surface is zero if the number of

lines that enter the surface is equal to the number that
leave.

A 1



Gauss’s Law

How much is the flux for a spherical Gaussian surface around
a point charge?

The total flux through this closed
Gaussian surface is

= © -47Zr2=g
47[507‘2 8()

The net flux through a closed surface equals 1/g, times the
net charge enclosed by the surface.

Can we prove the above statement for arbitrary closed shape?
15



Gauss’s Law (ll)

*The circle on the integral sign indicates that the Gaussian
surface must be enclosed.

*The flux through a surface is determined by the net charge
enclosed.

— —
— —

—
ll-"i'l—__...__-l--

How do we apply Gauss’s law?
1. Use symmetry.
2. Properly choose a Gaussian surface (E//A or ELA).

16



Turn Gauss's Law
from integral equation into differential form

¢ E-da=¢_E-ida= Cenc
S S £
By applying the divergence theorem

<I>SE-ﬁda=jv(V-E)dr and Q;M :giojvﬂ dt

0

so |(V-E)d7= gio | pdz

Since this holds for any volume, the integrands must be equal

1

V.E=—p <«—Gauss’s Law in differential form.
€0

17



2.2.2 The Divergence of Electric Field & -

_ _ Tsun-Hsu Chang
2.2.3 Application of Gauss’s Law FEFE RGN
The electric field can be expressed in the following form
1 . 1 y
E=—o| I 5 v

I4 4
L
Arg all space ,1/2 Arg all space ,vzp( )

Divergence of the electric field is |
Why doesn’t the divergence

1 “ operator apply on the r’ coordinate?

v / /
V-E= 471—50 Iall space (V | ?)p(r )az

Since (V - %) = 475° (%),

v
V-E= : I 4725° (r—r')pr")d7 = i,o(r)
471-50 all space 0
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Example 2.2

A non-conducting charged sphere of radius R has a total
charge O uniformly distributed throughout its volume. Find
the field (a) inside, and (b) outside the sphere.

Solution: :
. . A /
(a) inside L3 N N
(Denc A Q§7Z'7‘ | I B
— 5 r:( 3) > r 1\}? 'y
47y 03 TR’ 4mr Sne® S
|
|
— O 3 1 8
471'80R
(b) outside
b | R
E = ~I = O ~T
47 e, r

19
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Example 2.3

A long cylinder carries a charge density that is proportional
to the distance from the axis: p = ks, for some constant «.
Find the electric field inside the cylinder?

Solution:
Pick up a Gaussian surface as shown in the figure.
The total charge enclosed is T
.
2 ~— | —
0, = | (ks')s'ds'dp= gﬂkés ‘ ‘
E = Cone = : ks® in § direction |
£,27wsl  3€, i]; \ Gaussian

' http://www.falstad.com/mathphysics.html | 20
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Example 2.5

Find the field due to the following: (a) an infinite sheet of

charge with surface charge density +o; (b) two parallel
infinite sheets with charges density +oand —o.

Solution:

L:-U— E=.U_
F 260 2{?0

—}

+ + + + +

+
Q
I

IR Al s

F + + + + + + +

S
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How to Choose a Good Gaussian Surface?

Gauss’'s Law is always true, but it is not always useful.
Symmetry is crucial to the application of Gauss’s law.
There are only three kinds of symmetry that work:

1. Spherical symmetry: Make your Gaussian surface a
concentric sphere.

2. Cylindrical symmetry: Make your Gaussian surface a
coaxial cylinder.

3. Plane symmetry: Use a Gaussian “pilloox”, which
straddles the surface.

22



2.2.4 The Curl of the Electric Field
The electric field can be expressed in the following form

(V D)p(r')dz
A

S Why doesn’t the divergence operator
Curl of the electric field is Iapply on the r’ coordinate?

L (Vx(V L) p(r)dz

471-50 I all space ;
Curl of gradient is always zero. .. VXE =0

1 .
k= 471-50 I all space ?p(r )i = 471-50 I all space

V XE =

The principle of superposition states that the total field is
a vector sum of their individual fields E = E ,+E,+...

VXE=VX(E, +E,+--)=VXE +VXE, +:--=0

23
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2.3 Electric Potential Tsun-Hsu Chang

2.3.1&2 Introduction to and Comments on Potential ##+2 #%%

Can we apply the concept of potential, first introduced in

mechanics, to electrostatic system and find the law of
conservation of energy?

We can define an electrostatic potential energy, analogous to
gravitational potential energy, and apply the law of
conservation of energy in the analysis of electrical problems.

Potential is not equal to the potential energy.

24
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Mechanical Analogy of Potential

The motion of a particle with positive charge ¢ in a uniform
electric field is analogous to the motion of a particle of mass
m In uniform gravitational field near the earth.

WEXT =+AU = Uf _Ui FTT FEfT
It W.,>0, work is done by the g Q—UF B \ Q-_-- U,
external agent on the charges. : i
It W, <0, work is done on the o Lng = L,E
external agent by the field. ar o

Potential energy|depends not only on the “source” but also
on the “test” particle. Thus it will be more convenient if we

can define a potential function which is function of “source”
only. 25



The Unit of Potential: Volt

When a charge g moves between two points in the
electrostatic field, the change in electric potential, AV, is

defined as the change in electrostatic potential energy per

unit charge,
AV = AU

q

The Sl unit of electric potential is the volt (V).

1V=1J/C=1N-m/C

The quantity AV depends only on the field set up by the
source charges, not on the test charge.

Wexr =qAV =q(V, =V))

26
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Only Changes in Potential are Significant

We see that only changes in potential AV, rather than the
specific value of V;and ¥, are significant.

It Is convenient to choose the ground connection to earth as
the zero of potential.

The potential at a point is the external work needs to bring
a positive unit charge, at constant speed, from the position
of zero potential to the given point.

In an external electric field, both positive and negative
charges tend to decrease the electrostatic potential energy.

Which side will a charge particle drift if it is in the middle of
two conducting plates with potential difference, higher or
lower potential side? v Y

27



Potential is Conservative

In mechanics, the definition of potential energy in terms of
the work done by the conservative force is AU =-W.. The
negative sign tells us that positive work by the conservative
force leads to a decrease in potential energy.

Therefore, the change in potential energy, associated with an
infinitesimal displacement ds, Is

dU =—F. -ds = —qE - ds
dU

dV = =—E-ds —
q 7

B
Vy=V,=—| E-ds

Since the electrostatic field is conservative, the value of
this line integral depends only on the end points A and B,
not on the path taken. -




Differential form of Potential

The fundamental theorem of gradient states that

B
Vo=V, =] (VV)-ds

and V,—V, =—LBE-dS so E=-V/V

The electric field E is a very special kind of vector function
whose curl is always zero.

VXE=—(VxVFV)=0

It is often easier to analyze a physical situation in terms of
potential, which is a scalar, rather than the electric field,
which is a vector.

29
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Example 2.6 Find the potential inside and outside a
spherical shell of radius R, which carries a uniform surface
charge. Set the reference point at infinity.

Sol: Use the Gauss's law to find the electric field
and then use the electric field to calculate the potential.

Inside (< R) E=0

outside (r > R) E = 1 5
471'807’
V V

P
.
q A A w I
Vir)=—| E-dl=- (r-r)dr’ -
J-oo Ioo 47[807/"2 \J\ #
V
-4 -4 (¥ > R)
dregr' o AmEYr

471'50R 30



2.3.3 Poisson’s Equation and Laplace’'s Equation

The electric field can be written as the gradient of a scalar

potential. E=_-VV

What do the fundamental equations for E looks like,

in terms of V?

Gauss'slaw V-E=—(V.-VV)=-V*J = P
80

Curllaw VXE=—(VxVFV)=0

VXE =0 permits E=-V/;
in turn, E = -V} guarantees VXE =0
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2.3.4 The Potential of a Localized Charge Dlstrlbutlonzsi;‘;;“ b

Setting the reference point at infinity, the potential of a point
charge g at the origin IS

1 q 1 ¢

Vir)=
TEY 1 drey 1

Are, e 2=

o0

The conventional minus sign in the definition of V" was
chosen precisely in order to make the potential of a positive
charge come out positive.

P P p
/’ L 2
I[:i.rll *
L]

32



The Potential of a Localized Charge Distribution

In general, the potential of a Collection of Charges IS
1 n

Vir)= =
471'80 i1 "% 471'50 i1 |I' | ¢ |
For a continuous distribution
1 a’q
V(r)= I I
471'5() A 471'50 |I°

For a volume charge p; a surface charge o; a line charge A.

p(r __ b o), , _ L oA,
V(r)= 47r80 I 4t 471'5() ‘[ ~ : 471'80 '[ A
J‘ P(I' )dT _ J' O'(r 1 j ﬂ(l‘ d[’
471'80 ‘ 77550 ‘ 471'50 ‘

33
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Example

A non-conducting disk of radius a has a uniform surface
charge density o C/m<4. What is the potential at a point P
on the axis of the disk at a distance y from its center.

Solution:
dV =—% g0 = o rxdy)
472'807'
adV = or dkz
47[80\/)(:24-_)/2
V:Ja or dx?
472'80\/X2+y2
) . ] ]
o » 2% o 2
P X -+ —_— a + —
e \/ ", "= \/ v bl

34
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Example 2.6 Example

A shell of radius R has a charge QO uniformly distributed
over its surface. Find the potential at a distance » >R from
Its center.

Solution:

It is more straightforward to use the electric field, which we
know from Gauss’s law.

0 . 0 1 17
K= 00) = — — _
472'801”2 A I Areqr” 2= 47[50 Q[ I loo
__ Y
V(r) - 471'507’

The potential has a fixed value at all points within the

conducting sphere equal to the potential at the surface.
35



2.3.5 Summary; Electrostatic Boundary Conditions

We have derived six formulas
interrelating three fundamental
quantities: p, E, and V.

These equations are obtained from two observations:

Coulomb’s law: the fundamental law of electrostatics

*The principle of superposition: a general rule applying to
all electromagnetic forces.

36



Electrostatic Boundary Conditions: Normal

The electric field is not continuous at a surface with charge
density o. WWhy?

Consider a Gaussian pillbox. T~ |
A
Gauss’s law states that (j) E-da= Denc — ©
> €0 £€()

The sides of the pillbox contribute nothing to the flux, in the
limit as the thickness € goes to zero.

1 0A 1

)A T — (E above below) T
gO

(£ —

above below
O

37



Electrostatic Boundary Conditions: Tangential

The tangential component of E, by contrast,
IS always continuous.

Consider a thin rectangular loop.

The curl of the electric field states that (J')PE -dl=0

The ends give nothing (as € =20), and the sides give

// // //
( above — “below )K 0 = Eabove below
O .
In Sh()l’t, Eabove - Ebelow =—1
0

38



Boundary Conditions in terms of potential

O . O .
Eavove —Epelow =—Nn = (V Vabove — \ Vbelow )=——n
SO SO
or ( aVabove aVbelow ) _ o
on on o
aV. . L
where gbove (=V/V -n) denotes the normal derivative of V.
n

Vabove = Vbelow  Why?

It Vabove * Vbelows O = .

39



Homework of Chap. 2 (part I)

Problem 2.9 Suppose the electric field 1n some region 1s found to be E = > r, in

spherical coordinates (k 1s some constant).

(a) Find the charge density p.

(b) Find the total charge contained in a sphere of radius R, centered at the origin.
(Do 1t two different ways.)

Problem 2.12 Use Gauss's law to find the electric field inside a uniformly charged
solid sphere (charge density p). Compare your answer to Prob. 2.8.

Problem 2.15 A thick spherical shell carries charge density

p:i2 (@<r<b)

r
(Fig. 2.25). Find the electric field in the three regions: (1) » <a, (11) a <r <b, (111)

r > b. Plot |E| as a function of r , for the case b = 2a.

=Y

FIGURE 2.25

40



Homework of Chap. 2 (part I)

Problem 2.20 One of these 1s an impossible electrostatic field. Which one?

(A) E=k[xy X +2yzy +3xz Z];

(b) E = kj/z X + (2xy +22)§7 + 2yz 7]

Here k 1s a constant with the appropriate units. For the possible one, find the potential,

using the origin as your reference point. Check your answer by computing .V V.

| Hint: You must select a specific path to integrate along. It doesn't matter what path
you choose, since the answer 1s path-independent, but you simply cannot integrate
unless you have a definite path in mind.

Problem 2.25 Using Egs. 2.27 and 2.30, find the potential at a distance z above the
center of the charge distributions in Fig. 2.34. In each case, compute E=-V/J/, and
compare your answers with Ex. 2.1, Ex. 2.2, and Prob. 2.6, respectively. Suppose
that we changed the right-hand charge in Fig. 2.34a to —g; what then is the potential
at P? What field does that suggest? Compare your answer to Prob. 2.2, and explain
carefully any discrepancy.

P

L L
I I
I I
I I

Z | Z |
I I
I I
I I
I I
I I
I

» P
I
N
L
I
I
. R
—h*— G
+q d | 2L

+( —

(a) Two point charges (b) Uniform line charge (c) Uniform surface charge

FIGURE 2.34
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2.4 Work and Energy In Electrostatics

2.4.1 The Work Done to Move a Charge FEFL RN
a
How much work will you have to do, if e
you move a test charge O from point a o o 0
to point b? Jio )
qr® ® @ b

What we're interested is the minimum force you must exert
to do the job.

W:—j:F-dl:—Qj:E-dle(V(b)—V(a))

So V(b)=V(a)=W /0

The potential difference between points a and b is equal to
the work per unit charge required to carry a particle from a
to b.

42



2.4.2 The Energy of a Point Charge Distribution

How much work would It take to
assemble an entire collection of point
charges?

1 1 '
W =0, W, = 42(i , W3= %(ql F 12
drey — mp dmey ~ M3 A3

1
W — (9142 N43 | 9243 )
amey My M3 3

I <~ 494 qi9 j
The general rule: W = ZZ L — ZZ /
4mey 1S m 87[501 —1 j=1

J>1 ];éz

J#i 43



2.4.3 The Energy of a Continuous Charge Distribution

Generalizing the point charge distribution resuilt:

AW, = (da, V(1) =~ PV, (1)d7)

1 1 &,
W_ij-E)Vdr_zj(V-E)Vdr
Integration by parts: V-(VE)=(VV)-E+(V-E)V

W:%OI(V-E)VdT:‘SO [(-VV) Edz+§(VE)-da.

_%0| (g2
—7 jE dT+<_f>/VE’?/ divergence theorem

W = jEdr

all space 44




Potential and Potential Energy: Motion of Charges

The motion of a charge in an electric field may be discussed
in terms of the conservation of energy, AK+AU= 0. In terms
of potential, the conservation law may be written as

AK = —qgAV

It is convenient to measure the energy of elementary
particles, such as electrons and protons, in terms of a non-Sl

unit called the electronvolt (1 eV = 1.6x10-1° J).

According to Einstein famous E=mc?, find the enerqgy in terms
of eV for an electron of rest mass 9.1x1073! kg, where the

speed of light is 3x10° m/s.
E=9.1x1031x(3x108)%/1.6x10"19= 0.511 MeV

45



Example

A proton, of mass 1.67x10-%’ kg, enters the region between
parallel plates a distance 20 cm apart. There is a uniform
electric field of 3x10° V/m between the plates, as shown below.
If the initial speed of the proton is 5x10° m/s, what is its final
speed?

o
Solution: | ) )
AK = —qAV =—q(-E-d) = q-(6x10%) i —
1 > 1 2 + - -
Emv —Emvl- ——QAV — U, ('f)——-p-u

Vs =\/vl-2 —2qAV /' m

= J(5x10%)2 + (2x1.6x10"0 x6x10% /1.67x10727) +
= 6x10° m/s.

46
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Potential and Potential Energy of Point Charges
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Example

In 1913, Bohr proposed a model of the hydrogen atom In
which an electron orbits a stationary proton in a circular
path. Find the total mechanical energy of the electron given
that the radius of the orbit is 0.53x10-1° m.

Solution:

The mechanical energy is the sum of the kinetic and
potential energies, £ = K+U. The centripetal force is

provided by the coulomb attraction.

2
e

U =

471'807"
) ) )
F = € :mV:DK:lm#::e
47zgor2 r 2 STTEYT
9 ~19.2
E=U+K=Ly=_22X107xA.6x10 7)" 516 10718 = _13.6 eV

~10
2 2%0.53%10 48



Example

A metal sphere of radius R has a charge Q. Find its
potential energy.

Solution:

dW =Vdq = 1 dg

47[80R
|
2 #Q
W:J'Q 1 _dg= O R i -
0 47zenR 87TENR | ey
| _
7 =
The potential energy U = 120V '
s the work needed to bring the S }
system of charges together. 1
| | B

49



2.4.4 Comments on Electrostatic Energy

(i) A perplexing “inconsistency” AK =—gAV

E

— =0 2
W= 5 Erdr 20 Which equation is correct?
all space
1 Both equations are correct.
/4 =§Zqui(rl) >or<(
=1

+*The energy required to assemble the charges g..

Why is the energy of a point charge infinite?

_& 20, S0 (4 2,2 = o
W = | E’dr= . jo (4 —)° (r? sin 0drd 6d p) =

2
all space eyr

Does it make sense? No

50



Comments on Electrostatic Energy

(i) Where is the energy stored?

1
W = I (%Ez)df WZEZ%Vi(ri)
all space =1

It IS unnecessary to worry about where the energy
IS located.

(1l1) Superposition principle is not valid, because the
electrostatic energy is quadratic in the fields.
E £,

_ %o 2 7. _ €0 2
=" [Edr== [(E,+E,)dr

all space all space

:% [(E?+E}+2E,-E,)dr

all space

51
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2.5 Conductor Tsun-Hsu Chang

2.5.1 Basic Properties FEFE EGS

E = 01nside a conductor

0 = 01nside a conductor
Any net charge resides on the surface

A conductor 1s equipotential

E 1s perpendicular to the surface, just outside a conductor.

¢ The correctness of the above statements depends on the size

and the conductivity of the metal, and the frequency of the wave.
92



Charge Redistribution

Suppose two charged metal spheres with radius R, and R,
are connected by a long wire. Charge will flow from one to
the other until their potential are equal. The equality of the

potential implies that

0 _0

=2 sinceQ=4nR’c  ® R,
R R, %K)

O\R, =0O,R,
We infer that the surface charge density on each sphere is
iInversely proportional to the radius.

The regions with the smallest radii of curvature have the
greatest surface charge densities.

53



Discharge at Sharp Points on a Conductor

=

\ P /
\ m ---_ .-'-‘-f v '
1 i . ! \‘-IH

_ ‘\‘_\’ "-':'m\
E — o —— ':1—# : |
. e

/

S

-'l‘.-.
{ a6

The above equation infers that the field strength is greatest
at the sharp points on a conductor.

If the field strength is great enough (about 3x10° V/m for dry
air) it can cause an electrical discharge in air.

How does the breakdown occur in high voltage transmission
line”?

54



Dust Causing High Voltage Breakdown

The potential at the surface of a charged sphere is V' = kQ/R
and the field strength is £ = kQ/R°. So, for a given breakdown
field strength, breakdown voltage is proportional to the
radius, V< R.

The potential of a sphere of radius 10 cm may be raised to
3x10° V before breakdown. On the other hand, a 0.05 mm
dust particle can initiate a discharge at 150 V.

A high voltage system must keep at very clean condition.

59



2.95.2 Induced Charges

Induced charge S
dlISS1dn
on metal sphere surface

-+
- -

_I_
- -
— Conductor —
+( — -
— -

Conductor

If there iIs some cavity in the conductor, and within that

cavity there is some charge, then the field in the cavity will
not be zero.

No external fields penetrate the conductor; they are
canceled at the outer surface by the induced charge there.
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2.5.3 Surface Charge and Force on a Conductor
Using energy density viewpoint

In the immediate neighborhood of the surface, the
energy IS

dw =& ENdr = (22 (29 dadx = fdadx
2 2 &

2

O :
f = ¢ the force per unit area
2€&,

This amounts to an outward electrostatic pressure on
the surface, tending to draw the charge into the field,
regardless of the sign of o

2
E O
E* =

P=-
2 2€&,
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2.5.4 Capacitors

The magnitude of the charge O stored on either plate of a

capacitor is directly proportional to the potential difference V
between the plates. Therefore, we may write

Q=CV

Where C is a constant of proportionality
called the capacitance of the capacitor.

The Sl unit of a capacitance is the farad
(F). 1 Farad =1 coulomb/volt

The capacitance of a capacitor depends on the geometry
of the plates (their size, shape, and relative positions) and
the medium (such as air, paper, or plastic) between them.

What are supercapacitors/ultracapacitors? £8




Parallel-plate capacitor

A common arrangement found in capacitors consists of two

plates. A
E=0-Q g9 L clE

&0 EoA EoA d

g + |+ ]+ +]+]+] + o
i f{ + + {YEY ¢t { ¢

Example 2.10 A parallel-plate capacitor with a plate separation
of 1 mm has a capacitance of 1 F. What is the area of each
plate?

3
g2 X0 a008 m?

e, 8.85x107"2

59



Benson

Example

What is the capacitance of an isolated sphere of radius R?
Solution:

,__ 0

- 4re, R

= C =47re R

If we assume that earth is a conducting sphere of radius
6370 km, then its capacitance would be 710 uF.

Is earth a good capacitor? No.
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Benson

Example

A spherical capacitor consists of two concentric conducting
spheres, as shown in the figure. The inner sphere, of radius
R, has charge +Q, while the outer shell of radius R,, has
charge —Q. Find its capacitance.

Solution:
R | 1
E = Q2:>V=— > Edr = Q ( )
472'807' Rl 47[50 R2 Rl
RiR
C = —4rey(——2-)
Ry — Ry

The capacitance happens to be negative quantity.

Why we are interested only in its magnitude?
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Benson

Example

A cylindrical capacitor consists of a central conductor of
radius a surrounded by a cylindrical shell of radius b, as
shown below. Find the capacitance of a length L assuming
that air is between the plates.

Solution: a1l 1
E — —
" g)2mrl  2meyr
b A b
V.=—| E,.dr= In(—
g ‘[a : 271'80 (Cl )
- £ 1) '
27T80L a
O — 271'80L
In(b/ a)

Again, we are interested only in the magnitude of
the capacitance. 62



Energy Stored in a Capacitor

The energy stored in a capacitor is equal to the work done---
for example, by a battery---to charge |it.

The work needed to transfer an infinitesimal charge dg from
the negative plate to the positive plate is dWW = Vdqg = q/Cdgq.

The total work done to transfer charge QO is

q O’ B Cv-:
W= _[O C —dq = C 9 cf. p.44 and p.59

What kind of the potential energy does this work convert?

Electric potential energy.
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Homework of Chap. 2 (part 1I)

Problem 2.36 Consider two concentric spherical shells, of radi1 a and b. Suppose
the 1nner one carries a charge g, and the outer one a charge — g (both of them

uniformly distributed over the surface). Calculate the energy of this configuration,
(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9.

Problem 2.39 Two spherical cavities, of radi1 a and b, are hollowed out from the

interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of y

each cavity a point charge 1s placed —call these charges g, and g,
(a) Find the surface charge densities 0,,0;,and op.

(b) What 1s the field outside the conductor?
(c) What 1s the field within each cavity?

L FIGURE 2.49
(d) What 1s the force on g, and g;?

Problem 2.43 Find the capacitance per unit length of two coaxial metal
cylindrical tubes, of radii a and b (Fig. 2.53). ‘ b—l‘ “' t=
FIGURE 2.53
Problem 2.50 The electric potential of some configuration 1s given by the expression
—Ar
y(r)=4=—,
r

where A and A are constants. Find the electric field E(r), the charge density p(7),

and the total charge Q. [Answer: p = 80/1(47[53 (r)— A2 /r)] 64



Homework of Chap. 2 (part II)

Problem 2.53 In a vacuum diode, electrons are "boiled" oif a hot cathode, at potential
zero, and accelerated across a gap to the anode, which 1s held at positive potential V.
The cloud of moving electrons within the gap (called space charge) quickly builds up
to the point where 1t reduces the field at the surface of the cathode to zero. From then
on, a steady current / flows between the plates.

Suppose the plates are large relative to the separation (A > d > in Fig. 2.55), so
that edge effects can be neglected. Then V', p, and v (the speed of the electrons) are
all functions of x alone.

(a) Write Poisson's equation for the region between the plates.
(b) Assuming the electrons start from rest at the cathode, what 1s their speed at point
x, where the potential 1s V' (x)?

(¢) In the steady state, / 1s independent of x. What, then, 1s the relation between ~— d—
o and v? / /
(d) Use these three results to obtain a differential equation for V', by eliminating MEL A
0 and v. .
(e) Solve this equation for V" as a function of x, V), and d. Plot V'(x), and compare o de A{'}:ﬂf{’;"ﬁ
it to the potential without space-charge. Also, find p and v as functions of x. (V=0)
FIGURE 2.55

(f) Show that [=KV'?, (2.56)
and find the constant K. (Equation 2.56 1s called the Child - Langmuir law.
It holds for other geometries as well, whenever space-charge limits the current.

Notice that the space-charge limited diode 1s nonlinear —1t does not obey Ohm's
law.) 65



