
Chapter 12 Electrodynamics and Relativity

12.1 The Special Theory of Relativity

Ether: Since mechanical waves require a medium to 

propagate, it was generally accepted that light also require 

a medium. This medium, called the ether, was assumed to 

pervade all matter and space in the universe.

“Absolute” frame: The Maxwell’s equation was inferred that 

the speed of light should equal c only with respect to ether.
This means that the ether was a “preferred” or “absolute” 

reference frame.
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Ether

Properties of the ether: Since the light speed c is enormous, 

the ether had to be extremely rigid. So it did not impede the 

motion of light. For a substance so crucial to electro-

magnetism, it was embarrassingly elusive. Despite the 

peculiar property just mentioned, no one could detect its 

ghostly presence.

Efforts to detect the ether: Michelson inspired by the

Maxwell took the problem of detecting the ether as a challenge. 

He developed his interferometer and used it to try to detect the 

earth’s motion relative to the ether. The result were not 

conclusive.



The Michelson-Morley Experiment

Michelson and Morley wanted to detect the speed of the 

earth relative to the ether. If the earth were moving relative to 

the ether, there should be an “ether wind” blowing at the 

same speed relative to the earth but in the opposite direction.

Michelson-Morley interferometer: Use light speed 

variation to verify the existence of ether.
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The Michelson-Morley Experiment (II)

Parallel:

L0 L0 (2L0 / c)
T1 = + =

(c − v) (c + v) (1− v2 / c2 )

Perpendicular:

2L0 (2L0 / c)
T2 =

(c2 − v2 )1/2 (1− v2 / c2 )1/2
=

L0 v2

c c2
T = T1 −T2  ( )

vEM = v, vLE = c

vLM = c2 − v2

v

c
c2 − v2
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The Michelson-Morley Experiment (III)

Using v = 30 km/s, the expected shift was about 0.4 fringe. 

Even though they were able to detect shifts smaller than 

1/20 of a fringe, they found nothing.

Possibilities:

⚫ The ether was dragged with the Earth.

⚫ No ether.

⚫ Constant light speed.
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The Two Postulates
The two postulates in the theory of special relativity are:

1. The principle of relativity: All physical laws have the 

same form in all inertia frames.

2. The universal speed of light: The speed of light in free 

space is the same in all inertial frames. It does not depend 

on the motion of the source or the observer.

Both postulates are restricted to inertial frames. This is why the 

theory is special.

• The principle of relativity extends the concept of covariance 
from mechanics to all physical laws.

• The constancy of the speed of light is difficult to accept at first.

All the experimental consequences have confirmed its 

correctness.
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Some Preliminaries

Event: Event is something that occurs at a single point in

space at a single instant in time.

Observer: An observer is either a person, or an automatic

device, with a clock and a meter stick. Each observer can

record events only in the immediate vicinity.

Reference frame: A reference frame is a whole set of 

observers uniformly distributed in space. The frame in which 

an object is at rest is called its rest frame.

Synchronization of clocks: It is extremely important to 

define precisely what is meant by the time in a given 

reference frame. This requires a careful procedure for the 

synchronization of clocks.



Some Preliminaries (II)

A reference frame is assumed to 

consist of many observers 

uniformly spread through the 

space. Each observer has a 

meter stick and a clock to make 

measurements only in the 

immediate vicinity.

To synchronize four equally spaced clocks, a signal is sent 

out by clock A to trigger the other clocks---each of which has 

been set ahead by the amount of time it takes to travels from 

A to the given clock.
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Relativity of Simultaneity

How can we determine whether two events at different 
locations are simultaneous?

Two events at different locations are simultaneous if an 
observer midway between them receives the flashes at the 
same instant.

Relativity of Simultaneity: Spatially separated events that 
are simultaneous in one frame are not simultaneous in 
another, moving relative to the first.
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Relativity of Simultaneity
(another example)

Two events that are simultaneous in one inertial 
system are not, in general, simultaneous in another.
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Geometry of Relativity: Time Dilation

How does the relative motion of two frames affect the 

measured time interval between two events?

A proper time, , is the time interval between two events as 

measured in the rest frame of a clock. In this frame both 

events occur at the same position. (Note: proper→own)

 =
2L0

c
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Time Dilation (II)

2 2 2
0

T = T0 where  =

1− v2 / c2

Note that we have used c as the speed of light in both 

frames---in accord with the second postulate.

(c 
2
1

 t  t 

2
) = L + (v  )

)

1

1− v2 / c2c
T = t =

2L0  (

Now let us find the time interval recorded in the frame S, in 

which the clock has velocity v. The time interval t in frame S 

measured by two observers A and B at different positions.
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Time Dilation (III)

h2 + (vt)2

1− v2 / c2

1

1
t =  , where  =

1− v2 / c2

Moving clocks run slow.

h
t =  t =

c c

Another example:

c
 =

h
(proper time)
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Time Dilation (IV)

Since  1, the time interval T measured in frame S (by two 

clocks) is greater than the proper time, T0, registered by the 

clock in its rest frame S'. The effect is called time dilation.

Two spatially separated clocks, A and B, record a greater 

time interval between two events than the proper time 

recorded by a single clock that moves from A to B and is 

present at both events.

1− v2 / c2

1
 =

14
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Example of Time Dilation

Experimental evidence (muon decay):

The reality of time dilation was verified in an experiment 

performed in 1941.

Rest frame at ground: An elementary particle, the muon (), 

decays into other particle. The particle decay rate is

N = N0e−t /

where  = 2.2 μs is called the mean lifetime.

Moving frame at the upper atmosphere: Muons are 

produced from the bombardment of cosmic ray protons. The

muon generated with this method has the speed of v = 0.995c.

The mean lifetime is 10 times longer than their cousins that 

decay at rest in the laboratory.



L0 =
c

Geometry of Relativity: Length Contraction

Consider a rod AB at rest in frame S, as shown below. The 

distance between its ends is its proper length L0:

The proper length, L0, of an object is the space interval 

between its ends measured in the rest frame of the object.

(L0: proper length)
2
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Length Contraction (II)
Another example:

t1 =
L + vt1 , t2 =

L − vt2
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t1 =

c

 t = t1+ t2 = 2
L

c 1− v2 / c2

1
c

L L
, t2 =

c − v c + v

2  2 2  2
L =

c 1
t =

c 1
 =

1
L0

(L0: proper length)

Moving objects are shortened.

L0 =
c
2



Effects of Length Contraction (I)

v = 0.0 c
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v = 0.5 c

v = 0.95 c v = 0.99 c



Length Contraction Effects (II)

distortion rest frame
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muon frame
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The Twin Paradox

Nothing in the theory of relativity catches the imagination

more than the so-called the twin paradox.

Twin A stays on earth while twin B travels at high speed to a

nearby star. When B returns, they both find that A has aged

more than B.

The paradox arises because of the apparent symmetry of 

the situation: In B’s frame, it is A that leaves and returns, so 

one should also find that B has aged more than A.

What’s going on??
B  A

A  B
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The Barn and Ladder Paradox

before farmer’s view

Who’s right?

ladder’s view
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The Galilean and Lorentz Transformation

Given:

1. Two reference frames S and S'. S' moves along the 
common x axis with speed v relative to S.

2. S and S' coincide at t = t' = 0.

3. An event occurs at point (x, y, z) and at time t as observed 
in S.

The Galilean Transformation (valid for v c) 
x' = x − vt, y' = y, z' = z, t' = t

Wiki: A Galilean transformation is used to transform between the 

coordinates of two reference frames which differ only by constant 

relative motion within the constructs of Newtonian physics.



The Galilean and Lorentz Transformation (ii)

The Lorentz Transformation (valid for any v)
(i) At time t, origin of S' is at a distance vt away from the 

origin of S, as observed in S.

(ii) x' is a proper length in S', so in S it is x’/ 

(i)+(ii)→ x = vt + x'/ ➔ x' =  (x − vt)

(iii) By symmetry x =  (x' + vt') and eliminating x', we have
➔ t' =  (t − vx/c2).

(iv) No length contraction perpendicular to the direction of 
relative motion ➔ y = y' and z = z'.

x =  (x − vt); y = y; z = z; t =  (t −
vx

)
c2
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c2

In terms of the moving frame

x =  (x + vt)

The Lorentz Transformation

t =  (t −
vx

)

The laws of electromagnetism are not covariant with respect 

to the Galiliean transformation. However, with the Lorentz 

transformation they are covariant. The space and time are 

related shown as follows:

In terms of the rest frame

x =  (x − vt)

c2
t =  (t +

vx
)
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Ex. 12.4 Time dilation

c2 c2

c2
)


dx

dt =  (dt +
vdx

) = 0  dt = −
vdx

(dx vdt ) + dx =   =  dx (1 −
v2

=
1

2
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2

v2vdx
dt

c c

1



dx =  (dx − vdt) = 0  dx = vdt

) =  dt(1− ) =

dt =  dt

Ex. 12.5 Length contraction

dt =  (dt −



Ex. 12.6 Einstein’s velocity addition rule

dx =  (dx + vdt) =  dt(ux + v) 

dt =  (dt +
vdx

) =  dt(1+
uxv)

c2 c2

Taking the ratio of these equations we find

An extreme case

when ux = c, we have ux =

u x + v

1+ uxv c2
ux =

1+ cv c2

26
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The Structure of Space-time: (i) Four-vectors

x0 =  (x0 −  x1),


x1 =  (x1 −  x0 ) 

x 2 = x2
 the Lorentz transformations



x3 = x3

c
x0  ct, x1 = x, x2 = y, x3 = z, and  =

v

0
 x0 




1


3


v=0

0
 x 

0


2


0

0

 x0 
 

1

v xvx =


 x 





  − 0

 x 
=  −  0

0 1

0 0

 
2 x 

 x3 



 1 x3 

   

the Lorentz transformation matrix
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Covariant Vector, Contravariant Vector, 

and Invariant Quantity

the covariant vector (row): a

)

b0 

0 1 2 3= (−a a a a

 b3 

= −a0b0 + a1b1 + a2b2 + a3b3 = −a 0b 0 + a1b1 + a 2b 2 + a3b 3

 ab =  ab

v=0

the Einstein 

summation convention

3
 
 b1 
 

2b 

 

the contravariant vector (column): a 

a1 a2 a3)

a1 a2 a3)
a = (a0

 (−a0



 a0 
 
 a1 

a =  
2 a 

 a3 
 

invariant quantity under Lorentz transformation

ab = ab



Metric/Norm Tensor (I)

What is the difference between x and x ?  Metric/norm tensor.

In special theory of relativity, Lorentz transformation of the four-

dimensional coordinates follow from the invariance of two events:

(ds)2 = (dx0 )2 − (dx1)2 − (dx2 )2 − (dx3)2 (11.67)

(11.68)(ds)2 = g dx dx

g = g is called the metric tensor and diagonal in flat space-time.

g00 =1, g11 = g22 = g33 = −1 (11.69)

The contravariant metric tensor g is defined as the normalized 

co-factor of g . For flat spac-time it is the same:

g = g (11.70)

Jackson
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Metric/Norm Tensor (II)

The contraction of the contravariant and covariant metric tensors 

give the Kronecker delta in four dimensions:

(11.71)

where   = 0 for    and  = 1 for  = 0,1,2,3.
 

x =g x

x =g x

g g =  

(11.72)

(11.73)

= (A0 , A), and A = (A0 , − A) (11.75)

With the metric tensor, a contravariant vector and a co-variant 

vector can be expressed as:

A

Jackson
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The Invariant Interval

( ) ( )0 1 2 3
A A A A

0 1 2 3
B B B B

Two events A and B occur at 

respectively.

,x , x , x , x and x , x , x , x

The displacement 4-vector: x  x − x

A B

The interval between two events: I  xx = −c2t2 + d 2

I  0 (c2t 2  d 2 )

I  0 (c2t 2  d 2 )

I = 0 (c2t2 = d 2)

timelike

spacelike

lightlike

t : the time difference between the two events.

d : their spacial separation.



12.2 Relativistic Mechanics
12.2.1 Proper Time and Proper Velocity

How to define the velocity?

Imagine you are on a flight to Moon, and the pilot announces 

that the plane’s velocity relative to ground is 4/5c.

the ordinary velocityu =
dl

dt
You might be more interested in the distance covered per unit 

proper time.

1− u2 / c2

1
u the proper velocity

d
η 

dl
=

Which definition is more preferable/useful?

1
=

1

d dt
dt =  d 

EM
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Proper Velocity 4-Vector (4-velocity)

Proper time  is invariant, whereas “ordinary” time t depends 
on the particular reference frame.

Proper velocity has an enormous advantage over ordinary 

velocity: it transforms simply.

The numerator, dx , is a displacement 4-vector;

The denominator, d , is invariant.
 

dx

d

 0 =  (0 − 1),


1 =  (1 − 0 ) 

 2 =2

 3 =3

 More generally, 


  v= v


0

33

 = c =
dct dt c

d d 1− u2 / c2
=



12.2.2 Relativistic Energy and Momentum

How to define the momentum?

In classical mechanics momentum is mass times velocity, but 

immediately a question arise: Should we use ordinary 

velocity or proper velocity? There is no prior reason to favor 

one over the other.
mu

p  mη = the relativistic momentum
1− u2 / c2

= mrelu mrel: the relativistic mass

1− u2 / c2

34

d

mc2

p0 = m0 = mc
dt

=

1− u2 / c2
where E  relativistic energy

mc
=

E

c



Kinetic Energy

How to define the kinetic energy?

The relativistic kinetic energy is the total energy minus the

rest energy:

the classical defination of the kinetic energy
2

K =
1

mu2

2

35

mc2

Ekin = E − Eres = − mc
1− u2 / c2

2

2

1 u2 3 u4

2 c 8 c4

3 mu4
2

8 c2

= mc (1+ + + ...−1)

=
1

+ ...mu +
2



Conservation and Invariant

Conserved quantity: same value before and after some 

process.

Invariant quantity: same value in all inertia frames.

Charge is both conserved and invariant. 

Energy is conserved, but not invariant.

Momentum is conserved, but not invariant.

Velocity is neither conserved nor invariant.

Invariant: p p = −( p0 )2 + ( p  p) = −m2c2

2 2 2

36

c2
 p

E2
− = m c



12.2.3 Relativistic Kinematics

Explore some applications of the conservation law to particle 

decays and collisions.

Example 12.7 Two lumps of clay, each 

of (rest) mass m, collide head-on at 3/5c. 

They stick together. Question: what is 

the mass (M) of the composite lump?

Example 12.8 A pion at rest decays into 

a muon and a neutrino. Find the energy 

of the outgoing muon, in terms of the 

two masses, m and m (assume m=0)

Does it make any sense?
37



Massless Particle: Photon

In classical mechanics there is no such thing as a massless 

particle.

In special relativity, p and E are still proportional to m. If u = c, 

then the zero numerator is balanced by a zero in the 

denominator, leaving p and E indeterminate (zero over zero).

1− u2 / c2 

mc2

mu
=

0

0
When u = c and m = 0,

0

0
E = =

1− u2 / c2








p =



A massless particle could carry energy and momentum, 

provided it always travels at the speed of light.

38
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+ 2 ( −1)m c m c

The Compton Scattering (Example 12.9)

39

A photon of wavelength  and energy hf “bounces” off an 

electron, initially at rest with the rest mass m0. Find the 

wavelength  of the outgoing photon, as a function of the 

scattering angle .

p =
hf

=
h 

c 
An electromagnetic wave carries moment given by:

Conservation of linear momentum:

( p − p cos )2 + ( p sin )2 = p2 (1)

Conservation of energy:

   

hf + m0c2 = hf  +  m0c2  ( p − p) = ( −1)m0c

2
2 22 2 2 2 2

0 0 0

( p − p)
2 + 2( p − p)m0c = p2 (2)

2 2 2
0 00 = ( −1)m c = ( −1)m c

1−1+ 
p =  m v = m c

1−  2






 px : p = p cos + p cos

yp : 0 = p sin − p sin




The Compton Scattering (ii)

0
p , p, and p

  ( p − p )2 + 2( p − p )m c = p2



For known X-ray frequency and final particle momentums 

We can further solve these two equations.

( p − p cos )2 + ( p sin )2 = p2 2 eqs., 3 unknown

m0c

40

Further solving these two equations, we obtain

( p − p)m0c = p p(1− cos )

m0c

m0c

1
−

1 1
= (1− cos )

h
(1− cos )

= 0.00243 nm is called the Compton wavelength.

p p

h

  =



12.2.4 Relativistic Dynamics 

Newton’s laws

Newton’s first law is built into the principle of relativity.

Newton’s second law retains its validity in relativistic 

mechanics, provided we use the relativistic momentum.

Newton’s third law does not, in general, extend to the 

relativistic domain due to the relativity of simultaneity.

Only in the case of contact interactions, where the two forces 

are applied at the same physical point, can the third law be 

retained.

rel

1− u2 / c2
where p = = m uF =

dp mu

dt

41
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Work-Energy Theorem

The work-energy theorem (“the net work done on a particle 

equals the increase in its kinetic energy”) holds relativistically.

rel
dt 1− u2 / c2

mu
F =

dp
, where p = = m u

dt dt dt dt 1− u2 / c2
W  F  dl = 

dp
 dl = 

dp

dl

dt = 
d

(
mu

) udt

2 2

2 22 2

1

1− u2 / c2

u2

3

2(1− u2 / c2 )2  2 2

Efinal Einitial
2 2

/ c

u2

=
1 

3 
(1−

(1− u / c )

1− u / c

dmu

dt

 −udu
− mu

du
mu

1  du 

dtc
2

)mu
dt

+
c

 
2

 1− u
dt 

dE

dt
 W = dt =

dt



c dt  1− u / c1− u / c  

du 

2
mu

dt 
=



 u

 
 

d  mu 
 u =

1 

−=
d  mc2 

=
dE

dt  
 


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The Ordinary Force and The Minkowski Force 
The ordinary force: F is the derivative of momentum with 

respect to ordinary time, transformation is ugly (both the 

numerator and denominator must be transformed).
dpy dpy dpy dt Fy

dt

dpz dpz dt Fz

dt

dp
Fz = z =

c
 (dt −


dx)

c

dt dt dt c dt

c

dpx dp0 dpx  dE

dt

  
Fy = = = =

 (dt − c dx)  (1− c ux )  (1− c ux )



dpx  (dpx − dp0 )
Fx = =

 (dt − c dx)
 

= =

 (1−


ux )  (1−


ux )

−  −

= =

(1− c ux ) (1− c ux )

The Minkowski force: K is the derivative of momentum with 

respect to proper time.

dp

d d dt 1− u2 / c2

dp dt dp F
K  = = , K

d






Example 12.12: Hidden momentum

As a model for a magnetic dipole m, consider a rectangular 

loop of wire carrying a steady current. Picture the current as a 

stream of noninteracting positive charges that move freely 

within the wire. When a uniform electric field E is applied, the 

charges accelerate in the left segment and decelerate in the 

right one. Find the total momentum of all charges in the loop.

Solution:

The current is the same in all four 

segments I = u

so N u
l l e

+ −  
I =

eN+ u =
eN− u =

Il

Relativistic momentum is

p =  +mN+u+ − −mN−u− = (
e

+ −
− )m

Il
 0
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Hidden momentum (relativistic effect)

The gain in energy (mc2) is equal to the work done by the

electric force E.

( + − − )mc2 = eEw  p =

Ilw is the magnetic dipole moment of the loop 

as vectors m points into the page,

and p is to the right, so

p =
1

(mE)
c2

A magnetic dipole in an electric field carries linear 

momentum, even though it is not moving.

This so-called hidden momentum is strictly relativistic, 

and purely mechanical. (See Ex. 8.3.)

A more realistic model for a current-carrying wire can be found in the supplement.

IlEw

c2

Il

e
p = ( + − − )m

See V. Hnizdo, Am. J. Phys. 65, 92 (1997). 45



12.3 Relativistic Electrodynamics
12.3.2 How the Fields Transform

We have learned, in various special cases, that

one observer’s electric field is another’s magnetic field.

What are the general transformation rules for electromagnetic 

fields?

Let’s start with “Charge invariant”. 

Consider the simplest possible electric field.

0

E0 =
0 ŷ

0

E =


ŷ

EM

Tsun-Hsu Chang
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The Transformation of The Electric Field

Are you sure that the field is still perpendicular 

to the plates? Yes.

The total charge on each plate is invariant.

where l = 1− v2 / c2 l and w = w
0 0 0Q = 0l0w0 = lw

0 0

0

1


1− v2 / c2
 = 0 = 00 E⊥ =  E⊥ perpendicular 

components

0 = 0  E// = E//

What if the field of a moving plane tilted, say, in the direction 

of motion?

Q = 0l0w0 = lw, 

where l = l0 and w = w0

parallel
components
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Example 12.13: The E-field of a moving point charge.

A point charge q is at rest at the origin in system S0. Question: 

What is the electric field of this same charge in system S, 

which moves to the right at speed v0 relative to S0?

Solution:

Very efficient as compared with Chap.10 Eq. 10.68. (10-40)

E0 =
1 q

r̂0

0
40 r2

1 qx0
x0 40 (x2 + y2 + z2 )3/2

0 0 0

1 qy0
y0 40 (x2 + y2 + z2 )3/2

0 0 0

1 qz0

(x2 + y2 + z2 )3/2

0 0 0

z0
04


E


E



E


=


=

=

40 (x2 + y2 + z2 )3/2

0 0 0
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1 qx0
x0 40 (x2 + y2 + z2 )3/2

0 0 0

0qy0
0 y0

0qz0

(x2 + y2 + z2 )3/2

0 0 00

1

1

4

x

y

z 0 z0


E = E =


E =  E =







E =

 E = 




To derive the general rule we must 

start out in a system with both electric 

and magnetic fields.

and Bz = −0v0
0

yE =




and Bz = −0v
 

0

Ey =

In a third system, S, traveling to the 

right with speed v relative to S, the field

would be

v + v0 ,  =
1

,  = 0
1+ vv0 / c2

1− v 2 / c2
v =

v is the velocity 

of S relative to S0

How to express E and B in terms of E and B?

S0

S v0 to S0

The Transformation of The Magnetic Field
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K  = ∓v0x̂



Ey =
0 = (

 
)
 

,

v is the velocity 

of S relative to S0Contd.

, 0 =

01− v2 / c2

1

0 0 0

where  =
1 1

,  =

1− v2 / c2 1− v 2 / c2

c2 =
 

0

1

00

,
vv

c2

1− v2 / c2

= 0 =  (1+ 0 ) and

1− v 2 / c2

v

 Ey =  (Ey − vBz )

 Bz =  (Bz −
c2

Ey )

With a little algebra.

S0

S v0 to S0

v to S0

v to S

_

S

_

_
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The Transformation of The Magnetic Field

c2

 Ez =  (Ez + vBy )

 By =  (By +
v

Ez )

Ex = Ex

Bx = Bx

By =  (By +
v

Ez ), Bz =  (Bz −
v

Ey )

c2 c2

Ex = Ex ,

Bx = Bx ,

Ey =  (Ey − vBz ), Ez =  (Ez + vBy )
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B =
v

 Ez ŷ −
v

 Ey ẑ

c2 c2

Two Special Cases

By =  (By +
v

Ez ), Bz =  (Bz −
v

Ey )

c2 c2

Ex = Ex ,

Bx = Bx ,

Ey =  (Ey − vBz ), Ez =  (Ez + vBy )

1. If B = 0 in S, then

=
v

Ez ŷ −
v

Ey ẑ

c2 c2

c2
= −

1
(v E) where v = vx̂

2. If E = 0 in S, then

E = −v(Bz ŷ − By ẑ)

= −v(Bz ŷ − By ẑ)

= vB where v = vx̂

Ex = Ex , Ey =  Ey ,

Bx = 0,

Ez =  Ez

y z z y
c2 c2

B = 
v

E , B = −
v

E

Ex = 0,

52

Ey = −vBz , Ez = vBy

Bx = Bx , By =  By , Bz =  Bz
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12.3.3 The Field Tensor

E and B certainly do not transform like the spatial parts of the 

two 4-vectors (4-velocity and 4-momentum).

What sort of an object is this, which has six components and 

transforms according previous results?

Answer: Antisymmetric, second-rank tensor.

t03 

23

33

vt =
t t 

tt

t01 t02

t11 t12

20 t21 t22

30 t31 t32

t00


t10


t13













(symmetric tensor,

10 distinct components)

(antisymmetric tensor, 

6 distinct components)

tv = tv

tv = −tv

02 23

03

0

vt =


 
−t01 t13





t01 t02 t03 

0 t12

−t −t12 0 t

−t −t13 −t23 0





 



The Tensor Transformation

4-vector transformation 

tensor transformation





av = v a

t v =  v t

 

0
− 0 0

−  0

0 1

0 0


 =




0 0



 0



1

Ex = Ex

Bx = Bx

t 01 = t01 

t 23 = t23

t 02 =  (t02 − t12 ) 

t 31 =  (t31 + t03 )

t 03 =  (t03 + t31) 

t 12 =  (t12 − t02 )

Ez =  (Ez + vBy )

c2 c2
By =  (By +

v
Ez ) Bz =  (Bz −

v
Ey )

Work out the following transformation:

By direct comparison, we find:

Ey =  (Ey − vBz )

54

FvNow we can construct the field tensor



The Field Tensor and The Dual Tensor

There was a different way of imbedding E and B in an 

antisymmetric tensor.

01

55

02 03 12 31 23yx z
z y, F  B , F  B , F x B .

EE E
F 

c c c
, F  , F 

x

y

z

Bx

0




y 
Fv =








 

−E

−E

0 Ex / c Ey / c Ez / c


−E / c 0 B −B
z

/ c −Bz 0

/ c By −Bx 

the field tensor

0

x y

y x

−E / c E / c


z

0 −E / c

Ex / cz

By Bz

Gv =


−B









−B

 0 Bx


−B 0

Ez / c

−Ey / c 
 


the dual tensor
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12.3.4 Electrodynamics in Tensor Notation

The current density 4-vector:

Conservation of charge:

Reformulate the laws of electrodynamics (Maxwell’s 

equations and the Lorentz force law) in relativistic notation.

How the sources of the fields,  and J, transform?

V
 =

Q
and J = u, where 0 =

Q
(the proper charge density)

V0

1− u2 / c2V0 (length contraction)
V

 = 0
V0 = 0, where V =

J = u = 0u = 0(u) = 0η, where η = u (proper velocity)


 J = −

t

3


i=0

J  = (c, Jx , J y , Jz )

x = (ct, x, y, z)

−


= −
(c)

= −
J 0

x0t (ct)

J iJ yJx Jz

i
+

y z
 J =

x
+ =

x J 

 = 0
x

EM

Tsun-Hsu Chang
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Maxwell’s Equations in Tensor Notation (i)

Maxwell’s equations can be written in the following forms.

uFv
= 

xv

0
0J

Fv
=

F00
+

F01
+

F02
+

F03
= 

0
0

 = 0

  E =
 yx z

xv x0 x1 x2 x3

E1 E E
( + + ) =  c

c x y z

1
0J

F1v
=

F10
+

F11
+

F12
+

F13
= 

= 0(J)x

 =1

yx z
0 x x

c2 c2

B
xv x0 x1 x2 x3

1 E B
−

t y z t
+ − =  J → ( −

1 E
+  B)

Gauss’s law

Ampere’s law with Maxwell’s correction

c2
+ = 2 and 3

t
( −

1 E
+  B)y,z = 0J y,z

t
  B − 00

E
= 0J
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Maxwell’s Equations in Tensor Notation (ii)
Maxwell’s equations can be written in the following forms.

0
Gv

=

xv

Gauss’s law for magnetic field 

Faraday’s law

G0v
=

G00
+

G01
+

G02
+

G03
= = 0 0

(
Bx

 B = 0+
By

+
Bz ) = 0

xv x0 x1 x2 x3


x y z

G1v
=

G10
+

G11
+

G12
+

G13
=

xv x0 x1 x2 x3
 = 1 0

−
1 Bx

x
−

1 Ez
1 Ey  B

c y
+

c z
= 0 → (

t
+  E) = 0

c t

+ = 2 and 3
t t

(
 B

+  E)y,z = 0   E +
 B

= 0

(11.143)

c t

F +
F +

F = 0 ( = 0 − 3)
x xv x

set ( ) = (1,2,3)   B = 0

set ( ) = (0,1,2), (0,1,3), and (0,2,3)   E + 1 B = 0.

Jackson
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The Minkowski Force and Relativistic Potentials

The Minkowski force on a charge q is given by

1 1
K = q[E + (uB)] = F

1− u2 / c2 1− u2 / c2

The electric and magnetic fields can be expressed in terms of 

a scalar potential and a vector potential.

B =  A
t

E = −V −
A

A = (V c , Ax , Ay , Az ) 4-vector potential

v

v



Av A

F = − the definition of the field tensor
x x

A
= 0 the Lorentz gauge

x
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Problem 12.3

(a) What's the percent error introduced when you use Galileo's rule, instead of Einstein's, 

with vAB = 5 mi/h and vBC = 60 mi/h?

(b) Suppose you could run at half the speed of light down the corridor of a train going 

three-quarters the speed of light. What would your speed be relative to the ground?

(c) Prove, using Eq. 12.3, that if vAB < c and vBC < c then vAC < c. Interpret this result.

Problem 12.4 As the outlaws escape in their getaway car, which goes 3c 4 , the police

officer fires a bullet from the pursuit car, which only goes c 2 (Fig. 12.3). The muzzle

velocity of the bullet (relative to the gun) is c 3. Does the bullet reach its target

(a) according to Galileo, (b) according to Einstein?

Problem 12.6 Every 2 years, more or less, The New York Times publishes an article 

in which some astronomer claims to have found an object traveling faster that the 

speed of light. Many of these reports result from a failure to distinguish what is

seen from what is observed -that is, from a failure to account for light travel time. 

Here's an example: A star is traveling with speed v at an angle  to the line of sight 

(Fin.12.6). What is its apparent speed across the sky? (Suppose the light signal from 

b reaches the earth at a time t after the signal from a, and the star has meanwhile 

advanced a distance s across the celestial sphere; by "apparent speed," I mean

s / t.) What angle  gives the maximum apparent speed? Show that the apparent 

speed can be much greater than c, even if v itself is less than c.

Homework of Chap.12



Problem 12.25 A car is traveling along the 45∘ line in S (Fig.12.25), at (ordinary)

speed (2/ 5)c.

(a) Find the components ux and uy of the (ordinary) velocity.

(b) Find the components x and y of the proper velocity.

(c) Find the zeroth components of the 4-velocity, 0.

System S is moving in the x direction with (ordinary) speed 

to S. By using the appropriate transformation laws:

2 / 5 c, relative
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Problem 12.31Suppose you have a collection of particles, all moving in the x 

direction, with energies E1, E2 , E3,...and momenta p1, p2 , p3,...Find the ve-

locity of the center of momentum frame, in which the total momentum is zero.

3 mc decays into two photons. One of the photons is emitted in the same direction
4

as the original pion, and the other in the opposite direction. Find the (relativistic)

energy of each photon.

Problem 12.34 A neutral pion of (rest) mass m and (relativistic) momentum p =

Homework of Chap.12



 
d

=
d 2x
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Problem 12.39 Define proper acceleration in he obvious way:

. (12.75)
d d 2

(a) Find 0 and α in terms of u and a (the ordinary acceleration).

(b) Express  in terms of u and a .

(c) Show that  =0.

(d) Write the Minkowski version of Newton's second law, Eq. 12.68, in terms of

 . Evaluate the invariant product K .

Problem 12.47

(a) Show that (E B) is relativistically invariant.

(b) Show that (E2 − c2B2 ) is relativistically invariant.

(c) Suppose that in one inertial system B = 0 but E  0 (at some point P). Is it 

possible to find another sysem in which the electric field is zero at P?

Homework of Chap.12


