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Chapter 12 Electrodynamics and Relativity
12.1 The Special Theory of Relativity

“Absolute” frame: The Maxwell’s equation was inferred that 
the speed of light should equal c only with respect to ether. 
This means that the ether was a “preferred” or “absolute” 
reference frame.

Ether: Since mechanical waves require a medium to 
propagate, it was generally accepted that light also require 
a medium. This medium, called the ether, was assumed to 
pervade all matter and space in the universe.
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Ether

Efforts to detect the ether: Michelson inspired by the 
Maxwell took the problem of detecting the ether as a challenge. 
He developed his interferometer and used it to try to detect the 
earth’s motion relative to the ether. The result were not 
conclusive. 

Properties of the ether: Since the light speed c is enormous, 
the ether had to be extremely rigid. So it did not impede the 
motion of light. For a substance so crucial to electro-
magnetism, it was embarrassingly elusive. Despite the  
peculiar property just mentioned, no one could detect its 
ghostly presence. 
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The Michelson-Morley Experiment
Michelson and Morley wanted to detect the speed of the 
earth relative to the ether. If the earth were moving relative to 
the ether, there should be an “ether wind” blowing at the 
same speed relative to the earth but in the opposite direction.

Michelson-Morley interferometer: Use light speed 
variation to verify the existence of ether. 
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The Michelson-Morley Experiment (II)
Parallel:
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The Michelson-Morley Experiment (III)
Using v = 30 km/s, the expected shift was about 0.4 fringe. 
Even though they were able to detect shifts smaller than 
1/20 of a fringe, they found nothing.

Possibilities: 
 The ether was dragged with the Earth.
 No ether.
 Constant light speed.
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The Two Postulates
The two postulates in the theory of special relativity are:
1. The principle of relativity: All physical laws have the 

same form in all inertia frames.
2. The universal speed of light: The speed of light in free 

space is the same in all inertial frames. It does not depend 
on the motion of the source or the observer.

Both postulates are restricted to inertial frames. This is why the 
theory is special.
• The principle of relativity extends the concept of covariance 

from mechanics to all physical laws.
• The constancy of the speed of light is difficult to accept at first.
All the experimental consequences have confirmed its 
correctness.
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Some Preliminaries

Event: Event is something that occurs at a single point in 
space at a single instant in time.
Observer: An observer is either a person, or an automatic 
device, with a clock and a meter stick. Each observer can 
record events only in the immediate vicinity.
Reference frame: A reference frame is a whole set of 
observers uniformly distributed in space. The frame in which 
an object is at rest is called its rest frame.
Synchronization of clocks: It is extremely important to 
define precisely what is meant by the time in a given 
reference frame. This requires a careful procedure for the 
synchronization of clocks.
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Some Preliminaries (II)
A reference frame is assumed to 
consist of many observers 
uniformly spread through the 
space. Each observer has a 
meter stick and a clock to make 
measurements only in the 
immediate vicinity.

To synchronize four equally spaced clocks, a signal is sent 
out by clock A to trigger the other clocks---each of which has 
been set ahead by the amount of time it takes to travels from 
A to the given clock.
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Relativity of Simultaneity
How can we determine whether two events at different 
locations are simultaneous?
Two events at different locations are simultaneous if an 
observer midway between them receives the flashes at the 
same instant.

Relativity of Simultaneity: Spatially separated events that 
are simultaneous in one frame are not simultaneous in 
another, moving relative to the first.
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Relativity of Simultaneity 
(another example)

Two events that are simultaneous in one inertial 
system are not, in general, simultaneous in another.
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Geometry of Relativity: Time Dilation

A proper time, τ, is the time interval between two events as 
measured in the rest frame of a clock. In this frame both 
events occur at the same position. (Note: properown) 

02L
c

τ =

How does the relative motion of two frames affect the 
measured time interval between two events?
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Time Dilation (II)

Note that we have used c as the speed of light in both 
frames---in accord with the second postulate.

2 2 2
0

0
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1 /
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Δ Δ⋅ = + ⋅
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−

Now let us find the time interval recorded in the frame S, in 
which the clock has velocity v. The time interval Δt in frame S
measured by two observers A and B at different positions.
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Time Dilation (III)

Moving clocks run slow.

2 2

2 2

2 2

( ) 1    
1 /

1,   where 
1 /

h v t ht t
c cv c

t
v c

γτ γ

+ Δ
Δ =  Δ =

−

Δ = =
−

Another example: 

 (proper time)h
c
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Time Dilation (IV)
Since γ >1, the time interval T measured in frame S (by two 
clocks) is greater than the proper time, T0, registered by the 
clock in its rest frame S'. The effect is called time dilation.
Two spatially separated clocks, A and B, record a greater 
time interval between two events than the proper time 
recorded by a single clock that moves from A to B and is 
present at both events.

22 /1
1

cv−
=γ
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Example of Time Dilation
Experimental evidence (muon decay): 
The reality of time dilation was verified in an experiment 
performed in 1941. 
Rest frame at ground: An elementary particle, the muon (μ), 
decays into other particle. The particle decay rate is

/
0  

where 2.2 μs is called the mean lifetime.

tN N e τ

τ

−=
=

Moving frame at the upper atmosphere: Muons are 
produced from the bombardment of cosmic ray protons. The 
muon generated with this method has the speed of v = 0.995c. 
The mean lifetime is 10 times longer than their cousins that 
decay at rest in the laboratory.
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Geometry of Relativity: Length Contraction

Consider a rod AB at rest in frame S, as shown below. The 
distance between its ends is its proper length L0: 
The proper length, L0, of an object is the space interval 
between its ends measured in the rest frame of the object.

0 0 ( : proper length)
2
cL Lτ=
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Length Contraction (II)
Another example:

1 2
1 2
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2
cL Lτ=

Moving objects are shortened.
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Effects of Length Contraction (I)

cv  0.0= cv  5.0=

cv  95.0= cv  99.0=
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Length Contraction Effects (II)
rest frame

muon frame

distortion
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The Twin Paradox
Nothing in the theory of relativity catches the imagination 
more than the so-called the twin paradox.
Twin A stays on earth while twin B travels at high speed to a 
nearby star. When B returns, they both find that A has aged 
more than B. 
The paradox arises because of the apparent symmetry of 
the situation: In B’s frame, it is A that leaves and returns, so 
one should also find that B has aged more than A. 

What’s going on??




>
>

AB
BA
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The Barn and Ladder Paradox

before farmer’s view

ladder’s view

Who’s right?
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The Galilean and Lorentz Transformation
Given: 
1. Two reference frames S and S'. S' moves along the  

common x axis with speed v relative to S. 
2. S and S' coincide at t = t' = 0.
3. An event occurs at point (x, y, z) and at time t as observed 

in S.

The Galilean Transformation (valid for v <<c) 
x' = x − vt, y' = y, z' = z, t' = t

Wiki: A Galilean transformation is used to transform between the 
coordinates of two reference frames which differ only by constant 
relative motion within the constructs of Newtonian physics.
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The Galilean and Lorentz Transformation (ii)

The Lorentz Transformation (valid for any v)
(i) At time t, origin of S' is at a distance vt away from the 

origin of S, as observed in S.

(ii) x' is a proper length in S', so in S it is x'/γ.
(i)+(ii)  x = vt + x'/γ x' = γ (x − vt)

(iii) By symmetry x = γ (x' + vt') and eliminating x', we have 
 t' = γ (t − vx/c2).

(iv) No length contraction perpendicular to the direction of    
relative motion        y = y' and z = z'.

2( );   ;   ;   ( )vxx x vt y y z z t t
c

γ γ′ ′ ′ ′= − = = = −
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The Lorentz Transformation
The laws of electromagnetism are not covariant with respect 
to the Galiliean transformation. However, with the Lorentz 
transformation they are covariant. The space and time are 
related shown as follows:

)(

)(

2c
vxtt

vtxx

−=′

−=′

γ

γ

)(

)(

2c
xvtt

tvxx
′

+′=

′+′=

γ

γ

In terms of the rest frame

In terms of the moving frame
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Ex. 12.4 Time dilation
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Ex. 12.5 Length contraction
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Ex. 12.6 Einstein’s velocity addition rule

2 2

( ) ( )

( ) (1 )

x

x

dx dx vdt dt u v
vdx u vdt dt dt
c c

γ γ

γ γ

′ ′ ′ ′= + = +
′ ′′ ′= + = +

Taking the ratio of these equations we find

An extreme case

21
x

x
x

u vu
u v c
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′+
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1x x

c vu c u c
cv c
+′ = = =
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The Structure of Space-time: (i) Four-vectors
0 1 2 3

0 0 1

1 1 0

2 2

3 3

,  ,  ,  ,  and 

( ),

( )
the Lorentz transformations 

vx ct x x x y x z
c

x x x

x x x

x x

x x

β

γ β

γ β

≡ = = = =

= −

= − 


= 


= 
0 0

1 1 3

2 2
0

3 3

0 0
0 0

     
0 0 1 0
0 0 0 1

v
v

v

x x

x x
x x

x x

x x

μ μ

γ γβ
γβ γ

=

   −        − = = Λ                  



the Lorentz transformation matrix
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Covariant Vector, Contravariant Vector, 
and Invariant Quantity

the covariant vector (row): aμ

( )
0

13
0 1 2 3

2
0

3

0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

v

b

b
a b a b a a a a

b

b

a b a b a b a b a b a b a b a b

μ μ
μ μ

=

 
 
 

= = −  
 
  
 

= − + + + = − + + +



the contravariant vector (column): aμ

( )
( )

0 1 2 3
0 1 2 3

a a a a a

a a a a
μ =

≡ −
0

1

2

3

a

a
a

a

a

μ

 
 
 

=  
 
  
 

invariant quantity under Lorentz transformation
the Einstein 
summation convention

a b a bμ μ
μ μ=
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Metric/Norm Tensor (I) 

What is the difference between  and ? Metric/norm tensor.

In special theory of relativity, Lorentz transformation of the four-
dimensional coordinates follow from the invariance of two events:
      

x xα
α 

2 0 2 1 2 2 2 3 2

2
( ) ( ) ( ) ( ) ( )               (11.67)

      ( )                                                 (11.68)
 is called the   and diagonal in  space-time.

  

ds dx dx dx dx
ds g dx dx

g g metric tensor flat

α β
αβ

αβ βα

= − − −
=

=

00 11 22 33    1,     1                               (11.69)
The contravariant metric tensor  is defined as the normalized 
co-factor of . For flat spac-time it is the same: 

         

g g g g
g

g

g g

αβ

αβ
αβ

αβ

= = = = −

=                                                             (11.70)

Jackson
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Metric/Norm Tensor (II) 

The  of the contravariant and covariant metric tensors
give the Kronecker delta in four dim

contractio

 

n
ensions:

                                                               (11.71)

where 

g gγβ β
αγ α

β
α

δ

δ

=

0 for  and 1 for 0,1, 2,3.

       =                                                             (11.72)  

       =                                                              (11.

x g x

x g x

α
α

β
α αβ
α αβ

β

α β δ α= ≠ = =

0 0

73) 
With the metric tensor, a  vector and a 
vector can be expressed as:
        ( , ),   and    ( , )                  (11.75)

contravariant co-variant

A A A Aα
α= = −A A

Jackson



31

The Invariant Interval

( ) ( )0 1 2 3 0 1 2 3Two events  and  occur at , , ,  and , , , ,

respectively.
A A A A B B B BA B x x x x x x x x

The displacement 4-vector: BAx x xμ μ μΔ ≡ −

2 2 2The interval between two events:  I x x c t dμ
μ≡ Δ Δ = − +

2 2 2

2 2 2

2 2 2

0  ( )timelike
spacelike   0  ( )     
lightlike 0  ( )

I c t d

I c t d

I c t d

< >

> <

= =

:  the time difference between the two events.
:  their spacial separation.   

t
d
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12.2 Relativistic Mechanics
12.2.1 Proper Time and Proper Velocity

Imagine you are on a flight to Moon, and the pilot announces 
that the plane’s velocity relative to ground is 4/5c.

How to define the velocity?

    the ordinary velocityd
dt

= lu

You might be more interested in the distance covered per unit 
proper time.  

2 2

1=      the proper velocity
1 /

d
d u cτ

≡
−

lη u

Which definition is more preferable/useful?

1 1   =  dt d
d dt

γ τ γ
τ

= 

EM
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Proper Velocity 4-Vector (4-velocity)
Proper time τ is invariant, whereas “ordinary” time t depends 
on the particular reference frame.

Proper velocity has an enormous advantage over ordinary 
velocity: it transforms simply.

The numerator, , is a displacement 4-vector;    
The denominator, , is invariant.                    

dx dx
d d

μ μ
μη

τ τ
≡

0 0 1

1 1 0

2 2

3 3

( ),

( )
 More generally,  v

v
μ μ

η γ η βη

η γ η βη
η η

η η

η η

= −

= −  = Λ

= 


=  0
2 21 /

dct dt cc
d d u c

η
τ τ

= = =
−
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12.2.2 Relativistic Energy and Momentum

In classical mechanics momentum is mass times velocity, but 
immediately a question arise: Should we use ordinary
velocity or proper velocity? There is no prior reason to favor 
one over the other.

How to define the momentum?

2 2

m     the relativistic momentum
1 /

m
u c

≡ =
−

up η

rel rel    : the relativistic massm m= u
0 0

2 2

2

2 2

1 /

where    relativistic energy
1 /

dt mc Ep m mc
d cu c

mcE
u c

η
τ

= = = =
−

≡
−
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Kinetic Energy

The relativistic kinetic energy is the total energy minus the 
rest energy:

How to define the kinetic energy?

21    the classical defination of the kinetic energy
2

K mu=

2
2

kin 2 2

2 4
2

2 4

4
2

2

1 /
1 3(1 ... 1)
2 8

1 3 ...
2 8

res
mcE E E mc
u c

u umc
c c
mumu
c

= − = −
−

= + + + −

= + +
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Conservation and Invariant
Conserved quantity: same value before and after some 
process.
Invariant quantity: same value in all inertia frames.

Invariant:

Charge is both conserved and invariant.
Energy is conserved, but not invariant.
Momentum is conserved, but not invariant.

Velocity is neither conserved nor invariant.

0 2 2 2

2
2 2 2

2

( ) ( )

 

p p p p p m c

E p m c
c

μ
μ = − + ⋅ = −

 − =
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12.2.3 Relativistic Kinematics
Explore some applications of the conservation law to particle 
decays and collisions.

Example 12.7 Two lumps of clay, each 
of (rest) mass m, collide head-on at 3/5c. 
They stick together. Question: what is 
the mass (M) of the composite lump?

Example 12.8 A pion at rest decays into 
a muon and a neutrino. Find the energy 
of the outgoing muon, in terms of the 
two masses, mπ and mμ (assume mμ=0)

Does it make any sense?
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Massless Particle: Photon
In classical mechanics there is no such thing as a massless 
particle.

In special relativity, p and E are still proportional to m. If u = c, 
then the zero numerator is balanced by a zero in the 
denominator, leaving p and E indeterminate (zero over zero).

2 2

2

2 2

0
01 /When  and 0,   
0
01 /

m
u cu c m

mcE
u c

 = = −= =  
 = =
 −

up

A massless particle could carry energy and momentum, 
provided it always travels at the speed of light.

E pc hv= = photon
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The Compton Scattering (Example 12.9)
A photon of wavelength λ and energy hf “bounces” off an  
electron, initially at rest with the rest mass m0. Find the 
wavelength λ′ of the outgoing photon, as a function of the 
scattering angle θ.

hf hp
cλ λ

= =
Conservation of linear momentum:

Conservation of energy:

[ ] [ ]

2 2
0 0 0

2
2 2 2 2 2 22

0 0 0

2
0

2 2 2
0 02

2

0 ( 1) 2 ( 1)

( ) 2( )      (2)

    ( ) ( 1)
1 1 ( 1) =  

1

h

p m c m c m c

p p p p m c p

f m c hf m c p p m c

m v m c m c

λ λ λ

λ λ

λ

γ

γβ γ

γ

γ γ
β

′

′ ′

 ′+ = +  − = −

 − += = = −

−

 −
− + −

+ − =

An electromagnetic wave carries moment given by: 

2 2 2

:   cos cos
:

)

  0 sin sin

( cos ) ( sin )      (1

x

y

p

p

p

p p p
p p

p p

p

λ λ λ

λ λ
λ

θ

θ

φ

θ

φ
θ

′ ′

′

′

= +


+

=

− =

−
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The Compton Scattering (ii)

Further solving these two equations, we obtain

2 2 2

2 2
0

2 eqs., 3 unknown
 

,  ,  
( cos ) ( sin )
( ) 2( a d ) np p
p p p p
p p p p c pm p

λ λ λ

λ λ λ λ λ λ

θ θ′ ′

′ ′′

− + = 

− + = −

0

0

0

0

( ) (1 cos )
1 1 1 (1 cos )

(1 cos )

0.00243 nm is called the Compton wavelength.

p p m c p p

p p m c
h

m c
h

m c

λ λ λ λ

λ λ

θ

θ

λ θ

′ ′

′

− = −

− = −

 Δ = −

=

For known X-ray frequency and final particle momentums
We can further solve these two equations.
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12.2.4 Relativistic Dynamics
Newton’s laws

Newton’s first law is built into the principle of relativity.

Newton’s second law retains its validity in relativistic 
mechanics, provided we use the relativistic momentum.

Newton’s third law does not, in general, extend to the 
relativistic domain due to the relativity of simultaneity. 
Only in the case of contact interactions, where the two forces 
are applied at the same physical point, can the third law be 
retained.

rel2 2
where 

1 /
m m
u c

= =
−

up ud
dt

= pF

EM
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Work-Energy Theorem

The work-energy theorem (“the net work done on a particle 
equals the increase in its kinetic energy”) holds relativistically.

rel2 2

2 2

, where 
1 /

( )
1 /

d m m
dt u c

d d d d mW d d dt dt
dt dt dt dt u c

= = =
−

≡ ⋅ = ⋅ = ⋅ = ⋅
−   

p uF p u

p p l uF l l u

2 2
2 2 22 2 2 2

2 2

3 2 2 3
2 2 2 22 2

2
final initi2 2

1 11 /
1 /1 / 1 /

1 1(1 )

(1 / ) (1 / )

       
1 /

d m dm uduu c m
dt dtu c c dtu c u c

u du u du dumu mu mu
dt dt dtc c

u c u c

d mc dE dEW dt E E
dt dt dtu c

   −⋅ = − − ⋅   
   −− −   

   = − + =       − −
 

= =  = = − 
 − 

u uu u u

al
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The Ordinary Force and The Minkowski Force
The ordinary force: F is the derivative of momentum with 
respect to ordinary time, transformation is ugly (both the 
numerator and denominator must be transformed).

( ) (1 ) (1 )

( ) (1 ) (1 )
0

0( )

( ) (1 ) (1 )

dp dp dp dt Fy y y yFy dt dt dx u ux xc c c
dp dp dp dt Fz z z zFz dt dt dx u ux xc c c

dp dpdp dEx x
dp dp dpx x dt dt dt c dtFx dt dt dx u ux xc c c

β β βγ γ γ

β β βγ γ γ

β
βγ β

β β βγ

= = = =
− − −

= = = =
− − −

− −−
= = = =

− − −

The Minkowski force: K is the derivative of momentum with 
respect to proper time.

,     
2 21 /

d dt d dp
K

d d dt du c

μ
μ

τ τ τ
≡ = = ≡

−

p p F
K
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Example 12.12: Hidden momentum 

Solution:

As a model for a magnetic dipole m, consider a rectangular 
loop of wire carrying a steady current. Picture the current as a 
stream of noninteracting positive charges that move freely 
within the wire. When a uniform electric field E is applied, the 
charges accelerate in the left segment and decelerate in the 
right one. Find the total momentum of all charges in the loop.

  so  eN eN IlI u u N u
l l e

+ −
+ − ± ±= = =

The current is the same in all four 
segments I = λu.

Relativistic momentum is 
= ( ) 0Ilp mN u mN u m

e
γ γ γ γ+ + + − − − + −= − − ≠
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Hidden momentum (relativistic effect) 
The gain in energy (γmc2) is equal to the work done by the 
electric force E. 

A magnetic dipole in an electric field carries linear 
momentum, even though it is not moving. 
This so-called hidden momentum is strictly relativistic, 
and purely mechanical. (See Ex. 8.3.)

2
2

2

 ( )       

 is the magnetic dipole moment of the loop 
as vectors  points into the page, 
and  is to the right, so

1 ( )

IlEwmc eEw p
c

Ilw

c

γ γ+ −− =  =

= ×

m
p

p m E

A more realistic model for a current-carrying wire can be found in the supplement. 
See V. Hnizdo, Am. J. Phys. 65, 92 (1997).

 ( ) Ilp m
e

γ γ+ −= −
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12.3 Relativistic Electrodynamics
12.3.2 How the Fields Transform

We have learned, in various special cases, that 
one observer’s electric field is another’s magnetic field. 
What are the general transformation rules for electromagnetic 
fields?

Let’s start with “Charge invariant”. 

Consider the simplest possible electric field. 

0
0

0
ˆσ

ε
=E y

0
ˆσ

ε
=E y

EM
Tsun-Hsu Chang
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The Transformation of The Electric Field

The total charge on each plate is invariant. 
2 2

0 0 0 0 0 0

0 0 0 0 02 2
0

    where 1 /  and 
1       

1 /

Q l w lw l v c l w w

v c

σ σ

σ σ γ σ γ⊥ ⊥

= = = − =

= =  =
−

E E

Are you sure that the field is still perpendicular 
to the plates? Yes.

What if the field of a moving plane tilted, say, in the direction 
of motion?

perpendicular
components

0 0 0
0 0

// //
0 0

,   
where  and 

      

Q l w lw
l l w w

σ σ

σ σ

= =
= =

=  =E E parallel
components
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Example 12.13: The E-field of a moving point charge.

Solution:

A point charge q is at rest at the origin in system S0. Question: 
What is the electric field of this same charge in system S, 
which moves to the right at speed v0 relative to S0?

Very efficient as compared with Chap.10 Eq. 10.68. (10-40) 

0 02
0 0

1 ˆ
4

q
rπε

=E r

0
0 3/2

0

0
0 3

2 2 2
0 0 0

2 2 2
0 0 0

2 2 2
0

/2
0

0
0 3/2

0 0 0

1
4 ( )

1
4 ( )

1
4 ( )

x

y

z

qxE
x y z

qyE
x y z

qzE
x y z

πε

πε

πε


=

+ +
 =

+ +

 =

+ +

0

0
0 3/2

0

0 0
0 0 3/2

0

0

0

0
3

2 2 2
0 0 0

2 2 2
0

2 2 2
0 0

0 0 /
0 0

2

1
4 ( )

1
4 ( )

1
4 ( )

x x

y y

z z

qxE E
x y z

qyE E
x y z

qzE E
x y z

πε
γγ

πε
γγ

πε


= =

+ +
 = =

+ +

 = =

+ +
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To derive the general rule we must 
start out in a system with both electric 
and magnetic fields.

0 0
0

  and   y zE B vσ μ σ
ε

= = −

0
0

  and   y zE B vσ μ σ
ε

= = −

In a third system, S, traveling to the 
right with speed v relative to S, the field 
would be

0
02 2 20

1,    ,   
1 / 1 /

v vv
vv c v c

γ σ γσ+= = =
+ −

0

 is the velocity
of  relative to 
v

S S

How to express E and B in terms of E and B?

S0

S 0 0 to v S

The Transformation of The Magnetic Field

0 ˆvσ± =K x



0

is the velocity
of  relative to 
v

S S

50

Contd.
0

0 0 0

02 2 2 2 2 2
0

( ) ,    

1 1 1where ,   ,   
1 / 1 / 1 /

yE

v c v c v c

γσ γ σ
ε γ ε

γ γ γ

= =

= = =
− − −

2 2
0 20

22 20 0 0

1 / 1(1 )  and     ,    
1 /

v c vv c
cv c

γ γ
γ ε μ

−
= = + =

−

2

 ( )

 ( )

y y z

z z y

E E vB
vB B E

c

γ

γ

 = −

 = −

With a little algebra.

S0

S

S
_

0 to v S

0 0 to v S

 to v S

_
_
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The Transformation of The Magnetic Field

 ( )z z yE E vBγ = +

2 ( )y y z
vB B E

c
γ = +

x xE E=
x xB B=

2 2

,   ( ),      ( )

,   ( ),    ( )

x x y y z z z y

x x y y z z z y

E E E E vB E E vB
v vB B B B E B B E

c c

γ γ

γ γ

= = − = +

= = + = −
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Two Special Cases

2 2

,   ( ),      ( )

,   ( ),    ( )

x x y y z z z y

x x y y z z z y

E E E E vB E E vB
v vB B B B E B B E

c c

γ γ

γ γ

= = − = +

= = + = −

1. If B = 0 in S, then
2 2

2 2

2

ˆ ˆ

ˆ ˆ

1 ( )

z y

z y

v vE E
c c
v vE E

c c

c

γ γ= −

= −

= − ×

B y z

y z

v E ˆwhere v=v x

2. If E = 0 in S, then
ˆ ˆ( )

ˆ ˆ( )
z y

z y

v B B
v B B
γ= − −

= − −
= ×

E y z
y z

v B ˆwhere v=v x

2 2

,   ,       

0,     ,   

x x y y z z

x y z z y

E E E E E E
v vB B E B E

c c

γ γ

γ γ

= = =

= = = −

0,    ,   
,  ,       

x y z z y

x x y y z z

E E vB E vB
B B B B B B

γ γ
γ γ

= = − =
= = =
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12.3.3 The Field Tensor
E and B certainly do not transform like the spatial parts of the 
two 4-vectors (4-velocity and 4-momentum). 
What sort of an object is this, which has six components and 
transforms according previous results?

Answer: Antisymmetric, second-rank tensor.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

v

t t t t

t t t t
t

t t t t

t t t t

μ

 
 
  =  
 
 
  

(symmetric tensor,  10 distinct components)
v vt tμ μ=

(antisymmetric tensor,  6 distinct components)
v vt tμ μ= −

01 02 03

01 12 13

02 12 23

03 13 23

0

0

0

0

v

t t t

t t t
t

t t t

t t t

μ

 
 
 − =  

− − 
 

− − −  
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The Tensor Transformation

            4-vector transformation
     tensor transformation

v v

v v
a a
t t

λ
λ

μμ λσ
σλ

= Λ

= Λ Λ

0 0
0 0

0 0 1 0
0 0 0 1

γ γβ
γβ γ

− 
 − Λ =  
 
  

x xE E=

x xB B=

01 01 02 02 12 03 03 31

23 23 31 31 03 12 12 02

( ) ( )

( ) ( )

t t t t t t t t

t t t t t t t t

γ β γ β

γ β γ β

= = − = +

= = + = −

( )z z yE E vBγ= +

2 2( )    ( )y y z z z y
v vB B E B B E

c c
γ γ= + = −

Work out the following transformation:

By direct comparison, we find:
( )y y zE E vBγ= −

vF μNow we can construct the field tensor



55

The Field Tensor and The Dual Tensor

There was a different way of imbedding E and B in an 
antisymmetric tensor.

01 02 03 12 31 23,   ,  ,  ,  ,  . yx z
z y x

EE EF F F F B F B F B
c c c

≡ ≡ ≡ ≡ ≡ ≡

0 / / /

/ 0

/ 0

/ 0

x y z

x z yv

y z x

z y x

E c E c E c

E c B B
F

E c B B

E c B B

μ

 
 

− − =  − − 
 − − 

the field tensor

0

0 / /

/ 0 /

/ / 0

x y z

x z yv

y z x

z y x

B B B

B E c E c
G

B E c E c

B E c E c

μ

 
 

− − =  − − 
 − − 

the dual tensor
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12.3.4 Electrodynamics in Tensor Notation

The current density 4-vector:

Reformulate the laws of electrodynamics (Maxwell’s 
equations and the Lorentz force law) in relativistic notation.

How the sources of the fields, ρ and J, transform?

0
0

  and  ,   where  (the proper charge density)Q Q
V V

ρ ρ ρ= = =J u

2 20
0 0 0

0 0 0

,   where 1 /  (length contraction)

( ) ,   where  (proper velocity)

V V u c V
V

ρ ρ γρ

ρ γρ ρ γ ρ γ

= = = −

= = = = =J u u u η η u

( ,  ,  ,  )x y zJ c J J Jμ ρ=

Conservation of charge:

t
ρ∂∇ ⋅ = −

∂
J

3

0
0

0
( )
( )

iyx z
i

i

JJ J J
x y z x

c J
t ct x
ρ ρ

=

∂∂ ∂ ∂∇ ⋅ = + + =
∂ ∂ ∂ ∂

∂ ∂ ∂− = − = −
∂ ∂ ∂

J
0J

x

μ

μ
∂ =
∂

( ,  ,  ,  )x ct x y zμ =

EM
Tsun-Hsu Chang
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Maxwell’s Equations in Tensor Notation (i)
Maxwell’s equations can be written in the following forms.

0
v

u
v

F J
x

μ
μ∂ =

∂

00 01 02 03
0

00 1 2 3

0
0

0   

1            ( )                           E

v

v

yx z

F F F F F J
x x x x x

EE E c
c x y z

μ
μ μ

ρμ ρ
ε

∂ ∂ ∂ ∂ ∂= = + + + =
∂ ∂ ∂ ∂ ∂

∂∂ ∂+ + =  ∇ ⋅ =
∂ ∂ ∂

1 10 11 12 13
1

00 1 2 3

0 02 2

1   

1 1               ( ) ( )

v

v

yx z
x x x

F F F F F J
x x x x x

BE B J
t y z tc c

μ μ

μ μ

∂ ∂ ∂ ∂ ∂= = + + + =
∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂− + − = → − + ∇× =
∂ ∂ ∂ ∂

E B J

Gauss’s law
Ampere’s law with Maxwell’s correction

, 0 , 0 0 02
12 and 3      ( )    y z y zt tc

μ μ μ ε μ∂ ∂+ = − + ∇× = ∇× − =
∂ ∂
E EB J B J
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Maxwell’s Equations in Tensor Notation (ii)
Maxwell’s equations can be written in the following forms.

0
v

v
G
x

μ∂ =
∂

Gauss’s law for magnetic field
Faraday’s law

0 00 01 02 03

0 1 2 30   0

            ( ) 0                         0

v

v

yx z

G G G G G
x x x x x

BB B
x y z

μ ∂ ∂ ∂ ∂ ∂= = + + + =
∂ ∂ ∂ ∂ ∂

∂∂ ∂
+ + =  ∇ ⋅ =

∂ ∂ ∂
B

1 10 11 12 13

0 1 2 31   0

1 1 1           0    ( ) 0

v

v

yx z
x

G G G G G
x x x x x

EB E
c t c y c z t

μ ∂ ∂ ∂ ∂ ∂= = + + + =
∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂− − + = → + ∇× =
∂ ∂ ∂ ∂

B E

,2 and 3      ( ) 0       0y zt t
μ ∂ ∂+ = + ∇× =  ∇× + =

∂ ∂
B BE E

0 ( 0 3)                       (11.143)

set ( ) (1,2,3)

set ( ) (0,1,2),  (0,1,3),  and (0,2,3) .

0

1 0

v

t

F FF
x x x

c

μν λμ νλ
λ μ λ μ ν

λ μ ν

λ μ ν ∂
∂

∂ ∂ ∂
∂ ∂ ∂

= , , = −

,

=

∇ ⋅ =

∇× +

, = 

, ,  =

+ +

B

B

E
Jackson
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The Minkowski Force and Relativistic Potentials
The Minkowski force on a charge q is given by

2 2 2 2

1 1[ ( )]
1 / 1 /

q
u c u c

= + × =
− −

K E u B F

= ∇×B AV
t

∂= −∇ −
∂
AE

The electric and magnetic fields can be expressed in terms of 
a scalar potential and a vector potential.

( , , , )   4-vector potentialx y zA V c A A Aμ =

  the definition of the field tensor
v

v

v

A AF
x x

μ
μ

μ

∂ ∂= −
∂ ∂

0    the Lorentz gauge A
x

μ

μ
∂ =
∂
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(a) What's the percent error introduced when you use Galileo's rule, instead of  Einstein's,
      with  = 5 mi/h and  = 60 mi/h?
(b) Suppose you could run at half the speed of light d

AB BCv v

Problem 12.3
 

own the corridor of a train going 
      three-quarters the speed of light. What would your speed be relative to the ground?
(c)  Prove, using Eq. 12.3, that if  <  and  <  then  < . InterprAB BC ACv c v c v c et this result. 

As the outlaws escape in their getaway car, which goes 3 4,  the police
officer fires a bullet from the pursuit car, which only goes 2  (Fig. 12.3). The muzzle
velocity of the bullet (relati

c
c

Problem 12.4 

ve to the gun) is 3. Does the bullet reach its target
(a) according to Galileo, (b) according to Einstein?

c

 Every 2 years, more or less,     publishes an article
in which some astronomer claims to have found an object traveling faster that the 
speed of light. Many of these reports

The New York TimesProblem 12.6

 result from a failure to distinguish what is
 from what is -that is, from a failure to account for light travel time.

Here's an example: A star is traveling with speed  at an angle  to th
seen observed

v θ e line of sight
(Fin.12.6). What is its apparent speed across the sky? (Suppose the light signal from

 reaches the earth at a time  after the signal from , and the star has meanwhile
advanced a dista
b t aΔ

nce  across the celestial sphere; by "apparent speed," I mean
/ .) What angle  gives the maximum apparent speed? Show that the apparent

speed can be much greater than , even if  itself is less t

s
s t

c v
θ
Δ

Δ Δ
han .c

Homework of Chap.12
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A car is traveling along the 45  line in (Fig.12.25), at (ordinary)
speed (2/ 5) .
(a) Find the components  and  of the (ordinary) velocity.
(b) Find the components  and  of the pr

x y

x y

S
c

u u
η η

Problem 12.25 

0
oper velocity.

(c) Find the zeroth components of the 4-velocity, .
           System  is moving in the  direction with (ordinary) speed 2 / 5 , relative
      to . By using the appropriate transformat

S x c
S

η

ion laws:

1 2 3 1 2 3

Suppose you have a collection of particles, all moving in the 
direction, with energies , , ,...and momenta , , ,...Find the ve-
locity of the  frame, in which 

x
E E E p p p

Problem 12.31 
 

center of momentum the total momentum is zero.

3
4

 A neutral pion of (rest) mass  and (relativistic) momentum 
 decays into two photons. One of the photons is emitted in the same direction

as the original pion, and the other in the 

m p
mc

=Problem 12.34

opposite direction. Find the (relativistic)
energy of each photon.

Homework of Chap.12
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2

2
0

Define  in he obvious way:

                                                 .                                (12.75)

(a) Find  and  in terms of  and

d d x
d d

μ μ
μ ηα

τ τ
α

≡ =

Problem 12.39 proper acceleration

α u   (the ordinary acceleration).
(b) Express  in terms of  and  .
(c) Show that =0.
(d) Write the Minkowski version of Newton's second law, Eq. 12.68, in terms of 
      . Evaluate the invarian

μ
μ

μ
μ

μ

α α
η α

α

a
u a

t product K .μ
μη

2 2 2
(a) Show that ( ) is relativistically invariant.
(b) Show that ( ) is relativistically invariant.
(c) Suppose that in one inertial system  =  but  (at some point ). Is it
    

E c B
P

⋅
−

≠

Problem 12.47
 E B
 
 B 0 E 0
 possible to find another sysem in which the  field is zero at ? electric P

Homework of Chap.12


