
Chapter 11: Radiation
11.1 Dipole Radiation 11.1.1 What is Radiation?

1

A charge at rest does not generate electromagnetic wave; nor 
does a steady current. It takes accelerating charges, and/or 
changing currents.
The purpose of this chapter is to show you how such 
configurations produce electromagnetic wave.  

How charges radiate? Consider Jefimenko’s equations.
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 and  are responsible for electromagnetic radiation 
(i.e., EM field at large distance).
ρ J

We won’t use these two equations. 
Instead, we start from finding the 
vector and scalar potentials first.
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11.1.2 Electric Dipole Radiation
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Picture two tiny metal spheres separated by 
a distance d and connected by a fine wire. 
At time t the charge on the upper sphere is 
+q(t), and the charge on the lower sphere is 
−q(t). Suppose that 

The retarded potential is: 

0 0 0 0

The result is an oscillating electric dipole:
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Electric Dipole Radiation: Approximations
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Approximation #1: Make this physical dipole into a perfect 
dipole. 
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Estimate the spearation distances by the law of cosines. 

cos ( 2) (1 cos )
2

1 1 (1 cos )
2

dr rd d r
r

d
r r

θ θ

θ

±

±

= + ≅

≅ ±

 r

r
cos[ ( / )] cos[ ( ) cos ]

2

cos[ ( )]cos( cos ) sin[ ( )]sin( cos )
2 2

r dt c t
c c

r d r dt t
c c c c

ωω ω θ

ω ωω θ ω θ

±− ≅ − ±

= − −

r

d r



The Retarded Scalar Potential
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The retarded scalar potential is:
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Approximation #2: The wavelength is much longer than the 
dipole size.
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The Retarded Scalar Potential
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The retarded scalar potential is:

0

0

cos( , ) sin[ ( )
4

p rV t t
r c c
θ ω ω

πε
 ≅ − −  

r

Approximation #3: at the radiation zone.
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The Retarded Vector Potential
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The retarded vector potential is 
determined by the current density.
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11.1.3 Magnetic Dipole Radiation
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Suppose we have a loop of radius b, 
around which we drive an alternating 
current.

This is a model for an oscillating 
magnetic dipole, 
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The loop is uncharged, so the retarded scalar potential is 
zero. V = 0
The retarded vector potential 
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Retarded Vector Potential 
with Three Approximations
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dipole. 
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Retarded Vector Potential 
with Three Approximations
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Approximation #2: The size of the dipole is small compared to 
the wavelength radiated.
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The Retarded Vector Potential
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The second-order term is dropped.

The first term integrates to zero:

The second term involves the 
integral of cosine squared.
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Putting this in, and noting that A points in the φ − direction.



The Retarded Vector Potential

12

0 0 sin 1 ˆ( , ) cos[ ( )] sin[ ( )]
4

m r rt t t
r r c c c

μ θ ωω ω
π

 = − − − 
 

A r φ

The vector potential of an oscillating perfect magnetic dipole 
is:

Approximation #3: at the radiation zone.
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The Electromagnetic Fields and Poynting 
Vector
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Only when the system is carefully contrived to exclude any electric 
contribution will the magnetic dipole radiation reveal itself.



Homework of Chap.11
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 Check that the retarded potentials of an oscillating dipole (Eqs. 11.12
and 11.17) satisfy the Lorenz gauge condition. Do  use approximation 3.not
Problem 11.1

0 0

 Equation 11.14 can be expressed in "coordinate-free" form by writing
ˆcos  = . Do so, and likewise for Eqs. 11.17, 11.18. 11.19, and 11.21.p θ ⋅

Problem 11.2
p r

Calculate the electric and magnetic fields of an oscillating magnetic
dipole  using approximation 3. [Do they look familiar? Compare Prob. 9.35.]
Find the Poynting vector, and show t

without
Problem 11.5

hat the intensity of the radiation is exactly the 
same as we got using approximation 3.

Find the radiation resistance (Prob. 11.3) for the oscillating magnetic
dipole in Fig. 11.8. Express your answer in terms of  and , and compare the
radiation resistance of the  di

b
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