
Chapter 11: Radiation
11.1 Dipole Radiation 11.1.1 What is Radiation?

A charge at rest does not generate electromagnetic wave; nor 

does a steady current. It takes accelerating charges, and/or 

changing currents.

The purpose of this chapter is to show you how such 

configurations produce electromagnetic wave.

How charges radiate? Consider Jefimenko’s equations.
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 and J are responsible for electromagnetic radiation 

(i.e., EM field at large distance).

We won’t use these two equations. 

Instead, we start from finding the 

vector and scalar potentials first.
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11.1.2 Electric Dipole Radiation
Picture two tiny metal spheres separated by 

a distance d and connected by a fine wire.
At time t the charge on the upper sphere is

+q(t), and the charge on the lower sphere is

−q(t). Suppose that

The result is an oscillating electric dipole:

p(t) = q(t)dẑ = q0d cos(t)zˆ = p0 cos(t)zˆ, where p0  q0d.

The retarded potential is:
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Electric Dipole Radiation: Approximations

Approximation #1: Make this physical dipole into a perfect

dipole.

Estimate the spearation distances by the law of cosines.
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The Retarded Scalar Potential
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Approximation #2: The wavelength is much longer than the

dipole size.
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The Retarded Scalar Potential

The retarded scalar potential is:
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The Retarded Vector Potential

The retarded vector potential is 

determined by the current density.
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11.1.3 Magnetic Dipole Radiation

dlA(r, t) =
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J(r, tr )
d  =
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I0 cos[(t − r / c)]
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Suppose we have a loop of radius b,

around which we drive an alternating

current.

I (t) = I0 cost

This is a model for an oscillating 

magnetic dipole,

m(t) = b2I (t)ẑ = m0 costzˆ

The loop is uncharged, so the retarded scalar potential is 

zero. V = 0

The retarded vector potential
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Retarded Vector Potential 
with Three Approximations

0 0 0)
A(r, t) = r I cos[ 
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Approximation #1: Make this physical dipole into a perfect

dipole.

Estimate the spearation distances by the law of cosines.

r = r2 + b2 − 2rbcos ,

where  is the angle between the vectors r and b:

rbcos = r  b = rbsin cos
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Retarded Vector Potential 
with Three Approximations
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The Retarded Vector Potential
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The second-order term is dropped.

The first term integrates to zero:

The second term involves the 

integral of cosine squared.
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Putting this in, and noting that A points in the  − direction.



The Retarded Vector Potential
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The vector potential of an oscillating perfect magnetic dipole

is:

Approximation #3: at the radiation zone.
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The Electromagnetic Fields and Poynting 
Vector
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Only when the system is carefully contrived to exclude any electric 

contribution will the magnetic dipole radiation reveal itself.
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Homework of Chap.11

Problem 11.1 Check that the retarded potentials of an oscillating dipole (Eqs. 11.12 

and 11.17) satisfy the Lorenz gauge condition. Do not use approximation 3.

Problem 11.2 Equation 11.14 can be expressed in "coordinate-free" form by writing

p0cos  = p0  r̂. Do so, and likewise for Eqs. 11.17, 11.18. 11.19, and 11.21.

Problem 11.5 Calculate the electric and magnetic fields of an oscillating magnetic 

dipole without using approximation 3. [Do they look familiar? Compare Prob. 9.35.] 

Find the Poynting vector, and show that the intensity of the radiation is exactly the 

same as we got using approximation 3.

Problem 11.6 Find the radiation resistance (Prob. 11.3) for the oscillating magnetic 

dipole in Fig. 11.8. Express your answer in terms of  and b, and compare the

radiation resistance of the electric dipole. [Answer: 3 105(b / )4]


