Chapter 1 Vector Analysis
1.1 Vector Algebra: 1.1.1 Vector Operations ()

Vectors: Quantities have both magnitude and direction,
denoted by boldface (A, B, and so on).

Scalars: Quantities have magnitude but no direction
denoted by ordinary type.

In diagrams, vectors are denoted by arrows: the length of

the arrow is proportional to the magnitude of the vector,
and the arrowhead indicates its direction.

Minus A (—A) is a vector with the same magnitude as A
but of opposite direction.

Vectors have magnitude and direction but not location.
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1.1.1 Vector Operations (ll)

(1) Addition of two vectors:
Place the tail of B at the head of A.
Commutative: A+ B=B + A
Associative: (A+B)+ C=A + (B + C)
A-—B=A+(—-B)

B -B

(A+B) (B+A) (A-B) A

B



1.1.1 Vector Operations (lll)

(i) Multiplication by a scalar:
Multiplies the magnitude but leaves the direction unchanged.
Distributive: a(A + B) = aA + aB

(iii) Dot product of two vectors (scalar product):
The dot product of two vectors is defined by A-B = AB cosé,

where @is the angle they form when placed tail-to-tail.

Commutative: A-B=B-A ;
Distributive: A-(B+C)=A'B+ A-C //p B




1.1.1 Vector Operations (1V)
(iv) Cross product of two vectors (vector product):
The cross product of two vectors is defined by

AXB = AB sinén , where ﬁjsau\nitvector pointing
perpendicular to the plane of A and B, (pronounced ‘n-hat’)

A hat Is used to designate the unit vector and its direction is
determined by the right-hand rule.

Distributive: AX(B + C) = AXB + AXC

not commutative: AXB = —BXA

B



1.1.2 Vector Algebra: Component form ()

Let X, V¥ and Z be unit vectors parallel to the x, y, and z
axes, respectively. An arbitrary vector A can be expressed in

terms of these basis vectors.
A=A4Xx+A,y+ A4,z

The numbers 4,, 4,, and A4, are called components.




1.1.2 Vector Algebra: Component form (ll)

Reformulate the vector operations as a rule for manipulating
components:

(1) To add vectors, add like components.
A+B=(4,x+A4,y+A4,2)+(B,x+B,y+B,z)
= (A4, +B)x+(4,+B),)y+(4, +B,)z

(11) To multiply by a scalar, multiply each component.
aA =a(A X+ A,y + A7)
=aAd,X+ad,y+ad,z



1.1.2 Vector Algebra: Component form (lll)

(il1) To calculate the dot product, multiply like components,
and add.

A-B=(A4,x+A4,y+A4,2)-(B,x+B,y+B,z)
= A B +A4,5,+A4.B;
(iv) To calculate the cross product, form the determinant

whose first row is X, y and z , whose second row is A
(in component form), and whose third row is B.

(4,B, - AZBy)&
= +(A4,B, —A,.B,)y
+(A4, B, —A4,B,)z

AXB =

Xy oz
A, A, A
B, B, B,



1.1.3 Triple Products (I)

Since the cross product of two vectors is itself a vector,
It can be dotted or crossed with a third vector to form a

triple product.

(1) Scalar triple product: A-(BxC). Geometrically,
|A-(BXC)| is the volume of a parallelepiped generated by
these three vectors as shown below.

A-(BXC)=B: - (CxA)=C-(AXB)

In component form

A-(BxC)=

RQ Rm Rtk

%:Q %m k‘:tk

S AN N

P

BxC

/,
’
,,,,,,
,,,,,,
’ ’

Parallelepiped
L7 o A



1.1.3 Triple Products (ll)

(1) Vector triple product: Ax(BxC). The vector triple
product can be simplified by the so-called BAC-CAB

e Ax(BxC)=B(A-C)—C(A-B)
Notice that (AXB)XC 7 AX(BXC)
(AXB)XC=-Cx(AXB)=—-A(B-C)+B(A-C)

https://en.wikipedia.org/wiki/Triple_product
Problem 1.6 Under what conditions does
(AXB)XC=AX(BxC)?
Ans: Either A is parallel to C,

or B is perpendicular to A and C.



1.1.4 Position, Displacement, and Separation
Vectors (I)

Position vector: The vector to point P from the origin O.
r = xX+ yy + zZ

Its magnitude (the distance from the origin)

F=Alrr=qx>+ >+

Its direction unit vector (pointing radially outward)

LT _ XX+ Vy + zZ

r \/ x” + y2 +z°
The infinitesimal displacement vector, from (x, y, z) to
(x+tdx, y+dy, z+dz), IS

dl =dxx+dyy+dzz

10



1.1.4 Position, Displacement, and Separation
Vectors (ll)

In electrodynamics one frequently encounters problems
iInvolving two points:

A source point, r’, where an electric charge is located.
A field point, r, at which you are calculating the electric field.

source point

A short-hand notation for the
separation vector from the source
point to the field point is

— / . /
mEr—r,magmtude/u=|r—r

unit vector in the direction fromr tor is 4 =

— /4
A A'/ r_r
v

11



1.2 Differential Calculus

1.2.1 "Ordinary”

Suppose we have a function of

EM
Tsun-Hsu Chang

one variable, f(x). What does the —

derivative, df/dx, do for us?

Derivatives FEHFE EHY
/ ,,
todf| s
dx df
7 dx
> X

Ans: It tells us how rapidly the function f{(x) varies when
we change the argument x by a tiny amount, dx.

/ﬂ\

df =
/ \dx

dx

In words, if we change x by an amount dx, then, f changes

by an amount df.

The derivative df/dx is the slope of the graph of fversus x.

12



_________________q

Suppose we have a function of three A mountain hill
variables. \WWhat does the derivative H(x,y,7)
mean In this case?

A theorem on partial derivatives states that

dea—de | ade | E)Hdz
ox oy 0z

= (aﬂi | o y - o Z)-(dxx+dyy+dzz)
ox dy 0z

=(VH)-(dl)

The gradient of H is a vector quantity, with three components.

vi =25 O g 0
ox oy 0z 13




1.2.2 Gradient (l1)

Geometrical interpretation: Like any vector, the gradient
has magnitude and direction.

A dot product in abstract form is: dH =VH -dl =|VH||dl|cos &
where @ is the angle between VH and dl.

If we fix the magnitude |dl| and search around in various
directions (that is, vary @), the maximum change in dH
eventually occurs when 6= 0). The gradient VH points in
the direction of maximum increase of the function H.

Analogous to the derivative of one variable, a vanishing
derivative signals a maximum (a summit), a minimum (a
valley), or an inflection (a saddle point or a shoulder).

14



Example 1.3 & Problem 1.13
Example 1.3 Find the gradient of r = \/x2 + y2 +z

—_

Problem 1.13 Let Aa=(x—-x"YX+(y—y")Y+(z—2z")z
Show that

(b) V(1/4) =7

2



1.2.3 The Operator V (l)

The gradient has the formal appearance of a vector, V,
“multiplying”, a scalar H.

VH=(X—+y—1 ZE)H
ox ~dy Oz
~del
V Is a vector operator that acts upon H, not a vector that
multiplies H.
. d ,.d .0
V=x—+y—+72—
ox ~dy Oz

V mimics the behavior of an ordinary vector in virtually
every way, if we translate "multiply” by “act upon”.

It is @ marvelous piece of notational simplification.

16



1.2.3 The Operator V (llI)

An ordinary vector A can multiply in three ways:
1. Multiply a scalar a : aA
2. Multiply another vector (dot product): A-B

3. Multiply another vector (cross product): AXB

Correspondingly, there are three ways the operator V can act:

1. On a scalar function H: VH (gradient #Z)
2. On a vector function (dot product): V- v (divergence 5 E)

3. On a vector function (cross product): Vxv (curl jigfE)

17



1.2.4 The Divergence :_Khan Academy: O3 Divergence 1

Il Il I S S S S S - e _______d

Divergence of a vector v Is;

Vov=GLa5 2129y (nitv 402

ox “ody dz
B an | avy | aVZ
S ox dy 0Oz

V-v is a measure of how much the vector v spreads out
from the point in question.

4 4 + 4 i

\ / 4 ' '\ I\ '\
A

! Pttt
(a) positive (b) ZEro (c) positive 18



Example 1.4
Nt

>
e
-
>
o
>

N

4/3\ N

Example 1.4 Suppose the functions in above three figures
are v, =xx+yy+zz, v, =z, v. = zz. Calculate their
divergences.

-

' T T T T

Ans: Vv, _ O | %Y | 0z =3; Prob. 1.15
ox dy oz
20 90 9l () v, = XX +3xz°§ — 2xzZ
V'Vb = | | = ();
dx dy 0z Vv, =7
V.v _d0  d0 82_1.

T ox dy 0z

19



1.2.5 The Curl  }KhanAcademy: Q Curl

Curl of a vector v is:

N\ N\

X V 1z
0 d dv, 0V

0
VXV:_ g _:&( - y)_l_y(avx aVZ)Ii( Vy avx)
ox dy oz dy 0z 0z  Ox ox dy
Ve VoV,

Vxv is a measure of how much the vector v curls around
the point in question.

ZA . /
-4 / -
‘/A"‘j“\ f / / = e YW S s | s | |
4 - =
/Y T, ) P y
N gy —_— _— _— —_—
\ - >
X pd .

20



Example 1.5

ZA . /
) AN
TS, — = = -
e -_— e Y - e - o @-— -
/ ’/ 4“‘ f / -
/ )

g
\ —: — i — —

Fa
A —

X

(a) e - (b)
Example 1.5 Suppose the functions in above two figures
are v, =—yX+xy, Vv, =uxy. Calculate their curls.

. d0 ox. . d(=y) d0. . dx OJ(—y) .
Ans: VXv, = | : =2
" Ya X(ay 82) ¥ 0z 8x) Z(Bx oy ) =2t
., d0 090, .00 90 . dx 090 .
Vv, =X( )+ ¥ J+2(o—o) =12

dy Oz 0z Ox ox dy

21
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1.2.6 Product Rules (1) FERR G

The sum rule:

—(f+g)—df ag V(f+g)=Vf+Vg

dx dx

V. (A+B)=V-A+V-B VX(A+B)=VXxA+VxB

The rule for multiplying by a constant «:

—(kf) v V(kf) = kVf
dx

V- (kA)=kV-A VX(kA)=kV XA

22



1.2.6 Product Rules (Il)
scalar: fo

vector: fA

—(fg) g G, rhe V(fg)=gVf+/Vg
dx dx

V(A =VF A+ f(V-A)  VX(JA)=Vf XA+ f(VXA)
" scalar:A-B
vector: AXB

The product rule: <

\

V(A-B)=AX(VXB)+BX(VXA)+(A-V)B+(B-V)A~__

| T o Chaps.
V. (AXB)=B:-(VXA)-A-(VXB) 8 and 10
Vx(AXB)=(B-V)A—(A-V)B+A(V-B)-B(V-A) «—

23



1.2.6 Product Rules (111

The quotient rule:

-

f A

df .dg sscalar:=— vector:—

d Sy_Zax” ax : g g
2

V(i): gi—szg
g g
A g(V-A)—-A-Vg

A
g g

V(D)= g(VxA)—z(Vng) _ g(VXA);—AXVg

g g g

24



1.2.7 Second Derivatives (I)

By applying V twice, we can construct five species of
second derivatives.

Three first derivatives V7', V-v, VXv

(1) Divergence of gradient: V- (VT) < very important

(2) Curl of gradient: VX(VT) < always zero

(3) Gradient of divergence: V(V -v) - Chaps. 8 and 10

(4) Divergence of curl: V- (V X v) < always zero

(5) Curl of curl: VX (V xv) < reduce to others

25



1.2.7 Second Derivatives (ll)

0 0 0 ol .JdT .0dT
DV (V) =(X—+y—+z2—)- (X -y -7 —
HV-(VI) (Xax yay ZBZ) (Xax yay Zaz)
2 2 2
:8 a | T | : T:V2T< the Laplacian of T
ox>  dy’ 0z’

The Laplacian of a vector is similar:

(V-V)v=V>Rve +§v, +2v,) =kV7v, +§V7v, +2V7y,

(2)VX(VT) #(VXV)T

The proof hinges on the equality of cross derivatives:
Vx (V)= G2 +9 2 +2 0% 2L +527 1390 o
ox ~dy Oz ox oy 0z

0 OT. 9 oT. d oT. o dT. d 9T. 9 9T

ax(ay)_ay(ax)’ ay(az)_az(ay)’ az(ax)_ax(az)




1.2.7 Second Derivatives (ll1)

Jd . dv. Ov 0 . 0v. 0ov Jd . 0dv, v
HV-(Vxv) =3~ R(Er -2+ = (2 - Dy 422 (3 :
(4) V-(VXv) Xax(X(ay o ) yay(Y( o ax)) ZaZ(Z( » ay))
_ 0 (avz avy)l 0 (avx BVZ)I 0 (va a"x)
ox dy 0dz 9y 9z ox 0z Ox
= - always zero
(5) VX(Vxv) Can we use the following vector identity?
AX(BxXC)=B(A-C)-C(A-B)
.90 .0 .0, .dv. O, _dv v, .0V, v,
R e R A AT S we Ay

= V(V-v)=Vy

We will encounter this derivative when dealing with
the vector potential (magnetism).

27
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1.3.1 Line, Surface, and Volume (I) FEFE EERK

In electrodynamics, the line (or path) integrals, surface

integrals (or flux), and volume integrals are the most
Important integrals.

(a) Line integrals: a line integral is an expression of the

b
form J‘ v dl,
ap

where v Is a vector function, dl is the infinitesimal

displacement vector, and the integral is to be carried out
along a prescribed path @ from point a to point b.

Put a circle on the integral, in the path in question
forms a closed loop.

pv-d

28



1.3.1 Line, Surface, and Volume (ll)

The value of a line integral depends critically on the
particular path taken from a to b, but there is an important
special class of vector functions for which the line integral
Is independent of the path, and is determined entirely

by the end points, e.q., b
y P 9 W — F.dl
acp
A force that has this property is called conservative.
<4 q)

dl

Figure 1.20

29



Example 1.6 Calculate the line integral of the function

v=y°X+2x(y+1)¥, from the point a = (1,1,0) to the point
b=(2,2,0), along the paths (1) and (2) in Fig.1.21. What is

the loop integral that goes from a to b along (1) and returns
to a along (2)?

ty

| _ 2t a°
The strategy here is to get everything | @, | i
in terms of one variable. =
1 2 X

non-conservative
TA

30



1.3.1 Line, Surface, and Volume (lll)

(b) Surface integrals: a surface integral is an expression

of the form
24 da
|, v-da %
S

where v is a vector function, and da is
the infinitesimal patch of area, with .
direction perpendicular to the surface.

—y

The value of a surface integral depends on the particular
surface chosen, but there is a special class of vector

functions for which it is independent of the surface, and is
determined entirely by the boundary.

31



Example 1.7 Calculate the surface integral of the function

v=2xzx+(2+x)y+ y(z" =3)Z over five sides of the
cubical box. Let “upward and outward” be the positive

direction, as indicated by the arrow. 24 Tm A
Sol: Taking the sides one at a time: -« ol |
(1v) )1/ (111)

(1) x=2, da=dydzX, v-da=2xzdydz=4zdydz ‘
jv-da=4j2dyjzzdz:16 '

0 0
(V) z=2, da=dxdyz, v-da=y(z*—3)dxdy = ydxdy

Iv-da:jozdxjozydy=4

32
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1.3.1 Line, Surface, and Volume (lV)

(c) Volume integrals: a volume integral is an expression

of the form
I 1dr,

where T'Is a scalar function, and dris an infinitesimal
volume element. In Cartesian coordinates, d7= dxdydz

For example, if T'is a density of a substance, then the
volume integral would give the total mass.

The volume integrals of vector functions:
_[Vdf = j(vxx +Vv,y+v.2)dT
= x| v dr+y|vdr+i|v.dr

33



Example 1.8 Calculate the volume integral of the function

T = xyz” over the prism in Fig. 1.24.

Sol: Let's do z first (0 to 3); then y from 0 to 1—x;

finally x from O to 1.

j” xyzzdxdydz = Ij z°dz {I; x(j;_x ydy)dx}

(

:9<

.

1.1
=90)(2) =7

jolx(% (1= x)2)dx

3
3

N

>

J

-y

34



1.3.2 The Fundamental Theorem of Calculus

Fundamental theorem of calculus:

["Lac=["dr = f&)- (@

Geometrical Interpretatlon. two ways to determine the total

change in the function:
1. go step-by-step adding up all the tiny increments as you go.

2. subtract the values at the ends.
A f(x)

f(b)
f(a)

The integral of a derivative over an interval is given by the

value of the function at the end points (boundary).
35



1.3.3 The Fundamental Theorem for Gradients

A scalar function of three variables T(x, y, z) changes by

a small amount.
dl =(VT)-dl,

The total change in T'in going from a to b along the path
selected Is: .

j: (VT)-dl =T (b)—T(a) .
\ S B

Fundamental theorem for gradient. /«/ ~

s s S T TTE

"

Geometrical Interpretation: Measure the high of a skyscraper.
1. Measure the high of each floor and add them all up.
2. Place an altimeter at the top and the bottom, subtract the

readings at the ends.
36



1.3.3 The Fundamental Theorem for Gradients (ll)

b
L (VT)-dl =T(b)-T(a) the right side of this equation makes
no reference to the path---only to the end points.

Thus gradients have special property that their line integrals
are path independent.

b
Corollary 1: L (VT)-dl is independent of path taken from
a to b.

Corollary 2:  ¢(VT)-dl=0, since the beginning and end
points are identical, and hence 7(b)-7(a) = 0.

KK:[ kore ler1] 3& 34

A conservative force may be associated with a scalar potential
energy function, whereas a non-conservative force cannot.

37



Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the
associated conservative force.

B
U, ~U,=~| F,-ds

*Conservative forces tend to minimize the potential

energy within any system: If allowed to, an apple falls
to the ground and a spring returns to its natural length.

Non-conservative force does not imply it is dissipative,
for example, magnetic force, and also does not mean it
will decrease the potential energy, such as hand force.

38



Distinction Between
Conservative and Non-conservative Forces

The distinction between conservative and non-
conservative forces is best stated as follows:

A conservative force may be associated with a scalar
potential energy function, whereas a non-conservative
force cannot.

B
U, ~U,=~| F,-ds

F =—VU

C

39



Conservative Force and
Potential Energy Function

How can we find a conservative force if the associated
potential energy function is given?

A conservative force can be derived from a scalar
potential energy function.

The negative sign indicates that the force points in the
direction of decreasing potential energy.

| dU,
Gravity U, =mgy; I, = & =—mg
. 1 dU
Spring  Ug, = — o F,. = T = —kx

2 r dx

40
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FEFE RFR
The fundamental theorem for divergences states that:

jV(V-v)drzcﬁv-da
S

The integration of a derivative (in this case the divergence)
over a region (in this case a volume) is equal to the value of

the function at the boundary (in this case the surface that
bounds the volume)

Feynman:

This theorem has at least three special names: Gauss’s 02Uss fheorem
Stokes’ theorem

Geometrical Interpretation: Measure the total amount of ~ “auss's theorem

fluid passing out through the surface, per unit time. Stokes theorem

1. Count up all the faucets, recording how much each put out. ackson:

2. Go around the boundary, measuring the flow at each point, Jauss s theorem

_ Stokes’s theorem
and add it all up. »



Supplementary  (3guss’s divergence theorem

(Transformation between volume integrals and surface integrals)

jv (V-v)dr=¢v-hda

S
Rough V=VxX+Vv,y+v,Z and n=cosax+cosfy +cos yz

f: A
P9 where «, [, and y are the angles between n and x-, y -
and z - axis, respectively

j (V-v)dr = j j j ( Ny | a"z =)dxdydz
Ay

= j I (vydydz + v, dzdx + v, dxdy)
S
= ”(vx cos & +v,,cos ff+v, cosy)da = ”V-ﬁda

Rigorous proof can be found in: Erwin Kreyszig, Advanced Engineering
Mathematics (John Wiley and Sons, New York, 1993), 7th ed. Chap. 9,
pp. 546-547.

42



Example 1.10 Check the divergence theorem using the

/|

——

/(ii)

(111)

function v=y1°x+Qxy+z°)y+(2y2)z q Tm
|

and the unit cube situated at the origin. /

Sol:In thiscase V- v =2(x+y) ‘rV

[ 203+ y)drdydz =2 jol dz jOl jol (x+ y)dxdy |

X

1 pl | 1 | |
=2 | G+y)dy=2] (G+y)dy=2 Yo

LV -vdT =2

To evaluate the surface integral we must consider
separately the six sides of the cube. The total flux is...

l

-y



1.3.5 The Fundamental Theorem for Curls (1)

The fundamental theorem for curls---Stokes’ theorem---

states that: IS (VXV)-da= Cﬁ v-dl

P
The integration of a derivative (here, the curl) over a region

(here, a patch of surface) is equal to the value of the

function at the boundary (in this case the perimeter of the
patch). KK:[pa rimate]

Geometrical Interpretation:
Measure the “twist” of the
vectors v; a region of high
curl i1s a whirlpool.

44



1.3.5 The Fundamental Theorem for Curls (ll)

Ambiguity in Stokes’ theorem: Concerning the boundary
line integral, which way are we supposed to go around
(clockwise or counterclockwise)? The right-hand rule.

Corollary 1: I(VXV)dﬂ depends only on the boundary
lines, not on the particular surface used.

Corollary 2: gﬁ(va)-da =0 for any closed surface, since
the boundary line shrinks down to a point.

da

These corollaries are analogous to >

those for the gradient theorem.
dl

45



Supplementary

Stokes’ theorem
(Transformation between surface integrals and line integrals)

jS(va)-dazcﬁv-dl
P

Rigorous proof can be found in:

Erwin Kreyszig, Advanced Engineering Mathematics
(John Wiley and Sons, New York, 1993),

10th ed. Chap. 10, pp. 464-467.

46



Comments: graduate level (reference only)
» Green’s theorems:
Letv=fVeg = V.-v=V.(fVe)= fV’¢+Vf-Vg
v-n=f(n-Vg)

Green's first formula: jv (szg Vi -Va)dr = C_‘ng—gda
7
S

n

Green's second formula: L (szg — szf)dz' — Cﬁ(f gg
S

* Green’s theorem in the plane as a special case of

Stokes’ theorem

Let v be a vector function 1n the xy-plane.

aV av aV av
V A= X Y X\ = J
(Vxv) == Tl Lj( = ay) a i(vx X

of
—~)d
gan) a

47



Example 1.11 Suppose  v=(2xz+3y>)y+(4yz°)z

Check Stokes’ theorem for the square surface shown below.

Z
(111)
| ————

Sol:Vxv=(4z"-2x)X+2zZ; da=dydzx
e, _4
j(va).da_jojO4z dydz =~

The line integral of the four segments
. ) L, 2
(1) x=0,z=0,v-dl=3y“dy, Iv-dlzjo3y dy=1 *

a0 a2, 4
() x=0,y=1,v-dl =4z"dz, IV dl—IO4Z dZ—3,

0
(i) x=0,z=1, v-dl =3y°dy, jv-dlzjl 3y°dy = -1,

0
(iv)x=0,y=0, v-dl =0, jv-dl:jl 0dz = 0.

<_[>v-d1:1:4 1+0=2,
3 3

A

(iv)Y

A(D)

|

(1)

I

48
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1.3.6 Integration by Parts

df . dg V-(JA)=Vf-A+ f(V-A)
e (f g)=g FRREAS Integrate it over a volume and
Integra‘[lng both Sldes and anOklng the diVergenCG theOI’em.
invoking the fundamental theorem Left j V-(fA)drt =<j‘> (fA)-da
b :
Left j i( fg)dx = fg\b Right |(Vf- A+ f(V-A)d7
nghtjfdgdx+j df | (Vf-Ayde+ [ f(V-A)

jbfdgdx__jb dfdx-l—fg‘ (1.58) _[f(V°A)dT=—I(Vf-A)dT+§‘5(fA)-da (1.59)

49



Optional

Applications of Stokes’ and Divergence Theorems
(2) Curl of gradient: VX(VT) - always zero

(4) Divergenceof curl : V- (VXv) always zero

Stokes’ theorem _[S (VXvV)-da :<I>v.d1

P
jS (VXVT)-da=VT-dl=T(a)-T(a)=0

Divergence theorem j (V-v)dr——cﬁv-da
\ %
S

L (V-(Vxv)dr=p(Vxv)-da=¢v-dl =0

P

<I>(V><v)-da =0 for any closed surface, since the boundary
line shrinks down to a point.
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Homework of Chap. 1 (part 1)

Problem 1.5 Prove the BAC - CAB rule by writing out both sides in component
form.

Problem 1.7 Find the separation vector 4 from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (4 ), and construct the unit vector 4.

Problem 1.13 Let 4 be the separation vector from a fixed point (x', y', z') to the
point (x, y, z), and let 4 be 1ts length. Show that

(a) V(»?) =24,
(b) V(1/a)= —4/a°.
(c) What is the general formula for V(»")?
Problem 1.16 Sketch the vector function
T
V= —2 .
r

and compute its divergence. The answer may surprise you. . . can you explain 1it?

Problem 1.33 Test the divergence theorem for the function i

v = (xy)X+ (2yz)y +(3zx) z. Take as your volume the cube
shown 1n Fig. 1.30, with sides of length 2.

FIGURE 1.30

—
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1.4 Curvilinear Coordinates
1.4.1 Spherical Polar Coordinates (l)

The spherical (polar) coordinates (», 6, ¢) of a point P are
defined below;

r . the distance from the origin (the magnitude of the
position vector).

@ : the angle down from the z-axis (the polar angle).

¢ : the angle around from the x-axis (the azimuthal angle).

(

x =7rsin@cos ¢ '
{y=rsin@sing@ "\
.~ z=rcosd o

Murray R Spiegel, Vector Analysis
(McGraw-Hill, New York, 1989), 6th ed. Chap. 7.

EM
Tsun-Hsu Chang
FEFE RFY
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1.4.1 Spherical Polar Coordinates (l)

A 7o\

The direction of the coordinates: the unit vector r, 8, ¢

They constitute an orthogonal (mutually perpendicular)
basis set (just like X, Y, Z).

So any vector A can be expressed in terms of them:

A = AF+ Agf+ 4,0 )
In terms of Cartesian unit vector

P
I = sin & cos @X + sin @sin @y + cos 6z >9/':'

(Or you can see Appendix A for more details.)

6 = cos 0 cos ¢x + cos Osin @y —sin 67 /_éf_‘*\"_‘_“_“;:::: L
@ = —sin ¢x + cos @y "
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1.4.1 Spherical Polar Coordinates (lll)

A 7o\

Warning: r, 8, ¢ are associated with particular point P,
and they change direction as P moves around.

For example, r always points radially outward, but “radially
outward” can be the x direction, the y direction, or any other
direction, depending on where you are.

Notice: Since the unit vectors are function of position, we
must handle the differential and integral with care.

1. Differentiate a vector that is expressed in spherical
coordinates.

2. Do not take the unit vectors outside an integral.
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1.4.1 Spherical Polar Coordinates (V)

ar rsin® do
4 r do 0 A
/ do )
rsing

(a) (b) (¢)

The general infinitesimal displacement:
dl = drt + rd 06 + r sin 0d ¢

The infinitesimal surface element da for the surface
of a sphere.

da = (dly)(dl)E = r” sin 0d 0d g

The infinitesimal volume element d7

dt = (dl,)(dlg)(dly) = r* sin drd0d ¢
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1.4.1 Spherical Polar Coordinates (V)

The vector derivatives In spherical coordinates:
Gradient : of . laTél 1 JdT »

VT: | o | : ¢
or radf@ rsinf ¢
Divergence )
V.v= 1 o (rzvr) | 1 0 (sinBvy) 1 V¢.
P2 or rsin@ 06 rsin@ d¢
Curl : \ - -
VXV: 1 a (Sin6’v¢) ave l,"\l : 1 avr a (7'V¢) é
rsin@\ 06 Jd¢ ) r|sin@ d¢ or )
1{ d v, |~
| r(@r () 8«9)¢.
Laplacian :
2
VT = L o (rz E)Tj | : 0 (sin&’a—Tj | L d T.
% or or ) r?sin@ 00 00 ) r*sin® 6 9¢”
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1.4.2 Cylindrical Coordinates ()

The cylindrical coordinates (s, ¢, z) of a point P are defined
below: X=S5C0S@, y=sSIn@, z=z

s the distance from the z axis.

¢. the same meaning as In spherical coordinates.

z. the same as Cartesian.

The unit vectors are

S = cos@x +sin@y, _ ;

7o\

7Z=7. — .
The infinitesimal displacement: //4‘1]/ S

dl = ds§ + sd o@ + dzz
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1.4.2 Cylindrical Coordinates (ll)

The vector derivatives in cylindrical coordinates:

Gradient :

" oT . 10T » oT .

1) Z.

VI =—=%
ds sd@ Oz

Divergence :

0
V-vzli(svs): L% | sz.

s 0s Sa¢l 0z

Curl :

4 M) A i ]
Vxy - 1dv, 9V ; (BVS v, j P 1| o v,
dz  Os s| Os

{\l)

Laplacian :

ale | 0°T 0°T
ds ) o2 d¢* 922
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1.5 The Dirac Delta Function Fsun-Heu Chang

. A 2 e N
1.5.1 The Divergence of r/r FEFE EHE

Consider a vector function v =t /7" \ } P
The divergence of this vector function is: ...__...:}T/_(.._..
19 ,1. 129 TN
e ar( rz) - ar() d | h

The surface integral of this function is:

<J5v da = jo” joz” (rizrz sin 8)d0d ¢

= ["singd6 joz”am —dz# | (V-v)dr

The divergence theorem is false?
No = The Dirac delta function
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1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as
an infinitely high, infinitesimally narrow “spike”, with area just 1.

0 ifx#0 too
0(x) =+ hxe with L o(x)dx =1

0 1f x=0

Technically, o (x) is not a function at all, since its value is
not finite at x = 0. Such function is called the generalized
function, or distribution.

-

A

o) ‘ Ry(x ‘
[\ 5 » Kh(X) 2 T,(x)
+Area | »—R\(x) 1
: I'y(x)
_J L - | o
a X —1/2-1/4 1/4 1/2 x -1 -1/2 172 1 «x
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1.5.2 The One-Dimensional Dirac Delta Function (lI)

If {x) Is some “ordinary” function (let's say that it is
continuous), then the product f{x)o(x) is zero everywhere
except at x = 0. It follows that f(x)o(x) = f(0)o(x). In particular,

[ f@dG)dx=fO)]  S(x)dx=f(0)

We can shift the spike from x = 0 to some other point x = a.

0 1f x# oo
o(x—a) =+ s with j o(x—a)dx =1

o 1f x=a

-

\

A generalized integration equation:

_[:o f(x)o(x—a)dx = f(a)_[:o O(x)dx = f(a)

61



1.5.2 The One-Dimensional Dirac Delta Function (lII)

Although o(x) is not a legitimate function, integrals over o(x)
are perfectly acceptable.

It is best to think of the delta function as something that is
always intended for use under an integral sign.

In particular, two expressions involving delta function are
considered equal if:

_[j J (X)D, (x)dx = Jjo f(x)D,(x)dx
for all ("ordinary") function of 7 (x).

Example 1.14 Evalgate the integral (a) j03x35(x—2)dx
(b) jo 8(x —4)dx
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1

Example 1.15 Show that ~ J(kx) = I

where k is any (nonzero) constant.

0(x)

Sol: Consider the integral for an arbitrary test function f(x),

[ f(x)8(kx)dx
Lety=kx, sothatx=y/k, dx=1/kdy
" positive : the integration runs from —oo to oo

k =<
'negative : the integration runs from oo to —oo
[~ S @3Gydr =% [ f(y/)E(x)dy = g/ ©

1

|k| o(x) and o(—x) =o0(x).

So 0(kx) serves the same purpose as
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Prob. 1.45

() xdi (5(x)) = —5(x)
X

(b) Let 8(x) be the step function :
1, if x>0

0, 1t x<0
Show that d@/dx = 6(x)

O(x) =+
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1.5.3 The three-Dimensional Dirac Delta Function

The generalized 3D delta function
0" (r) = 0(x)6(»)d(z)

where r Is the position vector. It is zero everywhere
except at (0,0,0), where it blows up.

Its volume Integral Is:

-[ all space 5 (r)dr = .[ :L: I j: I j: 0(x)0(y)0(z)dxdydz =1

As In the 1-D case, the integral with delta function picks
out the value of the function at the location of the spike.

f(r)6°(r—a)dz = f(a)

I all space
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1.5.3 The three-Dimensional Dirac Delta Function (l)

We found that the divergence of 1/ r’is zero everywhere
except at the origin, and yet its integral over any volume

containing the origin is a constant of 4. The Dirac delta
function can be defined as:

V() =475 (r)
r
More generally,

V. (%) =475 (&)

where 4 is the separation vector 4 =r—-r. Note that the

differentiation here is with respect to r, while r’ is held
constant.

V(D) =V (V) =V, <—%> - 476 (%)
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1.6 The Theory of Vector Fields
1.6.1 The Helmholtz Theorem

To what extent is a vector function F determined by its
divergence and curl?

The divergence of F is a specified scalar function D,
V-F=D

and the curl of F is a specified vector function C,
VxF=C (e, V- (VXF)=V-C=0)

Can you determine the function F?

Helmholtz theorem guarantees that the field F is uniquely
determined by the divergence and curl with appropriate
boundary conditions. (For more details, see Appendix B

of Griffiths)
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1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then
F can be written as the gradient of a scalar potential (7).

VXF:O — F:?VV
conventional

If the divergence of a vector field (F) vanishes (everywhere),
then F can be expressed as the curl of a vector potential (A):

V.F=0 = F=VXxA
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Homework of Chap. 1 (part 1I)

Problem 1.38 Express the unit vectors f‘,é,é in terms of X, y, z (that is, derive

? Aon ] Al oA
Eq. 1.64). Check your answers several ways (r-r=1, 8-¢ =0, rx8=¢,...).

Also work out the inverse formulas, giving X, y, z in terms of f',HA,¢? (and 6,0).

Problem 1.40 Compute the divergence of the function

Vv = (rcos @)r + (r sin 9)é+(r sin Hcos¢)¢?. [_E_
Check the divergence theorem for this function, using as your volume (j — 5
the inverted hemispherical bowl of radius R, resting on the xy plane X R
and centered at the origin (Fig. 1.40).
FIGURE 1.40
Problem 1.43 ;37,

(a) Find the divergence of the function

V:S(2+sin2¢)§+s sIn @ cCos@ ¢?+3zi. 2
(b) Test the divergence theorem for this function, using the quarter-cylinder ’/E
(radius 2, height 5) shown in Fig. 1.43. g
(c) Find the curl of v. FIGURE 1.43

y
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Homework of Chap. 1 (part 11I)

Problem 1.46
(a) Show that

X di (0(x)) =—0(x).
X

| Hint. Use 1ntegration by parts. ]
(b) Let (x) be the step function:

-

o) 1, if x>0 (1.95)
X) =+ - .
0, if x<0

\

Show that d@/dx = 5(x).

Problem 1.49 Evaluate the integral

szve_r (V-%jdz'

v
(where V' 1s a sphere of radius R, centered at the origin) by two different methods,

as in Ex. 1.16.



