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Chapter 10: Potentials and Fields  Tsun-HsuChang

10.1 The Potential Formulation
10.1.1 Scalar and Vector Potentials

In the electrostatics and magnetostatics,

(V- E=—p (i) VXE=0
E

0
(i) V-B=0 (iv) VXB = 1]

The electric field and magnetic field can be expressed using
potential:
1

(iii) VXE=0 —>E =-VV -V =—p
€0

(i1) V-B=0 >B=VXA VX(VXA) =yl

Vx(VxA)=V(V-A)-V*A=ud = —-V*A=uyl
If V-A=0.



Scalar and Vector Potentials

In the electrodynamics,

HV-E=p (i) VxE=-2B

80 ot
N . oE
(11) V-B=0 (IV) VXBZIU()J‘FIU()EOE

How do we express the fields in terms of scalar and vector
potentials?

B remains divergenceless, so we can still write, B=VxA

Putting this into Faraday’s law (iii) yields,

BA) = VX(EA aA):O
ot ot

| aA_
ot

VXE = E?t (VXA)=VX(

E -VV




Scalar and Vector Potentials

ot
() V-E=—p >V -2V A= p
e ot €0
| oE A
(1v) VXB =,U0J+,U050§ VX(VXA) :ﬂOJ_ﬂogov(%It/) Fo0%0 %tz

We can further yields.

V2V - 0 (V-A)= : Jo,
ot &0
[ 24 / \
VZA—,UOgO a ? -V V'A‘l‘ﬂogoa—V :—ﬂoJ
N ot ) \ ot y,

These two equations contain all the information in Maxwell’s
equations.



Example 10.1

Find the charge and current distributions that would give rise

to the potentials. Uok (ci—|x )2z for [x|<ct
V=0, A=< 4c

for [x|>ct

0
Where £ Is a Constant and c is the speed of light.

Solution: P = —50—(V A)

/ 24 )
J=—— | V2A- ﬂogoaf‘ Ly(V.A)
Ho \ S ot ) Ko
A
/VA—aA yIBAZ:O
ox dy 0oz
2 2 2
v2A=(a 99 4,2 = M08 p=0
< axz ayz azz - 2c J=0
oA k. oo, k .
. —Ho¢0 = —Hp&o P00 =105

ppe. 4c 2c



Example 10.1 (ii)

Since the volume charge density and current density are
both zero, where are the electric and magnetic fields from?

p=0 and J=0
They might originate from surface charge or surface current.
E = BA: ’uok(ct—\x\)i
ot 2
P x>0 'uokaa (ct—x)sz:‘u—ok(ct—x)&
B=VXA-= ’120 > (ct—|x|)2§7=< 42 Bx 2¢ .
© A x<0 -0 (ct+x)2§7= Ho (ct+x)y
! 4c¢ Ox 2¢
= ct : S 1 | \l‘ -
| 2 | ’ K=nx(H" -H")
There is a surface current K in the yz plane. ok
=ax— 0" oy = kez

How do we know? Uy



10.1.2 Gauge Transformations

We have succeeded in reducing six components (E and B)

down to four (7 and A). However, IV and A are not uniquely
determined.

We are free to impose extra conditions on VVand A, as long
as nothing happens to E and B.

Suppose we have two sets of potential (V, A) and (V’, A”),
which correspond to the same electric and magnetic fields.

A'=A+0o and V' =V +p
B=VxA=VxA" = Vxa=0 = a=VA

/ ( )
E=-VI”’ oA =-VV oA VA oa
ot or ot

V(5 aaf>=o ~ (8- %f>=k<t>




Gauge Transformations

o=VA=VA ‘A'=A+VA
oA oA =2 oA

= k(1) = V' =V
p ot *) ot ; ot

Conclusion: For any scalar function A4, we can with impunity
add VA to A, provided we simultaneously subtract 040t to V.

Such changes in VVand A do not affect E and B, and are
called gauge transformation.

We have the freedom to choose 7 and A provided E and B
do not affect --- gauge freedom.



10.1.3 Coulomb Gauge and Lorentz Gauge

There are many famous gauges in the literature. We will
show the two most popular ones.

V4V A a(V-A): : Jo,
ot )
( 24 ) / \
VzA—,UOgOa ? V V'A‘Fﬂogoa—V :—ﬂoJ
\ Bt Y, \ at /
The Coulomb Gauge: V.A =0
V2V = : o (Poisson's equation)
€0

Vir,t)= : j P (:/’t)df' (setting V' =0 at infinity)

471'50
V' instantaneously reflects all changes in p. Really?
E=-V/V IA unlike electrostatic case.

ot



The Coulomb Gauge

Advantage: the scalar potential is particularly simple to

calculate; 1
V2V = o0 (Poisson's equation)
€0
1 o0, . o
Vir,t)= j dT (setting V' =0 at infinity)
471'80 v

Disadvantage: the vector potential will be very difficult to
calculate for the non-static case.

%A oV
Y —

VA = —uod + (g

The Coulomb gauge is suitable for the static case.



vy 42 (V-A) =
ot

The Lorentz Gauge

1

Jo,
€0
( 24 / \
VzA—,uOgO 0 ? \% V-A+,uog()a—V =—1J
\ af y \ at /
oV
The Lorentz Gauge: V-A+ 1€ o 0
2
V2V—ﬂogoa ZV: L) .
ot €0 inhomogeneous
2 wave equations
VZA - 1y&, & ? =—Hd
ot
82 o 21, _ 1
V? — uye = V==—"—p
Moo atz £,

2. the d'Alembertian

10



The Lorentz Gauge

Advantage: It treats I and A on an equal footing and is
particularly nice in the context of special relativity. It can be
regarded as four-dimensional versions of Poisson’s equation.

V and A satisfy the inhomogeneous wave equations, with a
‘source” term on the right.

|
2y — P
€0

‘A =—1J

Disadvantage.: ...

We will use the Lorentz gauge exclusively.

11



10.2 Continuous Distributions Fsun-Heu Chang

10.2.1 Retarded Potentials

V1
V2V — 1€ = ]
Ho%0 ot & P static case V= P
9 —— 0
A
VZA - 1y&, aa 5 =~Hod VA = -1
t

Four copies of Poisson's equation

V(r) = 47;9 [£ g ) ar
0

A(r)=& 1) 4
4w W

12



Retarded Potentials

In the nonstatic case, it is not the status of the source right
now that matters, but rather its condition at some earlier time
t. when the "message” left.

.=t —% (called the retarded time)

Retarded potentials:

V(1) = — I/)(r ) 177 Argument: The light we see now
47Ey v left each star at the retarded time
Hy corresponding to that star’s

Ju't) .,
A(r,1) =" —dT  distance from the earth.

This heuristic argument sounds reasonable, but is it
correct? Yes, we will prove it soon.

13



Retarded Potentials V(r.?)
Satisfy the Inhomogeneous Wave Equations

Show that the retarded scalar potentials satisfy the
Inhomogeneous wave equations.

p(r',1,) ) 2’V 1
Vi(r,t)= dt’ VIV — upe =
(r,1) = 4%0] o~ 5=~ P
Sol: O alv’ ) _

V) = 1 _[V p(ratr) d7 = 1 J""/(Vp) p(v"’)dz./
471'80 \ v Y, 472'80 /1,2
"""""""""""""""""""" (Y oVf_ fVo
Using quotient rule: V / = v/ 2f Vg
_________________________________ \&/ &

dp -1 .
Vo=Vp(',t,)=——-Vt. =p—Va Va4, = 4
dt, C
_1 S
VIV = _[['0"' p’”]df Vi, =V(t—i)=—le=—l/§.:
47[80 Ch /v :________f____c; _____ g__|



Retarded Potentials 7 (r,?)
Satisfy the Inhomogeneous Wave Equations (ii)

V.VV=V)=_—"_ jv P P
471'80 Ch /,,2
v ph s iy
V[~ =p2]:—V-<p )+V - (p—5)
Ch A, C A,
1.4 iy iy
[—-Vp+pV- ]=[ 5 Vp+pV-—]
C A v A, 2

Vp=Vpr,t) :37'0%,, 57 Ve =P % and Vp="P4
C

2 A 15



Retarded Potentials 7 (r,?)
Satisfy the Inhomogeneous Wave Equations (iii)

Rl g— I 12 Py 4mps° ())d7 = 12 jpdr pr, 1)
471'80 c- 471'80 &0
2 2 2
jpdr— ljlapdr— j P dr—aV d
471'80 47[80 A at 472'50/,/ tr atz
2
V2 12 0 2V p(r,1)
Ao Ot €0
S
19V p(r,0)
VYV = ’

16



Retarded Potentials A(r,?)

Satisfy the Inhomogeneous Wave Equations

Show that the retarded vector potentials satisfy the
Inhomogeneous wave equations .

’ 2
A(r,n =20 Dar VA ey o = —p1yd
( ) AT A ,Ll() 0 atz lLlO
Sol:
(It a(V-3)=J-(Va) _ |r_r
V. — : [, =1
. v oy C

(A)_g(V-A)-A-(Vg)

______________________________________________________________________

Also see Prob. 10.8... Show that the retarded potential
satisfy the Lorentz gauge condition.

17



The Principle of Causality

This proof applies equally well to the advanced potentials.

Advanced potentials: )
1 (r/ / ) VzV— c a V _ 1
V(r,t): IIO "al g4/ Ho€o atz — o P
471'50 A 0
Uy ¢ J(@',t,) 2 0°A
A(r,r) =Y al gy’ VIA - pey — = —Hpd
41 A, ot
r—r’
[, =1+
¢ B A B et i

The advanced potentials violate the most sacred tenet
in all physics: the principle of causality.

\ No direct physical significance.

18



Example 10.2
(0 fort<0

An infinite straight wire carries the current /(¢) =+«
]O fortr>0

.

Find the resulting electric and magnetic fields.

Sol: The wire Is electrically neutral, so the retarded scalar

potential is zero. A

dz
A(r,t):A(s,t)zﬁ J(r’t’”)dr’:&ijw [(t’”)dz \
47 oy A J=° 4 ‘ P

For t < s/c, the "news” has not yet reached P, and the potential
IS Zero.

For ¢ > slc, only the segment || < \/(cr)’ —s*  contributes.

19



_ Holg et
A(s,t)=( A Z)I_\/(Ct)z_sz \/S2-|-22

— (‘UOIO Z) ln(\/S2 + 72 +2)
27T 0

) )
[+ [y —S
_ (H010 5 1n (€ Jeen >
27T S
E B aA _ ,Llo]oC‘ 2

20



Retarded Fields?

Can we express the electric field and magnetic field using the
concept of the retarded potentials”? No, but...

Retarded potentials Retarded ﬁelds (wrong)
1
V(1) = jp(r Dy ) # jp(r r) o
47t 472'80 o?
A(r,t) = Ho I’ ’t’”)dz" B(r,?) ;t I tz)xwdz"
41 A, 47T A

How to correct this problem?

——— Jefimenko’s equations.

21



10.2.2 Jefimenko’'s Equations

Retarded potentials
V(r.1) = j P (r 'Dar and Ar,r) =20 [I0)
47ty 47 Ay

RV [12* p’z”]dr’

L=-vV 0 < oA 0 J(r',e,
. Of at,, 47[ A ot Azl

E = : j[ph’:ph’]dr’ Ho —dT

ATEy Y ch a? 47w 7 4

471'80 /1,2 Ch C‘2"v

The time-dependent generalization of Coulomb’s law.



Jefimenko’'s Equations (ii)

Retarded potentials
V(r.1) = j P (r 'Dar and Ar,r) =20 [I0)
47ty 47 Ay
B = VxA—ﬂO IVXJ(r t)dr —Ho [ VxJ - JXV—]dT
. dz v
1 A b
VxJ=—JX4 and V(—)=-—

o ¢ J . 1 .+, , The time-dependent generalization
B:_ | J X d
47zj[/,,2 Ch Pndt of the Biot-Savart law.

These two equations are of limited uftility, but they provide
a satisfying sense of closure to the theory.

23



10.3 Point Charges Fsun-Heu Chang
10.3.1 Lienard-Wiechert Potentials

What are the retarded potentials of a moving point charge g?

Consider a point charge ¢g that is moving ';g‘;;;'id;f\ e
on a specified trajectory rajector

Present
Wit/ o, q_— position
- A

w(?) = position of g at time ¢.

t |r —w(z, )|
C
w(¢, ) the retarded position of the charge.

The retarded time Is: 7, =

The separation vector 4 is the vector from the retarded

position to the field pointr - _ -y i;';_:_v_v_(_t,:)_, -------- '
r’ is function of z,..



Communication

Is it possible that more than one point on the trajectory are
“In communication” with r at any particular time ¢

No, one and only one will contribute.

Suppose there are two such points, with retarded time ¢, and
).

y=c(t—t)andr =c(t—t) = 4= =c(t—1,)

This means the average velocity of the particle in the
direction of r would have to be c. € violate special relativity.

————————————————————————————————————————————————————————————————

 Only one retarded point contributes to the potentials at any
given moment.

|
|
L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = = = = = —

25



Total Charge

Vir,t)=

o(r',t,) |
- j — )‘dr = j P, 1,)d7

h'4

k'

The retardation, 7, =1
at different times for different parts of the configuration.

The source in motion lead to a distorted picture of the total
charge.

Ip(r' ()t =—12 No matter how small the
! l—4a-v/c charge is.

To be proved.

26



Optional

Total Charge: a Geometrical Effect

A train coming towards you looks a little longer than it really
IS, because the light you receive from the caboose left earlier
than the light you receive simultaneously from the engine.

caboose

KK:[ka'bus] T T
. ‘©
=7 L o
L L'-L ,
— = = L' = L
C % l—-v/c
,_ L . .
L= — Approaching train appears longer.
L = L A train going away from you looks shorter.

1+v/c .



Optional

Total Charge: a Geometrical Effect (ii)

In general, if the train’s velocity makes an angle 8 with your
line of sight, the extra distance light from the caboose must
coveris L’'cosé .

L'cos@ L -L , L
C % l—vcos@/c
This effect does not distort the dimensions perpendicular to
the motion.
The apparent volume 77of the trainis 7 _ t

related to the actual volume by l—4a-v/c
28



Lienard-Wiechert Potentials
It follows that

1 ’ , 1
V(r,t): Ip(r 9t7/')d2. — Aq ,
471'80 A 471'80 ’v(l—"v'V/C)

47 A 47 A
e LS (%)
47[’1/(1—"7/'V/C‘) CZ
where p(r’,t,)=qo(r'—r, t,.).

Ay = 20 [ POV o Ho YO [

The famous Lienard-Wiechert potentials for a moving point

charge. (
° Vir,t)= L g :

drey ~ (I1—4-v/c)

A(r,1)=— V(1)
. C




Derivation from Wikipedia (i)

1 J‘ ,0(1‘,, t,,,)
47[80 ‘l’ —r
For a moving point charge whose trajectory 1s given as a function
of time by r;(¢"), the charge density is as follows:

Vir,t)=

I4 4 1 4
dt, where t, :t——‘r—r
c

p(r', 1) = q53 (r' —=r.(¢)). r~ Three dimensional Dirac delta tunction.

Vir,t)=

1 J‘q53(l‘,—l’;(t;))dz_,
472'80 ‘r—r'

The 1ntegral 1s difficult to evalute in the present form,
SO We rewrite as:

3 1y
V(r.0) = — l] 90" (r l}‘(t ) 8 —t.)dt'dr’
471'80 ‘I'—I'

1 Iqé‘(t’—t;)dt,
471'80 ‘l‘ — I’S, (t,)

qé‘(l‘ _tr)53(l‘,—l‘s,(l‘,))d1"dt'=

1
V(r,t) R 47[50 ‘[ ‘r —r’

30



Derivation from Wikipedia (ii)

S —+ Since the retarded time £, is a function
Vir.n) =— [200 =) 4 - r
(r,1) = Amey Y |r - (t')‘ of the field ,po,mt (r, ¢) and the source ,
trajectory r, (¢'), and hence depends on 7.
o(f (1)) = Z 5?/(; t)i), where each ¢, 1s a zero of f.
i l

Because there 1s only one retarded time ¢, for any given space-time
coordinate (r,¢) and source trajectory r,(¢'), the above equation reduces to:

;o ot —t, ot —t,
5(t—t,ﬁ):a f . ) =—— g ),
-1, == ()

ré(t’—t,,)
1+%(1‘ — I (t,)) ' (_VS )/‘I‘ — I (t,) =t

_ o _t’”A) where =5 and fi= (r—rS(t,))
1-B,-n C ‘r—rS(t)

)|,




Derivation from Wikipedia (lii)

Vi(r,t)= : I 40 ,_tf) dr’

47[50 ‘r_rs (t)

’ \

N 4

4rgg | (1=By-B)|r—r, (1) ),

’ \
A(r, t) _ /LlOC AqBS ,
4z (1=B,-D)r—r,() ),

Lienard-Wiechert Potentials

f ] ]
V(r.t) = 1

471'80 “ (I—Q‘V/C)

A(r,1) =~V (r,1)
L C



Example 10.3

Find the potentials of a point charge moving with constant

velocity. Assume the particle passes through the origin at time
t=0.

Sol: The trajectory is: w(¢) = vt

First compute the retarded time: [r — w(z,)

=|r—vt,

=c(t—t,)

Pt =2r-vt +vit =c’ (17 =21t +t)

(" =v)E+2(r-v—ct)t +(c’t’ —r")=0

(c’t—r- V)i\/(l‘ v=ct) = (¢’ =v)(ctT =r?) WhiCh Sign
- - is correct?

Considerv=0 [ ti\/tz—(tz—rz/cz) =ttr/c

We want the minus sign .



Contd.:t -

(02t —I-V) —\/(r - V—czt)2 —(02 —\/2)(62t2 —

r

v =c(t—t,), and 4 =

nw—h-v/ic=c(t—t,)

1T

1

(c* =v)

r— Vi,

c(t—t,)

vV r—vt,

c c(t—t.)

—(ct r-v)— (c —v)t

— C(t_tr) (Vc.‘r

1\/(r v=c20)? —(® =2 )22 =12y

s 1 gc
Vir,t)=
| (r,?) 47e, \/(rov_czt)z_(Cz_vz)(cztz_rz)
A(r, t)— b
. e Jr-v=0? — (=) P2 =)

)

34



EM

10.3.2 The Fields of a Moving Point Charge Tsun-Hsu Chang

Using the Lienard-Wiechert potentials we can calculate the
fields of a moving point charge.

1 q \%

V I‘,t — ~ A . - .
(r,?) 47y A(l—% v/ ) and A(r,?) 7 Vr,t)
Find: E=-VJV %A and B=VXxA

[

—

The separation vector: 4

r-r =r—w(,) and v=w(¢,.)

The retarded time ¢: |[r—w(z,.)|=c(t—t,)

7

t.is a function of r and +.

35



Gradient of the Scalar Potential

vy = 4 V(v—4&-v/c)

AZEY (n—h-V/C)*

Va=Ve(t—t,)=-cVt. | = ey

V- V)=(4 - V)VH(V- V)4 + 4 X(VXV)+ vX(V X4)
41 42 43 44

. 0 0 0
#1 (A -V)v=(4, w -4, 5 -4, g)v

dv dt,  dv dt, dv ot

= dr. ox * dr. dy & dt, az)
=a(4-Vt,)
\

acceleration

36



F—————————————————————I

1.2.6 Product Rules (Il)  {Chap.1p.23 |

_______________________

" scalar: fg
The product rule: <
vector: fA
d d d
—(fg)=¢g ,, fe V(fg)=gVf+/Vg
dx dx dx
V(A =VF-A+ f(V-A)  VX(JA)=Vf XA+ f(VXA)
‘scalar: A-B
4
vector: AXB

---V(—A~-B—)—=—--A-><{-V-><—B)+-B><—(—V—-x—-A—)+(A—~-V—}B+(B-~-V—)A—--T-
V- (AxB)=B-(VxA)—A-(VxB) AL
- V-X(AXB)y=(B-VA=(A~-V)B+A(V-B)=B(V~ A)l

37



#2 (V- V)a=(v-VIr=(v-V)w(t,)=v—(v, 0 -V, 0 :vzi)w(t,,)
ox oy 0z
v— (v, dw ot, v, dw ot, v, dw Btr): v(1—(v-V¢.))
dt, ox dt, dy dt, oz
I ov ov )
8 Bx(Vxv) =ax| (2203 (L Dzyg (D0 D),
- dy Oz 0z  oOx ox dy
| v 9t vy ot o dvy Ot dv. Ot o AV O, dvy O,
—«,x_(dtr dy dt. oz X (dtr dz dt, Ox ¥ (dt,, ox dr, ay)
=4 x(—axVt,)
_(a(Za—WZ) a(ya_wy))i I (a(xa_wx) )
#4 VX (VX4)=VX 4 - -
8(z—wz) A a(y_Wy) a(X—Wx) .
)y +( )z
i 0x 0x dy i

=vx(vxVt,)

38




V(";'V)=(";°V)V+(V°V)’;+’;X(VXV)+VX(VX’;2
41 42 43 44

=a(4-Vt)+v(l—(v-Vt))—ax(axVt )+ vx(vx Vi)
=v+(~-a—v")Vi,

Lo ]
%3 __yr__ly, =—1V(w-w)“2 = o
C c C 2¢(4 - 4)

| . . . .
oA 2[4 x(Vx&)+(2- V)4

4 X(VX4a)=4X(VvXVt)

V(%-%)

-

where < L . .
(A V)a=(4-V)xr—-w())=4—V(4 Vi)
1 . . .
Vi = ——|ax(vXVt)+x-v(x-Vt)]
c(4 - 4)
N e el Bl |
__ | |~ —(4-v)Vt)| = V= ": :W(t,,) 1s function of ¢,.!
Ch Ch—hV lemmmm o !
____________________________ ,
:P.14, Vi, = __IV"'U = —l/f, because r’” is independet of 7 .|

I o o e _______M



VY= 12

- Arg, (=4 V)

Similar calculations

A_ 1 ¢
ot  Aney (ne—4-v)
E=-vy-2A_ ¢

(/z,c—IZ-V)V—(cz—v2

A -A)V

v

where u=ca —v

o  4rey (5-u)

_E-v)(~v+i-alc)
2

_(cz —vz)u ix(uxa)_

+4-a)4




Curl of the Vector Potential

I |
VXA =—Vx(v)=—(V(Vxv)-vxVV)
¢ C
I LT ) -
c 4ney (-u)® L )
- -1 X ’;X_(Cz—vz)u+€><(u><a)_:l,;xE
c 4ney (-u)® L 1=
where 4 X v = —4 Xu.
! ‘The magnetic field of a point charge is always |

B=—4XE perpendicular to the electric field, and to the
C ! :
- vector from the retarded point.



Generalized Coulomb Field

E=_1 v (cz—v )u + wx(uxa)
4y (4 - u)
Veloc1ty field acceleration field
i radiation field
v=0anda=0
1 .
E=_1 (c YA = A
471'80 (C"v) 471'80 /1,2




Example 10.4

Calculate the electric and magnetic fields of a point charge
moving with constant velocity.

Solution;
A .
E=_1 3 (6‘2 —vz)u, since a = 0.
47y (~ -u)
U=Ch—V

= al=ch—4aV=c(r—vt,)—c(t—t.)v=c(r—vt);

o

—> A4 U=Ch—Hh V= ch/l—v2 sin” 8/ ¢ (Prob. 10.16)
where @ 1s the angle between R and v.

A

po 4 1—v*/ c? R

= , wWhere R=r—- vt
dre (1—v2 sinz(9/02)3/2 R?

43



Fields of a Moving Point Charge

E
n A
P 4 1—v? /c? R
47e (l—v2 si1126’/(:2)3/2 R? .

where R =r — vt

Obtain the same result by using the
Lorentz transformation. Chap.12 Al

1 . |
B =—(’vXE) =—2(VXE)
C C

r-vt, (r—-vi)+(-t.)v R v

v v v C

4

SINCE 4 =



Homework of Chap.10

Problem 10.4 Suppose V' =0 and A = 4, sin(kx —ax)y, where 4y, @, and k are

constants. Fine E and B, and check that they satisty Maxwell's equations in vacuum.
What condition must you impose on @ and k ?

Problem 10.11 I
(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current dz
1(t) = kt, o
for ¢t > 0. Find the electric and magnetic fields generated. ) p
(b) Do the same for the case of a sudden burst of current:

1(t) = ggo(?).

Problem 10.16 Show that the scalar potential of a point charge moving
with constant velocity (Eq. 10.49)can be written more simply as?
R
: 1 , (10.51)
ATE R\/l —v?sin? @/ c?
where R =r — vt is the vector from the present (!) position of the particle

Vir, t)=

to thefield point r, and & 1s the angle between R and v.

Note that for nonrelativistic velocities (v < ¢?),

1 q
V(r, t) B 47[80 R

45



Homework of Chap.10

Problem 10.15 A particle of charge g moves 1n a circle of radius a at constant
angular velocity . (Assume that the circle lies 1n the xy plane, centered at the
origin, and at time ¢ = 0 the charge 1s at (a,0),on the positive x axis.) Find the
Lienard-Wiechert potentials for points on the z axis.

Problem 10.27 Check that the potentials of a point charge moving at constant ve-
locity (Egs. 10.49 and 10.50) satisty the Lorenz gauge condition (Eq. 10.12).

Problem 10.28 One particle, of charge gy, 1s held at rest at the origin. Another
particle, of charge g,, approaches along the x axis, in hyperbolic motion:

x(1) = b* +(ct)?;
it reaches the closest point, b, at time # =0, and then returns out to infinity.
(a) What 1s the force /5, on g,(due to g;) at time ¢?

(b) What total impulse (/, = _[_Oo F>dt) 1s delivered to ¢, by g ?

(c) What 1s the force F; on g;(due to g,) at time ¢?

(d) What total impulse (/; = _Eo Fidt) 1s delivered to gy by g, ? | Hint : It might
help to review Prob. 10.17 before doing this integral. Answer: [, = — I, =
0192 1 4€pbc]
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