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Chapter 12 Electrodynamics and Relativity TsunHsuChang

12.1 The Special Theory of Relativity

Ether: Since mechanical waves require a medium to
propagate, it was generally accepted that light also require
a medium. This medium, called the ether, was assumed to

pervade all matter and space In the universe.

“Absolute” frame: The Maxwell's equation was inferred that

the speed of light should equal ¢ only with respect to ether.
This means that the ether was a “preferred” or "absolute”

reference frame.
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Ether

Properties of the ether: Since the light speed c Is enormous,
the ether had to be extremely rigid. So it did not impede the
motion of light. For a substance so crucial to electro-
magnetism, it was embarrassingly elusive. Despite the

peculiar property just mentioned, no one could detect its
ghostly presence.

Efforts to detect the ether: Michelson inspired by the
Maxwell took the problem of detecting the ether as a challenge.
He developed his interferometer and used It to try to detect the

earth’s motion relative to the ether. The result were not
conclusive.



The Michelson-Morley Experiment

Michelson and Morley wanted to detect the speed of the
earth relative to the ether. If the earth were moving relative to

the ether, there should be an “ether wind” blowing at the
same speed relative to the earth but in the opposite direction.

Michelson-Morley interferometer: Use light speed
variation to verify the existence of ether.
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The Michelson-Morley Experiment (II)
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The Michelson-Morley Experiment (ll1)

Using v = 30 km/s, the expected shift was about 0.4 fringe.
Even though they were able to detect shifts smaller than
1/20 of a fringe, they found nothing.

Possibllities:
® The ether was dragged with the Earth. X
® No ether.

® Constant light speed.



The Two Postulates
The two postulates In the theory of special relativity are:

1. The principle of relativity: All physical laws have the
same form In all inertia frames.

2. The universal speed of light: The speed of light in free
space Is the same In all inertial frames. It does not depend
on the motion of the source or the observer.

Both postulates are restricted to inertial frames. This is why the
theory is special.

* The principle of relativity extends the concept of covariance
from mechanics to all physical laws.

* The constancy of the speed of light is difficult to accept at first.

All the experimental consequences have confirmed its
correctness.



Some Preliminaries

Event: Event Is something that occurs at a single point In
space at a single instant in time.

Observer: An observer Is either a person, or an automatic
device, with a clock and a meter stick. Each observer can
record events only In the iImmediate vicinity.

Reference frame: A reference frame Is a whole set of
observers uniformly distributed in space. The frame in which
an object Is at rest Is called its rest frame.

Synchronization of clocks: It is extremely important to
define precisely what is meant by the time In a given
reference frame. This requires a careful procedure for the
synchronization of clocks.



Some Preliminaries (Il

A reference frame Is assumed to

%—«\ -ff)r——T——— consist of many observers
£ 2 4 & | uniformly spread through the
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R e e | space. Each observer has a
£ e ¥ _(ff;\ > meter stick and a clock to make
il i measurements only in the
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I _/\ . Immediate vicinity.
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To synchronize four equally spaced clocks, a signal is sent
out by clock A to trigger the other clocks---each of which has

been set ahead by the amount of time it takes to travels from
A to the glven clock



Relativity of Simultaneity

How can we determine whether two events at different
locations are simultaneous?

Two events at different locations are simultaneous If an
observer midway between them receives the flashes at the

same Instant.

Relativity of Simultaneity: Spatially separated events that
are simultaneous in one frame are not simultaneous In
another, moving relative to the first.
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Relativity of Simultaneity
(another example)

Two events that are simultaneous 1n one Inertial
system are not, Iin general, simultaneous in another.




Geometry of Relativity: Time Dilation

How does the relative motion of two frames affect the
measured time interval between two events?

S’

$ Al
*- LiB’

A proper time, 7, Is the time interval between two events as

measured In the rest frame of a clock. In this frame both
events occur at the same position. (Note: proper->own)
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Time Dilation (I1)

Now let us find the time interval recorded In the frame S, In
which the clock has velocity v. The time interval At in frame S
measured by two observers A and B at different positions.

S |

S |

Ao 2 AN,
C- = L5+ (v:
( 2) 0+ ( 2)
T =at=2L0 . )
C \/1—v2/c2

A

T =yTp where y = . PG T

| l

A

Note that we have used c as the speed of light in both

frames---in accord with the second postulate.
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Time Dilation (Il

Another example: - ,

© O
h _ | h
T =— (proper time) . VAL
C S 0 T ©
h? + (VAt)?
Atz\/ +(vAY = At = ! i
C J1-vZ/c? ¢
1

At = yr, where y =

J1-Vv2 /¢
Moving clocks run slow.
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Time Dilation (I1V)

Since y >1, the time Interval T measured Iin frame S (by two
clocks) Is greater than the proper time, T,, registered by the
clock in its rest frame S'. The effect is called time dilation.

Two spatially separated clocks, A and B, record a greater
time interval between two events than the proper time
recorded by a single clock that moves from A to B and Is
present at both events.

v/c Y
0.6 5/4
1 0.8 5/3
7/ . 0.98 3
- 0.995 10
2 | A2
Ji-Vv2 /¢ 0.9965 12
0.9992 25

kB v BNRES SN0 LMEH °
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Example of Time Dilation

Experimental evidence (muon decay):

The reality of time dilation was verified in an experiment
performed in 1941.

Rest frame at ground: An elementary particle, the muon (u),
decays into other particle. The particle decay rate Is

N = NOe—t/T
where 7 = 2.2 us Is called the mean lifetime.

Moving frame at the upper atmosphere: Muons are

produced from the bombardment of cosmic ray protons. The
muon generated with this method has the speed of v = 0.995c.
The mean lifetime is 10 times longer than their cousins that
decay at rest in the laboratory.
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Geometry of Relativity: Length Contraction

Consider arod AB at rest In frame S, as shown below. The
distance between Iits ends Is Its proper length L,:

The proper length, L,, of an object Is the space Iinterval
between Iits ends measured In the rest frame of the object.

RV R A Y,

. CT
Lamp o AAAANNASA Mirror Lo Y (Lo: proper length)

© ©
b’ L
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Length Contraction (Il)

Another example:

vAt; vAL,
Vf\/\f\/\/\/\/\f\/ . : :"'\-’V'v\fx/\,}_ ' : .
L;_u'np @f\./‘\/\/'\/\/\‘./\}\/\;! I\’llrlOI' ,gh,\,—\,%\/\/ixf\f\/""""'\'/ fj? E —
© ON @ B EE
-~
CT :
Lo = FY (Lo: proper length)
Aty = L+vAt1’ At, = L — VAL,
C C
L L 1
At]_:—, Atz = AtZAt1+At2 =2L
C—V C+V Cl—VZ/CZ
=S a=Cd ety
2y2  2p20

Moving objects are shortened.
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Effects of Length Contraction (1)




Length Contraction Effects (Il

distortion rest frame
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The Twin Paradox Tsun-Hsu Chang

Nothing in the theory of relativity catches the imagination
more than the so-called the twin paradox.

Twin A stays on earth while twin B travels at high speed to a
nearby star. When B returns, they both find that A has aged

more than B.

The paradox arises because of the apparent symmetry of
the situation: In B’s frame, it Is A that leaves and returns, so

one should also find that B has aged more than A.

A>B

>? What'’s going on?
B>A
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The Barn and Ladder Paradox

Nl -

(a)
before

(b)
farmer’s view

]\

Who's right?

-
(c)

ladder’s view
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The Galilean and Lorentz Transformation

Given:

1. Two reference frames S and S'. S' moves along the
common x axis with speed v relative to S.

2. Sand S' coincide att=t"=0.

3. An event occurs at point (x, y, z) and at time t as observed
In S.

The Galilean Transformation (valid for v <<c)
X'=Xx—-v,y=y,2=21=t

Wiki: A Galilean transformation Is used to transform between the
coordinates of two reference frames which differ only by constant

relative motion within the constructs of Newtonian physics.
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The Galilean and Lorentz Transformation (i)

The Lorentz Transformation (valid for any v)

(1) At time t, origin of S' Is at a distance vt away from the
origin of S, as observed in S.

(I x'is a proper length in S', soin Sitis x’/y.
(D+(1) 2 x=vt+ X'/y=>» X' = y(X — Vi)

(i) By symmetry x = y(x' + vt') and eliminating x', we have
=> t' = y(t — vx/c?).

(Iv) No length contraction perpendicular to the direction of
relative motion =2 y=y andz=17"

VX
C? )

X'=y(x-vt); y'=y, /=2, t'=y(t
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The Lorentz Transformation

The laws of electromagnetism are not covariant with respect
to the Galiliean transformation. However, with the Lorentz
transformation they are covariant. The space and time are
related shown as follows:

In terms of the rest frame

X'=y(X—vt)  }
— U
' VX B
U= 7/(t CZ) ) *
In terms of the moving frame x :
X=y(x"+vt) ——
/

t=y(t v )

C2

24



Ex. 12.4 Time dilation

dx’=y(dx—vdt)=0 = dx=vdt

v2 |

dt’ = y(dt "“;x) = ydi(1-—) = —di
C C 4

dt = ydt’

Ex. 12.5 Length contraction

dt = y(dt "dj)zo = df = "dj
C C
P2 |

dx = y(dx"+vdt") = ydx'(1
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Ex. 12.6 Einstein’s velocity addition rule
dx = y(dx" +vdt") = ydt' (u’, +v)

vdx’ ’ l‘

dt = y(df’ +—5-) = ydt (1 +-2")
C

C

Taking the ratio of these equations we find

U, +v
u —
X ’ 2
l+u,v/c
An extreme case
, c+v
when u,. =c, we have u, = =c

1+cv/02 B

> X
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The Structure of Space-time: (1) Four-vectors

v

xOEct, xlzx, x2=y, x3=z, and [ =—
C

2
p

¥ = y(x" = Bx)

—1 ] 0
x =y(x —px
7 =) - the Lorentz transformations

-2 2

X =X

373 =x3 )
/fo\ TR O\/xO\
—1 | 3
X — 0 O] x

= woy )_c‘uzzj\‘ffxv
2 0 0 1 0} 2 0
_3 0 0O 0 1 3
) \\ j\x J

~

the Lorentz transformation matrix



Covariant Vector, Contravariant Vector,

and Invariant Quantity

the covariant vector (row): a,,

C’,u:(ao a ay as)

lllllllllllllllllllllllllllllllll

= (—CIO CIl/ d
ao A
. u a
the contravariant vector (column): a® 4~ =|
d
3
. . . ° \a /
invariant quantity under Lorentz transformation
the Einstein 4 bO\
summation convention
y 2 0 1 2 3\
M _ M __|_
aﬂb —Zaﬂb —( a a a a) ,
v=0 b
3
0" )
——a%0 +alpl+a%p? +adp3 =-av 0 + albl + 5%p % + g9p°°



Jackson Metric/Norm Tensor (1)

What is the difference between x“ and x,, ? = Metric/norm tensor.

In special theory of relativity, Lorentz transformation of the four-
dimensional coordinates follow from the invariance of two events:

(ds)? = (dx9)? — (dx1)2 — (dx?)? — (dx3)? (11.67)
(ds)? = gypdx@dx? (11.68)

Jap = 94 1S Called the metric tensor and diagonal in flat space-time.

Joo =1, 011=022 =033 =-1 (11.69)
The contravariant metric tensor g“ﬂ IS defined as the normalized
co-factor of g,5. For flat spac-time 1t Is the same:

0% = gup (11.70)
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Jackson Metric/Norm Tensor (11)

The contraction of the contravariant and covariant metric tensors
give the Kronecker delta in four dimensions:

g(x;/gw = 50/?’ (11.71)
where 50/3 =0 for a # [# and 52’ =1 for =0,1,2,3.

X, =gaﬁx'8 (11.72)

xa=ga'8x5 (11.73)
With the metric tensor, a contravariant vector and a co-variant
vector can be expressed as:

A% =(4°,A), and 4, =(4",-A) (11.75)
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The Invariant Interval

Two events 4 and B occur at (xg,xh,xi,xil) and (xg,x}g,xé,x%),

respectively.

The displacement 4-vector: Ax*' = xﬁf — xg
The interval between two events: [ = Ax ﬂAxﬂ = —0212 +d 2

2,2 2
timelike /<0 (7" >d")
spacelike 7 >0 (0212 < dz)
ightlike j_ (0212 _ d2)

t : the time difference between the two events.

d . their spacial separation.
31
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12.2 Relativistic Mechanics Tsun-Hsu Chang

12.2.1 Proper Time and Proper Velocity

How to define the velocity?

Imagine you are on a flight to Moon, and the pilot announces
that the plane’s velocity relative to ground Is 4/5c.

dl . .
u= P the ordinary velocity
{
You might be more interested in the distance covered per unit
proper time. B R
dt=ydt = =y—
T ar T
1 .
N = dl - u the proper velocity
dt  J1-u?/¢?

Which definition Is more preferable/useful?
32



Proper Velocity 4-Vector (4-velocity)

Proper time t Is invariant, whereas “ordinary” time t depends
on the particular reference frame.

Proper velocity has an enormous advantage over ordinary
velocity: it transforms simply.

dx*  The numerator, dx”, is a displacement 4-vector;

n" =

dT  The denominator, d7, is invariant.
70 =y’ -pn'),
I P
= =P - More generally, 77
72 = 2

P o de_ di_ <

dr dr \/1_u2/62

M — A/‘L}lnv
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12.2.2 Relativistic Energy and Momentum

How to define the momentum?

In classical mechanics momentum Is mass times velocity, but
Immediately a question arise: Should we use ordinary
velocity or proper velocity? There is no prior reason to favor
one over the other.

mu N
Pp=mn= the relativistic momentum
J1-u?/c?
=m.,u m,: the relativistic mass
p¥ =mnP = =mC dt i _E
\/1 u¢ /¢4 ©
mc? o
where E = relativistic energy

J1-u2 /2

34



Kinetic Energy

How to define the kinetic energy?

The relativistic kinetic energy Is the total energy minus the
rest energy:

2
Ekin =E - Eres — e mC2
\/1— u? / c?
1u> 3u*
= mc? (14 | E—
( 2¢c° 8c* )
A
2 8 c?

K = %mu2 the classical defination of the kinetic energy

35



Conservation and Invariant

Conserved quantity: same value before and after some
process.
Invariant quantity: same value in all inertia frames.

Charge Is both conserved and invariant.
Energy Is conserved, but not invariant.
Momentum Is conserved, but not invariant.

Velocity Is neither conserved nor invariant.

Invariant: p“ pﬂ = —( po)2 +(p- p) = —m2C2

2
E 2 20

— D =m“c
c2

36



12.2.3 Relativistic Kinematics

Explore some applications of the conservation law to particle
decays and collisions.

Example 12.7 Two lumps of clay, each = A I—_

{ } = . Em— )
Ne p TR

of (rest) mass m, collide head-on at 3/5¢c. = ¥
They stick together. Question: what IS (before) (after)
the mass (M) of the composite lump?

L &5 4

7N
N

Example 12.8 A pion at rest decays Into o7 w

a muon and a neutrino. Find the energy "R
of the outgoing muon, Iin terms of the

two masses, m, and m, (assume m =0) (hefore) (after)

Does it make any sense?
37



Massless Particle: Photon

In classical mechanics there is no such thing as a massless
particle.

In special relativity, p and E are still proportional to m. If u =c,
then the zero numerator Is balanced by a zero In the
denominator, leaving p and E indeterminate (zero over zero).

(p_ mu _9
1—u*/c* 0
Whenu=cand m=0, =+ \/ wre
mc 0
E: = —
\/1—1/12/02 0

.A massless particle could carry energy and momentum,
| prowded It always travels at the speed of light.
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The Compton Scattering (Example 12.9)

A photon of wavelength A and energy hf “bounces” off an
electron, Initially at rest with the rest mass m,. Find the

wavelength A' of the outgoing photon, as a function of the
scafttering angle 0.

. . . hf  h

An electromagnetic wave carries moment given by: pj = T
Conservation of linear momentum: )

4 4 Fhoton

Py Py =pycos@+pcose -
[y s 0= pysinf=psing

) Photon 7 '\\QA
(p/l - p/l’ COS 9)2 + (p;t’ SiIl 9)2 . p2 (1) Electron Electron

(before) (after)

Conservation of energy:
W +moc? = hf'+ymge* = (p2—pa)=(y-1)moc

P =y miv? _11:;’8 sc? = (y° -1)msc? —[(y—l)moc] +2[(7=1)mqc mgc

(IO/1 —p)*+2(p - Pr)Mec=p°  (2) 3




The Compton Scattering (i)

For known X-ray frequency and final particle momentums
We can further solve these two equations.

(py—py cos 9)2 +(py’sin 6’)2 = p2 >2 egs., 3 unknown
2 9) )
(Pa—px) +2pj—pyImec=p-~ | Pa Py>andp

Further solving these two equations, we obtain
(P4z—Pa)MoC=p,ypy(l-coso)

/4 2T kY 1
1 —i:—l (1-cosO) ”f" " vy Y
Py Pa MpC ,
h I i
—>AAd=—(1-c0s0) , | | ]
MpC A 0.710 0710 0.750
h kE (%) -

——=0.00243 nm is called the Compton wavelength.
MQpC



12.2.4 Relativistic Dynamics Tsun_HiwChang

Newton’s laws

Newton’s first law Is built into the principle of relativity.

Newton’'s second law retains its validity in relativistic
mechanics, provided we use the relativistic momentum.

F = dp where p = . m U

dt J1-u? /c?

Newton’s third law does not, in general, extend to the
relativistic domain due to the relativity of simultanelity.

Only In the case of contact interactions, where the two forces
are applied at the same physical point, can the third law be

retained.
41



Work-Energy Theorem

The work-energy theorem (“the net work done on a particle
eguals the increase In Its kinetic energy”) holds relativistically.

d
F=2P , Where p = i =m_u
dt J1=u?/
d dp dl mu
W= [F-dl= jpdl [<Fdr=[<( )- udt
dt dt dt \1—u? />
d ( mu \ ] ( \/ » . 7 dmu 1 —udu\
u = 5> l—u”/c y mu — ‘u
dl\\/l—uz/CQ/ I—u”/c™ | 4 \/l—u e~ crdt
| ( 1’ du  u’ du\ | du
= 3 (1——2)mud s mu—— | = 3| mu—
e [ ¢ dr S, dt
(1—u”/c*)2 (1—u”/c%)2
d ( me? | dE

— =— = W= j—d Efinal — Einitial
dr\\/l—uz/cz/ dt 11




The Ordinary Force and The Minkowski Force
The ordinary force: F Is the derivative of momentum with
respect to ordinary time, transformation is ugly (both the
numerator and denominator must be transformed).

5o Py dpy dpy | di Ty
| B )

dt 7(dt—'fdx) 7(1—6%) V(I—f”x)
ﬁ _dﬁZ B dpz - dpz/dt . FZ
z = - = B -

dt y(dl‘—gdx) 7(1_g”x) 7(1—g”x)

) dp—x_ﬂdp dpx B ,8 dFE

= _dpx _ Ydpx = Pdp7) _ ay dt __ _dt ¢ dt
: _ _ ~

dt 7/(dl‘—ng) (l_g”x) (l_é”x)

The Minkowski force: K Is the derivative of momentum with
respect to proper time.

dp _dtdp  F o _ Op

K="= = ,
dr drdt \J;_ 22 dr
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Example 12.12: Hidden momentum

As a model for a magnetic dipole m, consider a rectangular
loop of wire carrying a steady current. Picture the current as a
stream of noninteracting positive charges that move freely
within the wire. When a uniform electric field E is applied, the
charges accelerate In the left segment and decelerate In the
right one. Find the total momentum of all charges in the loop.

Solution: " .
The current is the same in all four = 2 9
segments | = Au. ° y f | - “,__
Sl o ol
— eN+ — eN— — ” Ol — JO
I = | J, | u_so N.u, _E 00000000000

Relativistic momentum IS
P= 7/+mN+u+ —7/_mN_U_: (7/+ _7/_)m u =40
e
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Hidden momentum (relativistic effect)

The gain in energy (ymc?) Is equal to the work done by the
electric force E. 1

IEw p=(y, -y )m—
(y. -y )me* =eEw = p=—3 €
llw is the magnetic dipole moment of the loop (o o o

(T

as vectors m points into the page, Iy /| fjj
and p Is to the right, so ' :

_—
. .
& = e
—
p—
L A

SSRGS
T
.

1
p:C—Z(me)

A magnetic dipole in an electric field carries linear
momentum, even though it iIs not moving.

This so-called hidden momentum is strictly relativistic,
and purely mechanical. (See Ex. 8.3.)

A more realistic model for a current-carrying wire can be found in the supplement.

See V. Hnizdo, Am. J. Phys. 65, 92 (1997). 45



_ EM
12.3 Relativistic Electrodynamics Tsun-Hsu Chang

12.3.2 How the Fields Transform

We have learned, in various special cases, that
one observer’s electric field is another's magnetic field.

What are the general transformation rules for electromagnetic
fields?

Let’'s start with "Charge invariant”.

Consider the simplest possible electric field.

Yt V4

(a) ()
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The Transformation of The Electric Field

Are you sure that the field Is still perpendicular |
to the plates? Yes. - <<<< a

The total charge on each plate is invariant. i / / / / L
_ M2 A2 _
Q = oglgwy = olw  Where | _\/1 v /C IO and w W AN
1 erpendicular
O = 00 =7000 = E-=yEy «— gorr?ponents
\/1— v§ | 2

What if the field of a moving plane tilted, say, in the direction
of motion?

Q= Gol()WO = olw,
ol v where | =1y and w = wj
] B Il =/ parallel
//s/ oc=0p = E =kj< components

| —
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Example 12.13: The E-field of a moving point charge.

A point charge g Is at rest at the origin in system S,. Question:
What Is the electric field of this same charge in system S,
which moves to the right at speed v, relative to S,?

Solution: |
EO — % f'O
47[80 )
1 qxo
by =
" Arng (xg + 5 +25)"
1 qy()
SEo =
T AmE (g +y5+20)°
1 qZO
b=
T Ay (xg+yp+2))°

.

- 3

1 gxo

Armey (xg +y§ +25)°"°

1 Y09V o

Ay (xj +y5 +20)°

1 VOQZO
47"’30 (xo +yo tz o)

3/2

Very efficient as compared with Chap.10 Eqg. 10.68. (10-40)
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The Transformation of The Magnetic Field

To derive the general rule we must 1 S VtoS
start out In a system with both electric - ?
and magnetic fields. 0 f
! = R
9] ; K. = FoV,X
E,=— and B, =-Lq0V
In a third system, S, traveling to the 7
right with speed v relative to S, the field BV
wouldbe = B )
EF =— and B =—u.ov . ' v 1s the velocity
Y go “ ﬂo Vo4 g of S relative to S,
V4 V() 1 _E'J _E (v relative to &)
V — . 7_/ — . 5 — 700 |
1+VVO/C2 \/1_v2/02 _

4:.;‘

How to express E and B in terms of E and B?

=Y

49
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v is the velocity

VA
C O n td . Vok of S relative to S,

T (v relative to &)

f—x" f——""

@l
=

E =—= :
’ &0 Yo €o o S —
where ¥ = : Y = ! 7[. = L
— ’ — s 0 —
\/1—1/2/02 \/1—72/02 \/1—v§/(:2 1S V10S
0
o - >
With a 11ﬁle algebra. BT
- > TS v, t0 S,
1—vy/
l:\/ 0" —y1+20) and ? = L . P
Y0 \/1_V2 /CZ C €0l - / :
— E,=y(E,—VB,) o S,
_ y -
= B.=rB.~3E,) - .
+0g / Yo
2 ) ) 50



The Transformation of The Magnetic Field

‘ = E.=Y(E.+VB)) >
S a’j_ “““ PR n v
/ - = B, =y(B, +c—2EZ )/
oo l E.=E,
/ 4
4 4

o1



Two Specilal Cases

E.=E. E,=y(E,—vB.), E. =yE.+vB))
— — 1% — 1%
B, =8B, By = )/(By —|——2EZ), B_=y(B. ——2Ey)
C C
1.1fB=0In S, then _ v oy )
Ex :Ex> Ey = yEya Ez — yEZ B :C_zyEZy_C_27/EyZ
— — V — V _L— ,\_L— A
Bx:O, By: C_2Eza BZ: 7/02 Ey _CZ Ezy 62 yZ
1 _ .
— h =
— > (vxE) wherev=vx
2. fE=01In S, then
Ey =0, Ey =-yB;, E; = yVBy E:_YV(Bz)A’_Byz)
By =By, By =yBy, B; =yB; =—v(B,y — |§y2)

—vxB where v = vX

52



12.3.3 The Field Tensor

E and B certainly do not transform like the spatial parts of the
two 4-vectors (4-velocity and 4-momentum).

What sort of an object is this, which has six components and
transforms according previous results?

Answer: Antisymmetric, second-rank tensor.

ZLOO 101 f02 IO3

IIO Ill tl2 tl3

120 r21 f22 123

30 31 32 33

L A Sl

H =

MV — VU
MV — _VH
tOl TO2

0 112
_112 0

13 23

(Ssymmetric tensor,
10 distinct components)

(antisymmetric tensor,
6 distinct components)
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The Tensor Transformation

A =+
A = A'“Av A0 tensor transformation

y
a’ =AY a7t 4-vector transformation -y

0 0

0 0

Work out the following transformation:

701 =01 702 _ 02 g2y 703 _ 03 g3l

By direct comparison, we find:
Ex:Ex Ey:y(Ey_VBz) EZ:y(EZ_l_VBy)

B. =8B

X X
C C

Now we can construct the field tensor F»

— V V
— y(By +_2EZ) BZ — y(BZ __2Ey)

o = O O

—_ O O O

o4



The Field Tensor and The Dual Tensor
E E E

FOl — X , F02 — y : FO3 — z : F12 EBZ, F31 EBy, F23 EBx.
c C C \
0 E./lc E,lc E./c
-E. /¢ 0 B. -B, _
FHY = . the field tensor
—E,/c —B, 0 B,
-k, /¢ B, -B, 0

There was a different way of imbedding E and B In an
antisymmetric tensor.

N

0 B, B, B.
—-B, 0 -E./c E,/c
CaE - the dual tensor
-B, E./c 0 o e
-B. -E, jc E./c 0




12.3.4 Electrodynamics in Tensor Notation i
sun-Hsu Chang

Reformulate the laws of electrodynamics (Maxwell's
equations and the Lorentz force law) In relativistic notation.

How the sources of the fields, p and J, transform?

Jo, :8 and J = pu, where py = \/g (the proper charge density)
0
0= 0p Vo _ v0p, WhereV = \/1— u? /c?V, (length contraction)

V
J = pu=ypgu = pg(yu) = pgn, Where n=yu (proper velocity)

The current density 4-vector: J# =(cp, Jyx, Jy, J;)

Conservation of charge: .2 7. 7170 7

0, Oy 083, oJ
V-d=—"4 | =) — - - === 1
v.g=_92 x oy aigat ek
| — —=
T e _@° oxfL L

ot o(ct) oxO 24



Maxwell's Equations In Tensor Notation (i)

Maxwell’s equations can be written in the following forms.

| QF MY 1 Gauss’s law
Do 0% Ampere’s law with Maxwell’s correction

oF v oF%  orFl orFY? orFY? 0
#=0 e VIR B s b 2
0x 0x 0x 0x 0x
| 0E, 9JE, OF
(—X +—L - =) = lycp m— v.E=£
c ox dy oz £
ﬂZI aFlv _ aFlo | aFll | aF12 | aF13 _ Jl
ox” ) axl m? ox |
| 0E, 0B. 0B, )
L4 —= = UnJ FVXB)., = un(J
2y oy Ml 2 g VB M,
1 oE oE

+ﬂ:2 and 3 ( 5 3 : VXB)y,Z :ﬂon,Z :VXB_/’{OE"OEZIUOJ
C




Maxwell's Equations in Tensor Notation (ii)
Maxwell’'s equations can be written in the following forms.

gt _ 1 Gauss’s law for magnetic field

' ox” | Faraday's law
=0 =t t 5 t——3 =0
ox’ ox ox ox ox
oB. OB, OB
(——+ y+az):0 = V:B=0
ox dy oz
u=1 =ttt/ =0
ox" ox ox ox ox
B oE
_IBX_IBEZ+1 y:() %(a—B-I-VXE)x:O
c dtf ¢ dy ¢ Oz ot
JB 0B
+u =2 and 3 —+VXE =0 = VXE+—=0
H ( ot )y.z ot
Eai‘j{’qtagf%%i‘ﬁ:0(/1,;1,1/:0—3) (11.143)
]
:set(ﬂ,ﬂ,v):(l,2,3):>V-B:O :
| | Jackson
]
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The Minkowskil Force and Relativistic Potentials

The Minkowski force on a charge g Is given by

K=—— 2 qE+UxB)]=——F

\/1— u? /¢4 \/1— u? / c2

The electric and magnetic fields can be expressed in terms of
a scalar potential and a vector potential.

Ez—VV—a—A B=VxA

ot
AR =(V/c, A, Ay, A;) 4-vector potential

AV OAH

OX,  OXy

= the definition of the field tensor

U
ai =0 the Lorentz gauge

OXH
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Homework of Chap.12
Problem12.3

(a) What's the percent error introduced when you use Galileo's rule, instead of Einstein's,
with vag =5 mi/h and vge = 60 mi/h?

(b) Suppose you could run at half the speed of light down the corridor of a train going
three-quarters the speed of light. What would your speed be relative to the ground?

(c) Prove, using Eq. 12.3, that if vag < C and vgc < c then vac <c. Interpret this result.

Problem 12.4 As the outlaws escape in their getaway car, which goes 3c¢/4 , the police
officer fires a bullet from the pursuit car, which only goes ¢/2 (Fig. 12.3). The muzzle
velocity of the bullet (relative to the gun) is ¢ 3. Does the bullet reach its target

(a) according to Galileo, (b) according to Einstein” il _ =
Y O ==/ 0 DN Y O) :&j’

Problem 12.6 Every 2 years, more or less, The New York Times publishes an article
In which some astronomer claims to have found an object traveling faster that the
speed of light. Many of these reports result from a failure to distinguish what is
seen from what Is observed-that iIs, from a failure to account for light travel time.
Here's an example: A star is traveling with speed v at an angle @ to the line of sight

(Fin.12.6). What is its apparent speed across the sky? (Suppose the light signal from
b reaches the earth at a time At after the signal from a, and the star has meanwhile

advanced a distance As across the celestial sphere; by "apparent speed," | mean
As [ At.) What angle @ gives the maximum apparent speed? Show that the apparent
speed can be much greater than c, even if v itself is less than c.
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Homework of Chap.12

Problem 12.25 A car is traveling along the 45° line in S (Fig.12.25), at (ordinary)

speed (2//5)c.
(2) Find the components uy and uy of the (ordinary) velocity.

(b) Find the components 1, and r, of the proper velocity.

(c) Find the zeroth components of the 4-velocity, 770.

System S is moving in the x direction with (ordinary) speed /2/5 c, relative
to S. By using the appropriate transformation laws:

Problem 12.31 Suppose you have a collection of particles, all moving in the x
direction, with energies Eq, E», E3,...and momenta p4, p2, pPa3,...FInd the ve-
locity of the center of momentum frame, in which the total momentum is zero.

Problem 12.34 A neutral pion of (rest) mass m and (relativistic) momentum p =

%mc decays into two photons. One of the photons Is emitted in the same direction

as the original pion, and the other in the opposite direction. Find the (relativistic)
energy of each photon.
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Homework of Chap.12

Problem 12.39 Define proper acceleration in he obvious way:
dr dfz
(a) Find @ and « in terms of u and a (the ordinary acceleration).

(b) Express o, interms of u and a .

(c) Show that 7", =0.
(d) Write the Minkowski version of Newton's second law, Eg. 12.68, in terms of
o' Evaluate the invariant product K*z,,.

(12.75)

Problem 12.47
(a) Show that (E - B) is relativistically invariant.

(b) Show that (E% —c2B?) is relativistically invariant.
(c) Suppose that in one inertial system B = 0 but E = 0 (at some point P). Is it
possible to find another sysem in which the electric field Is zero at P?
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