
Chapter 10: Potentials and Fields
10.1 The Potential Formulation

10.1.1 Scalar and Vector Potentials

In the electrostatics and magnetostatics,

1

The electric field and magnetic field can be expressed using 

potential:

(iii) E = 0

(iv) B =

0J

(i)  E =
1


0

(ii)  B = 0

−2V =
1


0

 ( A) = 0J

E = −V

B =  A

( A) = (  A) − 2A = 0J  − 2A = 0J

If   A = 0.

(iii)   E = 0

(ii)  B = 0
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Scalar and Vector Potentials
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In the electrodynamics,

How do we express the fields in terms of scalar and vector 

potentials?

(i)  E =
1


0

(ii)  B = 0

t
(iii)  E = −

B

t
(iv)  B = 0J + 00

E

B remains divergenceless, so we can still write, 

Putting this into Faraday’s law (iii) yields,

B =  A

 E = −
 

( A) = (−
A

)  (E +
A

) = 0
t t t

t
E +

A
= −V



Scalar and Vector Potentials
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0 0 0 t

(i)  E =
1


0

(iv)  B =  J +  
E

We can further yields.

B =  A

These two equations contain all the information in Maxwell’s 

equations.

t
E = −V −

A

0 0 02

0


2 = − J
 V 

−    
t t  

A +  
 

2V +
 

( A) = −
1



2A 

t

A − 00

0

−2V −


( A) =
1



( A) =  −   
V 

−  
2A

0J 0 0 (
t

) 0 0
t2

t



Example 10.1
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Find the charge and current distributions that would give rise

to the potentials.
for |x|<ct 

for |x|>ct
0




0k
(ct− | x |)2 ẑ

V = 0, A =


4c

( )2
0 0 2

0




t

1 


+   

 t0 

Solution:  = −0
 

( A)

J = −  A − 



2A  1
A

Where k is a constant, and c is the speed of light.

0k
ˆ

2 2 2

2
0

0 0

= 0

ˆ
2c

x z

z

AA Ay

x
+

y z

2 2 2

2

x y z
A = ( + + )A z =

 k 2 ˆ = −
0k

ˆ2c z
4c

z
2c

− 0 0
t2

= − 

 A = +

 A

z
 = 0

J = 0



Example 10.1 (ii)

5
0 c

K = n̂(H+ − H− )
There is a surface current K in the yz plane. 1 k

= n̂ 0 ctŷ = ktẑ
How do we know?

c

Since the volume charge density and current density are 

both zero, where are the electric and magnetic fields from?
 = 0 and J = 0

They might originate from surface charge or surface current.

E = −
A

= −
0k

(ct− | x |)ẑ
t 2

2 0k

20


x  0

ˆ(ct− | x |) y =
 k  

4c x




4c x 2c

0k  x  0 −
4c x 2c

(ct + x) ŷ =− (ct + x)ŷ

−
0k  

(ct − x)2 ŷ =
0k

(ct − x)ŷ

B =  A = −
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10.1.2 Gauge Transformations

We have succeeded in reducing six components (E and B)

down to four (V and A). However, V and A are not uniquely

determined.
We are free to impose extra conditions on V and A, as long

as nothing happens to E and B.

Suppose we have two sets of potential (V, A) and (V , A),

which correspond to the same electric and magnetic fields.

A = A +α and V  = V + 

B =  A =  A  α = 0  α = 

( +


) = 0
t


t t t 

 
E = −V  −

A
= −V −

A
−


 +

α 

 ( +


) = k(t)
t
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Gauge Transformations

Conclusion: For any scalar function , we can with impunity 

add  to A, provided we simultaneously subtract /t to V.

Such changes in V and A do not affect E and B, and are 

called gauge transformation.

We have the freedom to choose V and A provided E and B

do not affect --- gauge freedom.


V  = V −






t

A = A + 


 = − + k(t) = −

t



t

α =  = 





10.1.3 Coulomb Gauge and Lorentz Gauge
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There are many famous gauges in the literature. We will 

show the two most popular ones.

The Coulomb Gauge:

0


2
0 0 02

V 

tt
A +   = − J


−   

     

2V +
 

(  A) = −
1


t

A − 00



2A 

 A = 0

2V = −
1

 (Poisson's equation)

V (r, t) =


d (setting V = 0 at infinity)

0

1 (r , t)

40
r

t
E = −V −

A

V instantaneously reflects all changes in . Really?

unlike electrostatic case.



The Coulomb Gauge

Advantage: the scalar potential is particularly simple to

2
2A V 

A = −0J + (00
t2

+ (00 t
))

V (r, t) =

9

d (setting V

calculate;
2V = −

1
 (Poisson's equation)

= 0 at infinity)




0

1 (r , t)

40
r

Disadvantage: the vector potential will be very difficult to 

calculate for the non-static case.

The Coulomb gauge is suitable for the static case.



The Lorentz Gauge

The Lorentz Gauge:

0


2
02t

= − J
 V 

−    0 0 
t   

A +  



2V +
 

(  A) = −
1


t

A − 00



2A 

t
 A + 00

V
= 0

0 02

2
0

2V 1 

2 2A
A − 00

t2
= −0J

V −  
t

= −




2

10

2 −   2
0 0

t2

2: the d'Alembertian


2V = −

1


0

2A = −0J

inhomogeneous 

wave equations



The Lorentz Gauge

Advantage: It treats V and A on an equal footing and is 

particularly nice in the context of special relativity. It can be 

regarded as four-dimensional versions of Poisson’s equation.

V and A satisfy the inhomogeneous wave equations, with a 

“source” term on the right.

Disadvantage: …

We will use the Lorentz gauge exclusively.

2V = −
1



11

0

2A = −0J



10.2 Continuous Distributions
10.2.1 Retarded Potentials

static case
0 02

2
0

2V 1 

2 2A
A − 00

t2
= −0J

V −  
t

= −




0

2V = −
1



2
 A = −0J

0

Four copies of Poisson's equation

V (r) =

A(r) =

d

d


4




J(r )



1 (r ) 

40



r

r

EM
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Retarded Potentials

In the nonstatic case, it is not the status of the source right 

now that matters, but rather its condition at some earlier time 

tr when the “message” left.

tr  t −
r

(called the retarded time)

This heuristic argument sounds reasonable, but is it 

correct? Yes, we will prove it soon.

c

Retarded potentials:

40

)
V (r, t) =

J(r, tr )
d 

4 A(r, t) =
0

r d



1 (r , t

r

r

Argument: The light we see now 

left each star at the retarded time 

corresponding to that star’s 

distance from the earth.

13



0

(r, tr )
d 

4
V (r, t) =

1
 r

0
2

2

V −  
 V

= −
1

0 0
t2

Retarded Potentials V (r, t)

Satisfy the Inhomogeneous Wave Equations
Show that the retarded scalar potentials satisfy the 

inhomogeneous wave equations.

2
0 0

)r

4 4

 


Sol: 1
V =  d =  

(r , t 1 r() − (r)
d 

r  r

g 2
Using quotient rule: 

 f 
=

gf − f g
 g 
 

 = (r, tr ) =
d

tr = 
 −1

r
dtr c

r = r̂

V =
−1

40
 cr r2
[
  r̂

+
 rˆ

]d 
r c c c

t = (t −
r

) = −
1

r = −
1 r̂.

14



Satisfy the Inhomogeneous Wave Equations (ii)
Retarded Potentials V (r, t)

15

r r =  (r, t ) =
 

t = 
 −1

r = −
  r̂

40 cr r2
V = 2V =

−1
 [

  r̂
+

r̂
]d 

cr c rr2 r2
 [

  r̂
+

 r̂
] =

1
(

r̂
) +   (

r̂
)

c r r r2 r2
=

1
[
r̂

 +  
r̂

]+[
r̂

 + 
r̂

]

c
 =

 − r̂

3

2

r̂1 →

tr

 = and 
r r2

r̂

c c

= 4 (r )
r

and

3

3

1 

1 

[ + ] = [− +
ˆ ˆ  1 

]+[−

= −

r2 r2 c

→
+ 4 (r )]

cr c crr2

c2 r

 r  r

→
+ 4 (r )



Retarded Potentials V (r, t)

Satisfy the Inhomogeneous Wave Equations (iii)

2 3

0 0c2 4 04
 V =

   −1 1  


 [− d − 

(r, t)→ 1 1

c2 r
+ 4 (r )]d =

r

2 2 2 2

0 0
2
r 0

1  

4
rt2 r

 V  V

t


d = d =  =

4 r
d =

t2 t2
 

1 1  

4 r r

1 2V
2

2

0

 (r,t)
V =

c t2 
−

2

0

 (r,t)
V −

c

1 2V
2 t2 

= −

16



Satisfy the Inhomogeneous Wave Equations
Show that the retarded vector potentials satisfy the 

inhomogeneous wave equations .

Retarded Potentials A(r, t)

rt  t −
r − r

c

Sol:

0A(r, t) = 
4

d 
J(r, tr )

r
2 2A

A − 00
t2

= −0J

2

) r( J) − J  (r)r 
  = 

 

J(r , t

r r

g 2
Using quotient rule:  g 

 

 A 
=

g( A) − A  (g)

Also see Prob. 10.8… Show that the retarded potential 

satisfy the Lorentz gauge condition.
17



The Principle of Causality

This proof applies equally well to the advanced potentials.

The advanced potentials violate the most sacred tenet

in all physics: the principle of causality.

No direct physical significance.

Advanced potentials:

40

 

4
0  a d 

V (r, t) =
1


(r, ta )

d 

J(r, t )
A(r, t) =

r

r

2V − 00 2
0

2V 1

2A2
0 0 = −0J

2

t

t

= −




 A − 

at  t +
r − r

c 最神聖的信條

18



Example 10.2

An infinite straight wire carries the current

Sol: The wire is electrically neutral, so the retarded scalar 

potential is zero.

I (t) = 
I

 0 for t  0 

for t  0 0
Find the resulting electric and magnetic fields.

0 0 ˆA(r, t) = A(s, t) = r r) I (t )
dz

 

4 4



−


d = 

J(r , t
z

r r

For t  s/c, the “news” has not yet reached P, and the potential 

is zero.

For t > s/c, only the segment z  contributes.(ct)2 − s2

19



How?

(ct)2 −s2
0 0

0

ct + (ct)2 − s20I0

2

ˆ
− (ct)2 −s2

A(s, t) = (

ẑ) ln(= ( )

 I

4
dz

(ct)2 −s2

1

s2 + z2

  I

2
= ( s2 + z2 + z)0 0 ẑ) ln(

s

z)

(ct)2 − s2
̂

2s

ct

s
B =  A = −

Az ̂ =
0I0

0I0c

2 (ct)2 − s2
ẑ

t
E = −

A
= −

z s s ss  z 
Curl :  v =[

1 vz −
v ]ŝ +[

vs −
vz ]̂ +

1
[


(sv ) −

vs ]ẑ

20



Retarded Fields?

Can we express the electric field and magnetic field using the 

concept of the retarded potentials? No, but...

How to correct this problem?

Jefimenko’s equations.

40

Retarded potentials:

V (r, t) =
1


(r, tr )

d 

4
A(r, t) =

0 
J(r, tr )

d 

r

r

40 r2

Retarded fields: (wrong)

E(r, t) 
1


(r, tr ) 

r̂ d 

4 r2
B(r, t) 

0 
J(r, tr ) rˆ

d 

Optional
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10.2.2 Jefimenko’s Equations

40

Retarded potentials:

4
V (r, t) =

1


(r, tr )
d  and A(r, t) =

0 
J(r, tr )

d 
r r

A
E = −V −

t

40 cr r2
−V =

1
[
  r̂

+
 rˆ

]d 

−


= − (
t tr 4

0 
t  

d r d ) r = − 0 
J(r, t )

t 4 r

A    J

r

40 cr

c2r40

4 r

]d 

r2

r2

E =
1

[
  r̂

+
r̂

]d  −
0 

J
d 

=
1

[
 rˆ

+
r̂

−
cr

J

The time-dependent generalization of Coulomb’s law.

Optional
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Jefimenko’s Equations (ii)

40

Retarded potentials:

4
V (r, t) =

1


(r, tr )
d  and A(r, t) =

0 
J(r, tr )

d 
r r

B =  A =
0 

J(r, tr )
d  =

0 [
1

 J − J 
1

]d 
4 r 4 r r

The time-dependent generalization 

of the Biot-Savart law.

c


1
  J =

1
J  r̂ and ( ) = −

r̂

r r 2

0 ˆ


B = 
J 1

4 r2 cr
[ + J] rd

These two equations are of limited utility, but they provide 

a satisfying sense of closure to the theory.

Optional
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10.3 Point Charges
10.3.1 Lienard-Wiechert Potentials

What are the retarded potentials of a moving point charge q?

Consider a point charge q that is moving 

on a specified trajectory

w(t)  position of q at time t.

24

The retarded time is:  t −
r − w(tr )

rt c

position to the field point r →
r = r − w(tr )

w(tr ) the retarded position of the charge.

The separation vector r is the vector from the retarded

r = w(tr ),

r is function of tr .

EM
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Communication

Is it possible that more than one point on the trajectory are 

“in communication” with r at any particular time t?

No, one and only one will contribute.

Suppose there are two such points, with retarded time t1 and
t2:

r1 = c(t − t1) and r2 = c(t − t2 ) r1 − r2 = c(t1 − t2 )

This means the average velocity of the particle in the 

direction of r would have to be c. violate special relativity.

Only one retarded point contributes to the potentials at any 

given moment.

25



Total Charge

The source in motion lead to a distorted picture of the total 

charge.

 (r, tr )d  =
q

1− r̂  v / c

To be proved.

V (r, t) =
1


(r, tr )

d  =
1 1

 (r, tr )d 
r − w(tr )40 40 r − w(tr ) –– ––

No matter how small the 

charge is.

 q

The retardation, tr  t − r − r c , obliges us to evaluate 

at different times for different parts of the configuration.

26



Total Charge: a Geometrical Effect

A train coming towards you looks a little longer than it really 

is, because the light you receive from the caboose left earlier 

than the light you receive simultaneously from the engine.

caboose 

KK:[kǝˈbus]

 L =
L

=
L − L L

c v 1− v / c

Approaching train appears longer.
1− v / c 

L

L
L =

1+ v / c
L = A train going away from you looks shorter.

Optional
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Total Charge: a Geometrical Effect (ii)

In general, if the train’s velocity makes an angle  with your 

line of sight, the extra distance light from the caboose must

cover is Lcos .

1− r̂  v / c
  =



Lcos
=

L − L

c v

L

1− v cos / c
 L =

This effect does not distort the dimensions perpendicular to 

the motion.

The apparent volume  of the train is 

related to the actual volume  by

Optional
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charge.

where (r, tr ) = q (r − r, tr ).

The famous Lienard-Wiechert potentials for a moving point

Lienard-Wiechert Potentials
It follows that

V (r, t) =
1


(r, tr ) 

d  =
1 q

,
40 r 40 r(1− r̂  v / c)

c2
=

0

A(r, t) =
0 

(r, tr )v(tr )
d  =

0 v(tr )
 (r, tr )d 

=
v

V (r, t)

4 r 4 r
qv

4 r(1− r̂  v / c)

0

c2

1 q 1

r (1− r̂  v / c)

V (r, t)






V (r, t) =
4



 A(r, t) =
v



Derivation from Wikipedia (i)

30

40

V (r, t) =
1


(r, tr )

d , where tr = t −
1

r − r .
r − r c

(r, t) = q3(r − rs(t)).

For a moving point charge whose trajectory is given as a function 

of time by rs(t), the charge density is as follows:

0

The integral is difficult to evalute in the present form, 

so we rewrite as:
3

V (r, t) =
1


q (r − rs(t))  (t tr )dt d

4
 −    

r − r

Three dimensional Dirac delta function.
3

V (r, t) =
1


q (r − rs(tr ))

d 
40 r − r

40 40

V (r, t) =
1


q (t − tr )

 3(r − rs(t))d dt =
1


q (t − tr ) dt

r − r r − rs(t)



Derivation from Wikipedia (ii)
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V (r, t) = r dt
 1 q (t − t ) 

40

 r − rs(t)

f (ti )

trajectory rs
(t), and hence depends on t.

 ( f (t)) = 
 (t − ti ), where each ti is a zero of f .

i

Because there is only one retarded time tr for any given space-time 

coordinate (r, t) and source trajectory rs (t), the above equation reduces to:

is a function
r

Since the retarded time t 

of the field point (r, t) and the source

1
c

 (t − tr )  (t − tr )
 (t − tr) =

 (t − tr )
=

and n̂ =
(r − rs(t))

=
 (t − tr )

1− βs  n̂ r − rs(t)

t=tr t=tr

t=tr

t=tr

r s

c
1+ 1 (r − rs(t))  (−vs ) r − rs(t)

c
where βs =

vs




t 


t

=
 (t − t ) (t − (t − r − r (t ) ))



Derivation from Wikipedia (iii)

1 q

s s0  t=tr

 (1−β  n̂) r − r (t) 

  c 

  




V (r, t) =
4


0  s 



A(r, t) =

 t=tr

qβ

4  (1−βs  n̂) r − rs(t) 

Lienard-Wiechert Potentials

0

c2

1 q 1

r (1− r̂  v / c)

V (r, t)






V (r, t) =
4



 A(r, t) =
v

40

32

V (r, t) =
1


q (t − tr ) dt
r − rs(t)



Example 10.3

Find the potentials of a point charge moving with constant 

velocity. Assume the particle passes through the origin at time 

t = 0.

Sol: The trajectory is: w(t) = vt

First compute the retarded time: r − w(tr ) = r − vtr = c(t − tr )

2 2 2

r r r

2 = c2 (t − 2tt + t )
r

r2 − 2r  vt + v t

2

r(c2 − v2 )t 2

r
+ 2(r  v − c t)t + (c2t2 − r2 ) = 0

(c2t − r  v)  (r  v − c2t)2 − (c2 − v2 )(c2t2 − r2 )

(c2 − v2 )
tr =

Which sign 

is correct?

Consider v = 0 t2 − (t2 − r2 / c2 ) = t  r / c

We want the minus sign
33

tr = t 



Contd.:

c(t − tr )
r = c(t − tr ), and r̂ =

r − vtr

(c2t − r  v) − (r  v − c2t)2 − (c2 − v2 )(c2t2 − r2 )

(c2 − v2 )
tr =

1 qc

40 (r  v − c2t)2 − (c2 − v2 )(c2t2 − r2 )

qcv

V (r, t) =

v2

=
1

c c
− tr )  = c(t − tr ) − (

c c(t − tr ) 

v r − vtr 

c 
=

1 (c2t − r  v) − (c2 − v2 )tr 


(r  v − c2t)2 − (c2 − v2 )(c2t2 − r2 )
c

 v r



→
r − r  v / c = c(t − tr ) 1−

(r  v − c2t)2 − (c2 − v2 )(c2t2 − r2 )4
A(r, t) =

0
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Using the Lienard-Wiechert potentials we can calculate the 

fields of a moving point charge.

tr is a function of r and t.

1 q

40 r(1− r̂  v / c)
V (r, t) =

c2
and A(r, t) =

v
V (r, t)

t
Find: E = −V −

A and B =  A

) and v )r r= w(t
→
r = r − r = r − w(tThe separation vector:

The retarded time tr: r − w(tr ) = c(t − tr )

EM

35

10.3.2 The Fields of a Moving Point Charge Tsun-Hsu Chang



Gradient of the Scalar Potential

2
0

1
(r − r

→
 v / c)

4

−q
→

(r − r  v / c)
V =

r = c(t − tr ) = −ctr

–r –
#1

– – r
#2

(r→ v) = (
→

)v + (v )
→

+
→

 (  v) + v  ( 
→

)r – –
#3 

– – r
#4

= (rx
dv tr + ry

dv tr + rz
dv tr )

→
dtr x dtr y dtr z

= a(r tr )

acceleration

   
(
→  
r )v = (rx x

+ ry y
+ rz z

)v#1

See Chap.1 p.23
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1.2.6 Product Rules (II)

The product rule:



(A B) = A ( B) + B ( A) + (A )B + (B )A

  (A B) = B  ( A) − A  ( B)

(A B) = (B )A − (A )B + A( B) − B(  A)



vector : fA

 scalar : fg


vector : A B

 scalar : A B

d
( fg) = g

df
+ f

dg 

dx dx dx

  ( fA) = f  A + f (  A)

( fg) = gf + fg

( fA) = f  A + f ( A)

少見

Chap.1 p.23
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r x= (v )r − (v )w(t ) = v − (v y z r

+ vy
dw tr

dtr x
= v − (vx

dw tr
dtr y dtr z

+ vz
dw tr ) = v(1− (v tr ))

     
+ v

x y z
+ v )w(t )

→
(v )r#2

ˆ ˆ
vy vy ˆ

vx vxvz

y



→  vz


−

z
)x + (

z
−

x
)y + (

x
−

y
)z

=
→

r ( v) = r  (

r (−atr )

#3
→



ˆ( )x + (

ˆ
( y − w )

ˆ

y( y − w )
xz(z − w )

y

x
)y + ( x

(x − w )

z

y z z





(x − w ) 

y

−

−
x

−




 (z − w )
 


= v(vtr )


)z

→
#4 v( r ) = v 

ˆ

38

ˆ ˆ
dvx tr

r

dvy tr dvx tr
z

)x + (
dt

r r

dvz tr dvy tr
x

)y + (
dt

rz
−

dt x
−

dt
 dt y

−
dt

r r

= →  dvz trr  (


y
)z
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#2 #3 #4

(r→ v) = (
→

)v + (v )
→

+
→

 (  v) + v  ( 
→

)
–r – – – r r – – – – r

#1
→

2

r
v )t

→

→
= a(r tr ) + v(1− (v tr )) − r (a tr )+ v (v  tr )

= v + (r a −

1/2

1/2

1/2

1
(r→ r→)

r

r r

r r r

c c c

1 →→r 1
t = − = − r = − (r  r ) = −



= −
1

2 →
 ( 

→
)+ (

→
)

→→1/2

→→
2c(r  r )

→ → →

where


→

→t = −
1 r→ (v  t ) + r

→
− v(r

→
t )

c(r
→

 r )

r r r r
2c(r

→
 r )

r  (  r ) = r  (v  tr )
→ →

r r
(r )r = (

→
)(r − w(t )) =

→
− v(r t )

 r r
 t =

cr − r→ v
= −

→
1 → →

cr

−r
r − (r  v)t ) w(tr ) is function of tr .

r r
c c

P.14, t =
 −1

r = −
1 r̂ because r is independet of t .



2 2

3
0

1

4

qc
V =  



→
(rc − r

→ →
 v)v − (c − v + r a)r

→
(rc − r  v)

2 23
0

A
=

1 qc

t 4
c

 
+ (c 

 

r →

(rc − r→ v)(−v + r→a / c)

− v + r a)v→
(rc − r  v)

Similar calculations

2 2

40

0t 4
E = −V −

A
=

q  


→r
→ (c − v )u + r (u a)

(r u)3 

where u  cr̂ − v



Curl of the Vector Potential

 A =
1

 (Vv) =
1 (V( v) − vV )

c2 c2

2 2

3
0

2 2

3
0c 4 (r u)

q

c

 = −
1



 
 

→ 1 →
(c − v )u + r (u a) = r E

→ →r →
→

c 4

=
1 q

→
r →

r  (c − v )v + (r a)v − (r u)a


(r u)

r 

The magnetic field of a point charge is always 

perpendicular to the electric field, and to the 

vector from the retarded point.

41

→
where r  v = −r  u.

B =
1 r̂  E
c



Generalized Coulomb Field

2 2

3

radiation field

(c







 

velocity field


acceleration field

E =

 
 

→
→

q r

40 (r u) – –
− v )u + r –( u– a)

(c3)r̂ =

42

q 1
r̂

40 r2

v = 0 and a = 0

q r

40 (cr)3
E =



Example 10.4
Calculate the electric and magnetic fields of a point charge 

moving with constant velocity.

Solution:

(c2 − v2 )u, since a = 0.
q

E =
r

→
40 (r u)3

2 2 2
(Prob. 10.16)

where  is the angle between R and v.


→ →

u = cr̂ − v
→

 ru = cr − rv = c(r − vtr ) − c(t − tr )v = c(r − vt);

r u = cr − r  v = Rc 1− v sin  / c

q 1− v2 / c2

43

0

R̂
E =

4
, where R  r − vt

(1− v2 sin2  / c2 )3/2 R2



Fields of a Moving Point Charge

1− v2 / c2
,

(1− v2 sin2  / c2 )3/2 R2
0

R̂

where R  r − vt

Obtain the same result by using the 

Lorentz transformation. Chap.12

qE =
4

c

44

c2
B =

1
(r̂ E) =

1
(v E)

since r̂ =
r − vtr =

(r − vt) + (t − tr )v
=

R
+

v

r r r c



Homework of Chap.10
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1 q

40 R 1 − v2 sin2  / c2
V (r, t) = , (10.51)

V (r, t)=
1 q

40 R

where R  r − vt is the vector from the present (!) position of the particle 

to thefield point r, and  is the angle between R and v.

Note that for nonrelativistic velocities (v2 c2 ),

Problem 10.4 Suppose V = 0 and A = A0 sin(kx −t)yˆ, where A0, , and k are 

constants. Fine E and B, and check that they satisfy Maxwell's equations in vacuum. 

What condition must you impose on  and k ?

Problem 10.11

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current

I (t) = kt,

for t > 0. Find the electric and magnetic fields generated.

(b) Do the same for the case of a sudden burst of current:

I (t) = q0 (t).

Problem 10.16 Show that the scalar potential of a point charge moving 

with constant velocity (Eq. 10.49)can be written more simply as?



Homework of Chap.10
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Problem 10.15 A particle of charge q moves in a circle of radius a at constant

angular velocity . (Assume that the circle lies in the xy plane, centered at the

origin, and at time t = 0 the charge is at (a,0),on the positive x axis.) Find the 

Lienard-Wiechert potentials for points on the z axis.

Problem 10.27 Check that the potentials of a point charge moving at constant ve-

locity (Eqs. 10.49 and 10.50) satisfy the Lorenz gauge condition (Eq. 10.12).

Problem 10.28 One particle, of charge q1, is held at rest at the origin. Another 

particle, of charge q2, approaches along the x axis, in hyperbolic motion:

x(t) = b2 + (ct)2 ;

it reaches the closest point, b, at time t = 0, and then returns out to infinity.

(a) What is the force F2 on q2(due to q1) at time t ?

2 − 2 2 1(b) What total impulse (I =


F dt) is delivered to q by q ?

(c) What is the force F1 on q1(due to q2) at time t ?

1 1 1 2(d) What total impulse (I =


F dt) is delivered to q by q ? [Hint : It might−

help to review Prob. 10.17 before doing this integral. Answer : I2 = − I1 =

q1q2 / 40bc]


