
1

Chapter 2 Electrostatics
2.1 The Electric Field: 2.1.1 Introduction

What is the force on the test charge Q due to a source 

charge q?

We shall consider the special case of the electrostatics in 

which all the source charges are stationary.

The principle of superposition states that the interaction 

between any two charges is completely unaffected by the 

presence of others.
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2.1.2 Coulomb’s Law

Coulomb’s law quantitatively describe the interaction of 

charges.

Coulomb determined the force law for electrostatic charges 

directly by experiment.
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Action at a distance

Coulomb’s law, like Newton’s law of gravitation, involves the 

concept of action at a distance.

It simply states how the particles interact but provides no 

explanation of the mechanism by which the force is 

transmitted from one point to the other.

Even Newton himself is not comfortable with this aspect of 

his theory.

What is the concept of action at a distance? This leads to the 

gravitational, electric, and magnetic fields.



2.1.3 The Electric Field
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an intermediary

How does one particle sense the presence of the other?

The electric charge creates an electric field in the space 

around it. A second charged particle does not interact 

directly with the first; rather, it responds to whatever field it 

encounters. In this sense, the field acts as

between the particles.

The electric field strength is defined as the force per 

unit charge placed at that point.

媒介
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Example

On a clear day there is an electric field of approximately 

100 N/C directed vertically down at the earth’s surface.

Compare the electrical and gravitational forces on an
electron. 

Solution:

The magnitude of the electrical force is

Fe = eE = 1.610−19100 = 1.610−17 N. (upward)

The magnitude of the gravitational force is

Fg = mg = 9.11  10−31  9.8 = 8.9  10−30 N. (downward)

Benson

1 N C = 1 V m 

1 N m = 1 C V = 1 J
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4π0 r2

Thus the electric field of a 

line charge is

4π0 r2
dE =

1 dq r̂ E =
1


dq r̂

2.1.4 Continuous Charge Distributions

In order to find the electric field due to a continuous distribution 

of charge, one must divide the charge distribution into 

infinitesimal elements of charge dq which may be considered to 

be point charges.



for a surface charge,

and for a volume charge,
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Example 2.1

What is the field strength at a distance R from an infinite 

line of charge with linear charge density  C/m.

Solution:

Since the charge carrier is infinitely long, 

the electric field in y-direction completely 

cancels out. Thus the resultant field is 

along the x-axis.
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Example
Non-conducting disk of radius a has a uniform surface 

charge density  C/m2. What is the field strength at a 

distance y from the center along the central axis.

Solution:

The y-component of the field is

where r2 = x2 + y2 and dq =  (2 xdx)
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Example: Use cylindrical coordinates 
Non-conducting disk of radius a has a uniform surface 

charge density  C/m2. What is the field strength at a 

distance z from the center along the central axis.

Solution: The z-component of the field is

(r2 + z2 ) (r2 + z2 )

Observer P = (0,0, z) and sources (x, y,0)

y = r sin

dEz = dE cos =

x = r cos
 r2 = (x2 + y2 + z2 ) = r2 + z2

, where dq =  (2rdr)
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2.2 Divergence and Curl of Electrostatics Fields

2.2.1 Field Lines, Flux, and Gauss’s Law

How do we express the magnitude and vector properties of 

the field strength?

The field strength at any point could be represented by an 

arrow drawn to scale. However, when several charges are 

present, the use of arrows of varying length and orientations 

becomes confusing. Instead we represent the electric field by 

continuous field lines or lines of force.
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Field Lines

How do we determine the field strength from the field lines?

The lines are crowed together when the field is strong and 

spread apart where the field is weak. The field strength is 

proportional to the density of the lines.

Benson
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Example

Sketch the field lines for two point charges 2q and –q.

Solution:

(a)Symmetry

(b)Near field

(c)Far field

(d)Null point

(e)Number of lines

Benson
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Flux

The electric flux ΦE through 

this surface is defined as

E = EAcos

= E  A

For a nonuniform electric field

E = E  n̂da
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Flux

Flux leaving a closed surface is positive, whereas flux 

entering a closed surface is negative.

The net flux through the surface is zero if the number of 

lines that enter the surface is equal to the number that 

leave.

Benson
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40r2 0

 4r2 =
QQ

=

Gauss’s Law

How much is the flux for a spherical Gaussian surface around 

a point charge?

The total flux through this closed 

Gaussian surface is

E =  E  n̂da

The net flux through a closed surface equals 1/0 times the 

net charge enclosed by the surface.

Can we prove the above statement for arbitrary closed shape?
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Gauss’s Law (II)

•The circle on the integral sign indicates that the Gaussian 

surface must be enclosed.

•The flux through a surface is determined by the net charge 

enclosed.

How do we apply Gauss’s law?

1. Use symmetry.

2. Properly choose a Gaussian surface (E//A or E⊥A).
16



Turn Gauss’s Law

from integral equation into differential form

ˆ enc

S S

Q

0
 E  da = E  nda =

v

Qenc

 
=

1
  d

00

By applying the divergence theorem

E  n̂da = (  E)dvS

So

and

vv 0

 ( E)d =
1

 d

Since this holds for any volume, the integrands must be equal

0

 E =
1

 Gauss’s Law in differential form.
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4π0 4π0
all space r2 all space r2
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(r)d E =

1


dq r̂ =
1



2.2.2 The Divergence of Electric Field &

2.2.3 Application of Gauss’s Law
The electric field can be expressed in the following form

Divergence of the electric field is

0

3
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Why doesn’t the divergence

operator apply on the r coordinate?
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4r2
3

1Q 4 r3

4r2 0
4  R3 

Q

r̂)

=

E =
enc r̂ = (

rr̂

Example 2.2

A non-conducting charged sphere of radius R has a total 

charge Q uniformly distributed throughout its volume. Find 

the field (a) inside, and (b) outside the sphere.

Solution:

(a) inside

40R3

(b) outside

r̂
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Example 2.3

A long cylinder carries a charge density that is proportional 

to the distance from the axis:  = ks, for some constant k.

Find the electric field inside the cylinder?

Solution:

Pick up a Gaussian surface as shown in the figure.

The total charge enclosed is

3

0

=
1

ks2
Qenc

0 2sℓ 30

2
(ks )s ds d

3

in ŝ direction

s

= kℓs

E =

  Qenc = ℓ
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Example 2.5

Find the field due to the following: (a) an infinite sheet of 

charge with surface charge density +; (b) two parallel 

infinite sheets with charges density + and −.

Solution:

Benson
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How to Choose a Good Gaussian Surface?

Gauss’s Law is always true, but it is not always useful.

Symmetry is crucial to the application of Gauss’s law.

There are only three kinds of symmetry that work:

1. Spherical symmetry: Make your Gaussian surface a 

concentric sphere.

2. Cylindrical symmetry: Make your Gaussian surface a 

coaxial cylinder.

3. Plane symmetry: Use a Gaussian “pillbox”, which 

straddles the surface.



all space4π0 4π0

E =
1


all space r 2

r̂
(r')d' =

−1


2.2.4 The Curl of the Electric Field

The electric field can be expressed in the following form

(
1

)(r')d'
r

Curl of the electric field is

all space4π0

  E =
−1

 (  (
1

))(r')d'

Curl of gradient is always zero.   E = 0

The principle of superposition states that the total field is 

a vector sum of their individual fields E = E1+E2+…

 E = (E1 + E2 + ) =  E1 +  E2 + = 0

r

Why doesn’t the divergence operator

apply on the r coordinate?
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2.3 Electric Potential
EM

Tsun-Hsu Chang
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Can we apply the concept of potential, first introduced in 

mechanics, to electrostatic system and find the law of 

conservation of energy?

We can define an electrostatic potential energy, analogous to 

gravitational potential energy, and apply the law of 

conservation of energy in the analysis of electrical problems.

Potential is not equal to the potential energy.
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Mechanical Analogy of Potential

= +U = U f −UiWEXT

The motion of a particle with positive charge q in a uniform 

electric field is analogous to the motion of a particle of mass 

m in uniform gravitational field near the earth.

If WEXT >0, work is done by the

external agent on the charges.

If WEXT <0, work is done on the

external agent by the field.

Potential energy depends not only on the “source” but also 

on the “test” particle. Thus it will be more convenient if we 

can define a potential function which is function of “source” 

only.

Benson
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V =
 U

The Unit of Potential: Volt

When a charge q moves between two points in the 

electrostatic field, the change in electric potential, V, is 

defined as the change in electrostatic potential energy per

unit charge,

q

The SI unit of electric potential is the volt (V).

1 V = 1 J/C = 1 N  m/C

The quantity V depends only on the field set up by the 

source charges, not on the test charge.

= qV = q(V f −Vi )WEXT



Only Changes in Potential are Significant

We see that only changes in potential V, rather than the 

specific value of Vi and Vf, are significant.

It is convenient to choose the ground connection to earth as 

the zero of potential.

The potential at a point is the external work needs to bring

a positive unit charge, at constant speed, from the position

of zero potential to the given point.

In an external electric field, both positive and negative 

charges tend to decrease the electrostatic potential energy.

Which side will a charge particle drift if it is in the middle of

two conducting plates with potential difference, higher or

lower potential side?

Benson
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Potential is Conservative

 E  ds

In mechanics, the definition of potential energy in terms of 

the work done by the conservative force is U = –Wc.. The 

negative sign tells us that positive work by the conservative 

force leads to a decrease in potential energy.

Therefore, the change in potential energy, associated with an 

infinitesimal displacement ds, is

dU = −Fc ds = −qE  ds

B

A
AVB −V = −

q
dV =

dU
= −E  ds

Since the electrostatic field is conservative, the value of

this line integral depends only on the end points A and B,

not on the path taken.
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

Differential form of Potential

The fundamental theorem of gradient states that
B

A
AVB −V = (V )  ds

The electric field E is a very special kind of vector function

whose curl is always zero.

 E = −(V ) = 0

It is often easier to analyze a physical situation in terms of

potential, which is a scalar, rather than the electric field,

which is a vector.

 E  ds
B

A
AVB −V = −and so E = −V
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4π0r2

q

 4π0r' 2
ˆ ˆ(r  r)dr'

q

E  dl = −
r r




outside (r  R) E =



V (r) = −

q

4π0R

(r  R)

and V (r) = (r  R)

rq q

4π0r'  4π0r
= =



Benson

Example 2.6 Find the potential inside and outside a 

spherical shell of radius R, which carries a uniform surface 

charge. Set the reference point at infinity.

Sol: Use the Gauss's law to find the electric field

and then use the electric field to calculate the potential.

Inside (r  R) E = 0



2.3.3 Poisson’s Equation and Laplace’s Equation

The electric field can be written as the gradient of a scalar

potential.
E = −V

What do the fundamental equations for E looks like, 

in terms of V?
 

0

Gauss's law  E = −( V ) = −2V =

Curl law  E = −(V ) = 0

 E = 0 permits E = −V ;

in turn, E = −V guarantees  E = 0

31



Setting the reference point at infinity, the potential of a point 

charge q at the origin is

The conventional minus sign in the definition of V was 

chosen precisely in order to make the potential of a positive 

charge come out positive.

2
0 0 0

1 1 q
V (r) =

4π

r q r

r'


−1 q
dr' =

4π r'
=

4π r

EM
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The Potential of a Localized Charge Distribution

In general, the potential of a collection of charges is

For a continuous distribution

V (r) =
1


dq

=
1


dq

1
V (r) =

n n

i i

qi 1 qi

4π0 i=1 0 i=1

=
4π r − r

 r

4π0 4π0r r − r'

For a volume charge ; a surface charge ; a line charge .

V (r) =

r − r'

1 (r')
d'

4π0


1 (r')
d'

4π0
 r

=
4π0

=
1


 (r')

da'

=
1


 (r')

da'

4π0 r

r − r' r − r'
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1 (r')
dl'

4π0
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dl'

4π0
 r

=

=



Example

x2 =a2

dq

40r

40

dV =


dx2

x2 + y2

0 40 x2 + y2
V = 

a 
dx2

, dq =  (2 xdx)dV =

    x2 + y2 

20
 0

 a2 + y2 − y 

20


= =


A non-conducting disk of radius a has a uniform surface

charge density  C/m2. What is the potential at a point P

on the axis of the disk at a distance y from its center.

Solution:

Benson
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Example

r̂E =
2

04 r

Q

A shell of radius R has a charge Q uniformly distributed

over its surface. Find the potential at a distance r >R from

its center.

Solution:

It is more straightforward to use the electric field, which we 

know from Gauss’s law.

2
00

Q

40r

Q 1 1
r

V (r) −V () = −
44 r

V (r) =

r
dr = −





Q 

−
r 

The potential has a fixed value at all points within the 

conducting sphere equal to the potential at the surface.

Benson
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2.3.5 Summary; Electrostatic Boundary Conditions

We have derived six formulas 

interrelating three fundamental 

quantities: , E, and V.

These equations are obtained from two observations:

•Coulomb’s law: the fundamental law of electrostatics

•The principle of superposition: a general rule applying to 

all electromagnetic forces.

36



Electrostatic Boundary Conditions: Normal

The electric field is not continuous at a surface with charge 

density . Why?

Consider a Gaussian pillbox.

The sides of the pillbox contribute nothing to the flux, in the 

limit as the thickness ϵ goes to zero.

0

 (E ⊥ − E⊥

above below

0

(E ⊥ − E⊥

above below
) =

 


)A =

A

enc

S

Q

0 0

 A
E  da = =Gauss’s law states that
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Electrostatic Boundary Conditions: Tangential

The tangential component of E, by contrast, 

is always continuous.

Consider a thin rectangular loop.

P
E  dl = 0

The ends give nothing (as ϵ→0), and the sides give

(E // − E //
above below

E // = E //
above below)ℓ= 0 

The curl of the electric field states that

0

Eabove − Ebelow =
 

n̂In short,

38



Boundary Conditions in terms of potential

0

39

Eabove − Ebelow =
 

n̂
0

(Vabove − Vbelow ) = −
 

n̂

0

(
Vabove −

Vbelow ) = −
 

or

where

n n

n

Vabove (  V  n̂) denotes the normal derivative of V .



Vabove = Vbelow Why?

If Vabove  Vbelow ,  = .



Problem 2.9 Suppose the electric field in some region is found to be E = kr3r̂ , in 

spherical coordinates (k is some constant).

(a) Find the charge density .

(b) Find the total charge contained in a sphere of radius R, centered at the origin. 

(Do it two different ways.)

Problem 2.12 Use Gauss's law to find the electric field inside a uniformly charged 

solid sphere (charge density ). Compare your answer to Prob. 2.8.

Problem 2.15 A thick spherical shell carries charge density

r2
 =

k
(a  r  b)

(Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii) a < r < b, (iii)

r > b. Plot |E| as a function of r , for the case b = 2a.

Homework of Chap. 2 (part I)

40



Problem 2.20 One of these is an impossible electrostatic field. Which one?

(a) E = k[xy x̂ + 2yz ŷ + 3xz ẑ ];

(b) E = k[y2 x̂ + (2xy + z2 )ŷ + 2yz ẑ]

Here k is a constant with the appropriate units. For the possible one, find the potential, 

using the origin as your reference point. Check your answer by computing .V .

[Hint: You must select a specific path to integrate along. It doesn't matter what path

you choose, since the answer is path-independent, but you simply cannot integrate 

unless you have a definite path in mind.]

Problem 2.25 Using Eqs. 2.27 and 2.30, find the potential at a distance z above the 

center of the charge distributions in Fig. 2.34. In each case, compute E = −V , and 

compare your answers with Ex. 2.1, Ex. 2.2, and Prob. 2.6, respectively. Suppose 

that we changed the right-hand charge in Fig. 2.34a to − q; what then is the potential 

at P? What field does that suggest? Compare your answer to Prob. 2.2, and explain 

carefully any discrepancy.

Homework of Chap. 2 (part I)

41



2.4 Work and Energy in Electrostatics

2.4.1 The Work Done to Move a Charge

How much work will you have to do, if

you move a test charge Q from point a

to point b?

What we’re interested is the minimum force you must exert

to do the job.
b b

W = −a
F  dl = −Qa

E  dl = Q(V (b) −V (a))

So V (b) −V (a) =W / Q

The potential difference between points a and b is equal to

the work per unit charge required to carry a particle from a

to b.

EM
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2.4.2 The Energy of a Point Charge Distribution

How much work would it take to 

assemble an entire collection of point 

charges?

q3(
q1 +

q2 )W1 = 0, W2 =
1

40

q2(
q1 ) , W3 =

1

40 r13 r23

1
(
q1q2 +

q1q3 +
q2q3 ) 

40

r12

r12 r13 r23

1 1
The general rule: W =

=
1

qi(
2

n n

40 i=1 j=1
ji

n n

8

qiq j qiq j

ij ij

W =

= 
r r

1 1

2

0 i=1 j=1
ji

n

) =
n


i=1

n

40 j=1
ji

q j
i i i

i=1

q V (r )
ij

 r
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2.4.3 The Energy of a Continuous Charge Distribution

Generalizing the point charge distribution result:

2  ( E)VdW =
1 

2  2 Vd =
1

i i i i i i i
2 2

dW =
1

(dq )V (r ) =
1 

 V (r )(d )

0
0

(  E)Vd =

  (VE) = (V ) E + ( E)VIntegration by parts:

0 0

20

( E)Vd =
2

S
(VE)  da

W =

E d +

 



 
2  

(−V ) Ed + (VE) da


2 




=

  

  divergence theorem

 E 2d
all space2

W =
0



45

Potential and Potential Energy: Motion of Charges

The motion of a charge in an electric field may be discussed 

in terms of the conservation of energy, K+U = 0. In terms 

of potential, the conservation law may be written as

K = −qV

It is convenient to measure the energy of elementary 

particles, such as electrons and protons, in terms of a non-SI 

unit called the electronvolt (1 eV = 1.6x10 −19 J).

According to Einstein famous E = mc2, find the energy in terms

of eV for an electron of rest mass 9.110−31 kg, where the

speed of light is 3108 m/s.

E = 9.110−31(3x108)2/1.610 −19 = 0.511 MeV



Example

2
f

2

v2 − 2qV / mv f = i

= (5106 )2 + (21.610−19  6104 /1.6710−27 )

= 6106 m/s.

imv
1

−
1

2 2
mv = −qV

A proton, of mass 1.67x10−27 kg, enters the region between

parallel plates a distance 20 cm apart. There is a uniform

electric field of 3x105 V/m between the plates, as shown below.

If the initial speed of the proton is 5x106 m/s, what is its final

speed?

Solution:

K = −qV = −q(−E  d ) = q  (6104 )
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Benson

Potential and Potential Energy of Point Charges
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Example

e2

e2

40r

mv2
2

2
00

−18

1 e2
 K = mv =

2 8 r

9 109  (1.6 10−19 )2

2  0.5310−10

4 r

1
= −2.1810 J = −13.6 eVE = U + K = U = −

2

U = −

F =
r

=

In 1913, Bohr proposed a model of the hydrogen atom in

which an electron orbits a stationary proton in a circular

path. Find the total mechanical energy of the electron given

that the radius of the orbit is 0.53x10-10 m.

Solution:

The mechanical energy is the sum of the kinetic and

potential energies, E = K+U. The centripetal force is

provided by the coulomb attraction.

Benson
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Example

q

40R

Q2
Q

0
0 04 R 8 R

dW = Vdq = dq

q
W = dq =

A metal sphere of radius R has a charge Q. Find its

potential energy.

Solution:

The potential energy U = 1/2QV

is the work needed to bring the

system of charges together.

49



2.4.4 Comments on Electrostatic Energy

(i) A perplexing “inconsistency”

The energy required to assemble the charges qi.

Why is the energy of a point charge infinite?

 E 2d  0
2

all space

W =
0

 or  0
2 i=1

i i i

n

W =
1
q V (r )

Which equation is correct? 

Both equations are correct.

Does it make sense? No

2
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W =
0 0

02
all space

( )2 (r2 sindrdd) = 
2

E d =
 q

40r2



 

K = −qV



Comments on Electrostatic Energy

(ii) Where is the energy stored?

W =
all space

20

2
E )d(

 n

2 i=1

1
W = qiVi (ri )

It is unnecessary to worry about where the energy 

is located.

(iii) Superposition principle is not valid, because the 

electrostatic energy is quadratic in the fields.


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 

+ 2E1 E2 )d=
0

all space

2

2+ E2

1

all space

2

1 2

all space

(E
2

2
E 2d =

0 (E + E ) d
2

W =
0



2.5 Conductor

2.5.1 Basic Properties

E = 0 inside a conductor

 = 0 inside a conductor

Any net charge resides on the surface 

A conductor is equipotential

E is perpendicular to the surface, just outside a conductor.

※ The correctness of the above statements depends on the size 

and the conductivity of the metal, and the frequency of the wave.
52
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Charge Redistribution

Suppose two charged metal spheres with radius R1 and R2

are connected by a long wire. Charge will flow from one to

the other until their potential are equal. The equality of the

potential implies that

Q1 =
Q2 , since Q = 4R2

R1 R2

1R1 =  2R2

We infer that the surface charge density on each sphere is 

inversely proportional to the radius.

The regions with the smallest radii of curvature have the 

greatest surface charge densities.
53



Discharge at Sharp Points on a Conductor

E =
 


1

0 R

The above equation infers that the field strength is greatest 

at the sharp points on a conductor.

If the field strength is great enough (about 3106 V/m for dry 

air) it can cause an electrical discharge in air.

How does the breakdown occur in high voltage transmission 

line?

54
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Dust Causing High Voltage Breakdown

The potential at the surface of a charged sphere is V = kQ/R

and the field strength is E = kQ/R2. So, for a given breakdown

field strength, breakdown voltage is proportional to the

radius, VB  R.

The potential of a sphere of radius 10 cm may be raised to

3x105 V before breakdown. On the other hand, a 0.05 mm

dust particle can initiate a discharge at 150 V.

A high voltage system must keep at very clean condition.



2.5.2 Induced Charges

56

Induced charge 

on metal sphere

If there is some cavity in the conductor, and within that

cavity there is some charge, then the field in the cavity will

not be zero.

No external fields penetrate the conductor; they are

canceled at the outer surface by the induced charge there.



2.5.3 Surface Charge and Force on a Conductor

Using energy density viewpoint

In the immediate neighborhood of the surface, the 

energy is

This amounts to an outward electrostatic pressure on 

the surface, tending to draw the charge into the field, 

regardless of the sign of .

⎯⎯ the force per unit area
 2

20

2 2 0

dW = (
 0 E 2 )d = (

 0 (
 

)2 )dadx = fdadx

f =

 2

20
57

2

2

0 E =P =
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2.5.4 Capacitors

The magnitude of the charge Q stored on either plate of a 

capacitor is directly proportional to the potential difference V 

between the plates. Therefore, we may write

Q = CV

Where C is a constant of proportionality 

called the capacitance of the capacitor.

The SI unit of a capacitance is the farad

(F). 1 Farad =1 coulomb/volt

The capacitance of a capacitor depends on the geometry

of the plates (their size, shape, and relative positions) and

the medium (such as air, paper, or plastic) between them.

What are supercapacitors/ultracapacitors?



Q

0 0 A

Parallel-plate capacitor

A common arrangement found in capacitors consists of two

 V = Ed =
Qd


0 A

plates.  
E = =

d
C =

0 A

Example 2.10 A parallel-plate capacitor with a plate separation 

of 1 mm has a capacitance of 1 F. What is the area of each 

plate?

Cd 110−3

59

A =


=
8.8510−12

=1.13108 m2

0

where ε0 is 8.8510-12 F / m.



Example

What is the capacitance of an isolated sphere of radius R?

Q
V = 0 C = 4 R

04 R

Solution:

If we assume that earth is a conducting sphere of radius 

6370 km, then its capacitance would be 710 uF.

Is earth a good capacitor? No.

Benson
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Example

R1 R2 R14040r2

C = −40(
R1R2 )

R2 − R1

E =
Q

 V = −
R2 Edr =

Q
(

1
−

1
)

A spherical capacitor consists of two concentric conducting 

spheres, as shown in the figure. The inner sphere, of radius 

R1, has charge +Q, while the outer shell of radius R2, has 

charge –Q . Find its capacitance.

Solution:

The capacitance happens to be negative quantity.

Why we are interested only in its magnitude?

Benson
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Example

0 2rL 20r

0

ln( )

r

b

r ra

E =
L

=


V = − E dr = −

Q b


ln(

b
) 

2 a

20L a

C = −
20L

ln(b / a)

= −



A cylindrical capacitor consists of a central conductor of 

radius a surrounded by a cylindrical shell of radius b, as 

shown below. Find the capacitance of a length L assuming 

that air is between the plates.

Solution:

Again, we are interested only in the magnitude of 

the capacitance.

Benson
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Energy Stored in a Capacitor

The energy stored in a capacitor is equal to the work done---

for example, by a battery---to charge it.

The work needed to transfer an infinitesimal charge dq from 

the negative plate to the positive plate is dW = Vdq = q/Cdq.

The total work done to transfer charge Q is

2

63

CV 2Q2
Q q

W = 0 C
dq =

2C
=

What kind of the potential energy does this work convert? 

Electric potential energy.

cf. p.44 and p.59



r
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Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose 

the inner one carries a charge q, and the outer one a charge − q (both of them 

uniformly distributed over the surface). Calculate the energy of this configuration,

(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9.

Problem 2.39 Two spherical cavities, of radii a and b, are hollowed out from the 

interior of a (neutral) conducting sphere of radius R (Fig. 2.49). At the center of 

each cavity a point charge is placed − call these charges qa and qb.

(a) Find the surface charge densities a ,b ,and R .

(b) What is the field outside the conductor?

(c) What is the field within each cavity?

(d) What is the force on qa and qb?

Problem 2.43 Find the capacitance per unit length of two coaxial metal 

cylindrical tubes, of radii a and b (Fig. 2.53).

Problem 2.50 The electric potential of some configuration is given by the expression

e−r

V (r) = A ,

where A and  are constants. Find the electric field E(r), the charge density (r), 

and the total charge Q. [Answer:  = 0 A(4 3(r) − 2e−r /r)]

Homework of Chap. 2 (part II)
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Problem 2.53 In a vacuum diode, electrons are "boiled" off a hot cathode, at potential 

zero, and accelerated across a gap to the anode, which is held at positive potential V0. 

The cloud of moving electrons within the gap (called space charge) quickly builds up 

to the point where it reduces the field at the surface of the cathode to zero. From then 

on, a steady current I flows between the plates.

Suppose the plates are large relative to the separation (A d 2 in Fig. 2.55), so 

that edge effects can be neglected. Then V , , and v (the speed of the electrons) are 

all functions of x alone.

(a) Write Poisson's equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point

x, where the potential is V (x)?

(c) In the steady state, I is independent of x. What, then, is the relation between

 and v?

(d) Use these three results to obtain a differential equation for V , by eliminating

 and v.

(e) Solve this equation for V as a function of x, V0, and d. Plot V (x), and compare 

it to the potential without space-charge. Also, find  and v as functions of x.

0(f) Show that I = KV 3/2 , (2.56)

and find the constant K. (Equation 2.56 is called the Child - Langmuir law.

It holds for other geometries as well, whenever space-charge limits the current. 

Notice that the space-charge limited diode is nonlinear − it does not obey Ohm's 

law.)

Homework of Chap. 2 (part II)


