
Chapter 1 Vector Analysis
1.1 Vector Algebra: 1.1.1 Vector Operations (I)

Vectors: Quantities have both magnitude and direction, 

denoted by boldface (A, B, and so on).

Scalars: Quantities have magnitude but no direction 

denoted by ordinary type.

In diagrams, vectors are denoted by arrows: the length of 

the arrow is proportional to the magnitude of the vector, 

and the arrowhead indicates its direction.

Minus A (−A) is a vector with the same magnitude as A

but of opposite direction.

Vectors have magnitude and direction but not location.

Khan Academy: https://www.khanacademy.org/math/linear-algebra
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1.1.1 Vector Operations (II)

(i) Addition of two vectors:

Place the tail of B at the head of A.

Commutative: A + B = B + A

Associative: (A + B) + C = A + (B + C)

A − B = A + (−B)
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1.1.1 Vector Operations (III)

(ii) Multiplication by a scalar:

Multiplies the magnitude but leaves the direction unchanged.

Distributive: a(A + B) = aA + aB

(iii) Dot product of two vectors (scalar product):

The dot product of two vectors is defined by A·B ≡ AB cos, 

where  is the angle they form when placed tail-to-tail.

Commutative: A·B = B·A

A·(B + C) = A·B + A·CDistributive:

A

B


|A|cos
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1.1.1 Vector Operations (IV)

perpendicular to the plane of A and B.

(iv) Cross product of two vectors (vector product): 

The cross product of two vectors is defined by

AB ≡ AB sin n̂ , where n̂ is a unit vector pointing

A hat is used to designate the unit vector and its direction is 

determined by the right-hand rule.

Distributive: A(B + C) = AB + AC

not commutative: AB = − BA

(pronounced “n-hat")
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1.1.2 Vector Algebra: Component form (I)

Let x̂, ŷ and ẑ be unit vectors parallel to the x, y, and z 

axes, respectively. An arbitrary vector A can be expressed in 

terms of these basis vectors.

A = Axx̂ + Ayŷ + Azẑ

The numbers Ax, Ay, and Az are called components.

5
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1.1.2 Vector Algebra: Component form (II)

Reformulate the vector operations as a rule for manipulating 

components:

(i) To add vectors, add like components.

A + B = (Axx̂ + Ayŷ + Azẑ) + (Bxx̂ + By ŷ + Bz ẑ)

= (Ax + Bx )x̂ + (Ay + By )ŷ + (Az + Bz )ẑ

(ii) To multiply by a scalar, multiply each component.

aA = a(Axx̂ + Ayŷ + Azẑ)

= aAxx̂ + aAyŷ + aAzẑ



1.1.2 Vector Algebra: Component form (III)

(iii) To calculate the dot product, multiply like components, 

and add.

A B = (Axx̂ + Ayŷ + Azẑ)  (Bxx̂ + By ŷ + Bz ẑ)

= AxBx + AyBy + AzBz

(iv) To calculate the cross product, form the determinant 

whose first row is x̂, ŷ and ẑ , whose second row is A 

(in component form), and whose third row is B.

(AyBz − AzBy )x̂
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A B = Ax

x̂ ŷ ẑ

Ay Az = +(AzBx − AxBz )ŷ

Bx By Bz
+(AxBy − AyBx )ẑ



1.1.3 Triple Products (I)

Since the cross product of two vectors is itself a vector,

it can be dotted or crossed with a third vector to form a

triple product.

(i) Scalar triple product: A·(BC). Geometrically,

|A·(BC)| is the volume of a parallelepiped generated by 

these three vectors as shown below.

A  (BC) = B  (C A) = C  (A  B)

In component form Ax Ay Az

x y z

Cx Cy Cz

A  (BC) = B B B

A

C 

B
Parallelepiped

平行六面體

BC
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or B is perpendicular to A and C.
9

1.1.3 Triple Products (II)

A (BC) = B(A C) − C(A B)

(ii) Vector triple product: A(BC). The vector triple 

product can be simplified by the so-called BAC-CAB

rule.

Notice that (A  B)C  A (BC)

(A  B)C = −C (A  B) = −A(B C) + B(A C)

https://en.wikipedia.org/wiki/Triple_product

Problem 1.6 Under what conditions does

(A  B)C = A (BC)?

Ans: Either A is parallel to C,



Its direction unit vector (pointing radially outward)

r = r r  x2 + y2 + z2

x2 + y2 + z2

xx̂ + yŷ + zẑ

r
r̂ =

r
=

The infinitesimal displacement vector, from (x, y, z) to 

(x+dx, y+dy, z+dz), is

O

dl = dxx̂ + dyŷ + dzẑ
10

1.1.4 Position, Displacement, and Separation 

Vectors (I)

Position vector: The vector to point P from the origin O.

r  xx̂ + yŷ + zẑ
P

Its magnitude (the distance from the origin)



1.1.4 Position, Displacement, and Separation 

Vectors (II)

A short-hand notation for the 

separation vector from the source 

point to the field point is

→
r  r − r, magnitude r = r − r

unit vector in the direction from r to r is r̂ =
r

=
r − r

→

In electrodynamics one frequently encounters problems 

involving two points:

A source point, r, where an electric charge is located.

A field point, r, at which you are calculating the electric field.

r − rr
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1.2 Differential Calculus

1.2.1 “Ordinary” Derivatives

Suppose we have a function of 

one variable, f(x). What does the 

derivative, df/dx, do for us?

In words, if we change x by an amount dx, then, f changes 

by an amount df.

Ans: It tells us how rapidly the function f(x) varies when 

we change the argument x by a tiny amount, dx.


dx


 

df =
 df 

dx

f

df

dx

x

df

dx
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The derivative df/dx is the slope of the graph of f versus x.
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1.2.2 Gradient (I)

Suppose we have a function of three 

variables. What does the derivative 

mean in this case?

A theorem on partial derivatives states that

dH =
H

dx +
H

dy +
H

dz
x y z

= (
H

x̂ +
H

ŷ +
H

ẑ)  (dxx̂ + dyŷ + dzẑ )
x y z

= (H )  (dl)

The gradient of H is a vector quantity, with three components.

A mountain hill

H (x, y, z)

Khan Academy: Gradient

H =
H

x̂ +
H

ŷ +
H

ẑ
x y z
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1.2.2 Gradient (II)

Geometrical interpretation: Like any vector, the gradient

has magnitude and direction.

A dot product in abstract form is: dH = H dl = H dl cos

where  is the angle between H and dl.

If we fix the magnitude |dl| and search around in various 

directions (that is, vary  ), the maximum change in dH 

eventually occurs when  = 0). The gradient H points in 

the direction of maximum increase of the function H.

Analogous to the derivative of one variable, a vanishing

derivative signals a maximum (a summit), a minimum (a

valley), or an inflection (a saddle point or a shoulder).
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Example 1.3 & Problem 1.13

Example 1.3 Find the gradient of r = x2 + y2 + z2

rx2 + y2 + z 2y zx

Problem 1.13 Let 

Show that

Ans : r =
 r

x̂ +
 r

ŷ +
r

ẑ =
xx̂ + yŷ + zẑ

=
r

= r̂

r  (x − x ')x̂ + ( y − y ')ŷ + (z − z ')ẑ

(a) r 2 = ? r2 = [(x − x ')2 + ( y − y ')2 + (z − z ')2 ]

= 2(x − x ')x̂ + 2( y − y ')ŷ + 2(z − z ')ẑ = 2r
→

(b) (1 r) = ?

2

(x − x ')2 + (y − y ')2 + (z − z ')2

(x − x ')2 + (y − y ')2 + (z − z ')2


1
=

 −r
=

−

r r 2

= − 1 [2(x − x ')x̂ + 2(y − y ')ŷ + 2(z − z ')ẑ] / r3

r 2
= −

r̂



1.2.3 The Operator  (I)

 mimics the behavior of an ordinary vector in virtually 

every way, if we translate “multiply” by “act upon”.

It is a marvelous piece of notational simplification.

The gradient has the formal appearance of a vector, , 

“multiplying”, a scalar H.

H = (x̂
 

+ ŷ 
 

+ ẑ
 

)H
x y z

del

16

 is a vector operator that acts upon H, not a vector that 

multiplies H.
     

 = x̂
x

+ ŷ
y

+ ẑ
z
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1.2.3 The Operator  (II)

An ordinary vector A can multiply in three ways:

1. Multiply a scalar a : aA

2. Multiply another vector (dot product): A·B

3. Multiply another vector (cross product): AB

Correspondingly, there are three ways the operator  can act:

1. On a scalar function H: H (gradient 梯度)

2. On a vector function (dot product): ·v (divergence 散度)

3. On a vector function (cross product): v (curl 旋度)
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1.2.4 The Divergence

Divergence of a vector v is:

  v = (x̂
 

+ ŷ
 

+ ẑ
 

)  (vx x̂ + vy ŷ + vz ẑ)
x y z

+
vy

=
vx +

vz

x y z

·v is a measure of how much the vector v spreads out 

from the point in question.

zero positivepositive

Khan Academy: Divergence



Example 1.4

Ans:   va =
x

+
y

+
z

= 3;
x y z

  vb =
0

+
0

+
 1

= 0;
x y z

  vc =
0

+
0

+
z

= 1.
x y z

Prob. 1.15

(a) va = x2 x̂ + 3xz2 ŷ − 2xzẑ

a  v = ?

Example 1.4 Suppose the functions in above three figures 

are va = xx̂ + yŷ + zẑ, vb = ẑ, vc = zẑ. Calculate their 
divergences.
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1.2.5 The Curl

Curl of a vector v is:

v is a measure of how much the vector v curls around 

the point in question.

Khan Academy: Curl

vx vy
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x̂ ŷ ẑ

   
= x̂(

vz −
vy

) + ŷ(
vx −

vz ) + ẑ(
vy

−
vx )

x y z y z z x x y

vz

  v =
 



Example 1.5
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Example 1.5 Suppose the functions in above two figures 

are va = − yx̂ + xŷ, vb = xŷ. Calculate their curls.

 va = x̂(
0

−
x

) + ŷ(
(− y)

−
0

) + ẑ(
x

−
(− y)

) = 2ẑ
y z z x x y

Ans:

 vb = x̂(
0

−
0

) + ŷ(
0

−
0

) + ẑ(
x

−
0

) = ẑ
y z z x x y



1.2.6 Product Rules (I)

The sum rule:

The rule for multiplying by a constant k:

d
(kf ) = k

df 

dx dx

  (kA) = k A

(kf ) = kf

(kA) = k A

d
( f + g) =

df
+

dg 

dx dx dx

  (A + B) =   A +  B

22

( f + g) = f + g

 (A + B) =  A +  B
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1.2.6 Product Rules (II)

The product rule:

  (A B) = B  ( A) − A  ( B)

(A B) = (B )A − (A )B + A( B) − B(  A)



vector : fA

 scalar : fg


vector : A B

 scalar : A B



(A B) = A ( B) + B ( A) + (A )B + (B )A

Chaps.

d
( fg) = g

df
+ f

dg 

dx dx dx

  ( fA) = f  A + f (  A)

( fg) = gf + fg

( fA) = f  A + f ( A)

8 and 10
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1.2.6 Product Rules (III)

The quotient rule:



 f
scalar :

g

Avector :
g

2g

dx dx
g

df
− f

dg

dx g

d f
( ) =

g 2
( ) =

g


f gf − fg

g 2g 2

g( A) + Agg( A) − (g  A) (
A

) =
g

=

g 2

24

g(  A) − A g  (
A

) =
g



1.2.7 Second Derivatives (I)

By applying  twice, we can construct five species of 

second derivatives.

always zero

very important

always zero 

Chaps. 8 and 10

reduce to others

25

Three first derivatives T ,   v,   v

(1) Divergence of gradient:   (T )

(2) Curl of gradient:  (T )

(3) Gradient of divergence: (  v)

(4) Divergence of curl:   (  v)

(5) Curl of curl:  (  v)
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1.2.7 Second Derivatives (II)

=
x2

+
y2

+
z2

The Laplacian of a vector is similar:

( )v  2 (x̂vx + ŷvy + ẑvz ) = xˆ2vx + yˆ2vy + zˆ2vz

(2)  (T )  ()T

The proof hinges on the equality of cross derivatives:

2T 2T 2T

(1)  (T ) = (x̂
 

+ ŷ
 

+ ẑ
 

)  (x̂
T

+ ŷ
T

+ ẑ
T

)
x y z x y z

2=  T the Laplacian of T

 (T ) = (x̂
 

+ ŷ
 

+ ẑ
 

)(xˆ
T

+ ŷ
T

+ ẑ
T

) = 0
x y z x y z

 
(
T

) =
 

(
T

),
 

(
T

) =
 

(
T

),
 

(
T

) =
 

(
T

)
x y y x y z z y z x x z



1.2.7 Second Derivatives (III)

x y z y z x z x y

= 0

−
vx )−

vy ) +
 

(
vx=

 
(
vz −

vz ) +
 

(
vy

−
vx ))(4)   ( v) = x̂

 
(x̂(

vz −
vy )) + ŷ

 
(ŷ(

vx −
vz )) + ẑ

 
(ẑ(

vy

x y z y z x z x y

always zero

= … = (  v) − 2 v

x y z
 ( v) = (x̂

 
+ ŷ

 
+ ẑ

 
) (x̂(

vz −
vy ) + ŷ(

vx −
vz ) + ẑ(

vy −
vx ))

(5) ( v) Can we use the following vector identity?

A  (BC) = B(A C) − C(A B)

We will encounter this derivative when dealing with 

the vector potential (magnetism).

y z z x x y

TA

27
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v dl,
b

1.3 Integral Calculus

1.3.1 Line, Surface, and Volume (I)

In electrodynamics, the line (or path) integrals, surface 

integrals (or flux), and volume integrals are the most 

important integrals.

(a) Line integrals: a line integral is an expression of the

aP

form

where v is a vector function, dl is the infinitesimal 

displacement vector, and the integral is to be carried out 
along a prescribed path P from point a to point b.

Put a circle on the integral, in the path in question 

forms a closed loop.

v  dl
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1.3.1 Line, Surface, and Volume (II)

The value of a line integral depends critically on the 

particular path taken from a to b, but there is an important 

special class of vector functions for which the line integral 

is independent of the path, and is determined entirely

29

W = F dl
by the end points, e.g., b

aP

A force that has this property is called conservative.

P



Example 1.6 Calculate the line integral of the function

v = y2x̂ + 2x( y +1)ŷ, from the point a = (1,1,0) to the point

b = (2,2,0), along the paths (1) and (2) in Fig.1.21. What is

the loop integral that goes from a to b along (1) and returns

to a along (2)?

The strategy here is to get everything 

in terms of one variable.

non-conservative 

TA
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1.3.1 Line, Surface, and Volume (III)

S

(b) Surface integrals: a surface integral is an expression 

of the form

 v da,

where v is a vector function, and da is 

the infinitesimal patch of area, with 

direction perpendicular to the surface.

The value of a surface integral depends on the particular 

surface chosen, but there is a special class of vector 

functions for which it is independent of the surface, and is 

determined entirely by the boundary.

31



Example 1.7 Calculate the surface integral of the function

32

over five sides of thev = 2xzx̂ + (2 + x)ŷ + y(z 2 − 3)ẑ
cubical box. Let “upward and outward” be the positive 

direction, as indicated by the arrow.

Sol: Taking the sides one at a time:

(i) x = 2, da = dydzx̂ , v  da = 2xzdydz = 4zdydz

 v  da = 4
2

dy
2

zdz =16
0 0

(v) z = 2, da = dxdyẑ , v  da = y(z2 − 3)dxdy = ydxdy

 v  da = 
2

dx
2

ydy = 4
0 0
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 Td ,

1.3.1 Line, Surface, and Volume (IV)

(c) Volume integrals: a volume integral is an expression 

of the form

v

where T is a scalar function, and d is an infinitesimal 

volume element. In Cartesian coordinates, d = dxdydz

For example, if T is a density of a substance, then the 

volume integral would give the total mass.

The volume integrals of vector functions:

 vd =  (vx x̂ + vy ŷ + vzz )̂d

= x̂ vxd + ŷ vyd + ẑ vzd



Example 1.8 Calculate the volume integral of the function

T = xyz2 over the prism in Fig. 1.24.

2

34

2

0 0 0

1 2

0

Sol: Let's do z first (0 to 3); then y from 0 to 1− x; 

finally x from 0 to 1.

1

2
= 9 x( (1− x) )dx

1 1 3
= 9(

2 12 8

xyz dxdydz = z dz x( ydy)dx
3 1 1−x

 
 


)( ) =



   





1.3.2 The Fundamental Theorem of Calculus

Fundamental theorem of calculus:

Geometrical Interpretation: two ways to determine the total 

change in the function:

1. go step-by-step adding up all the tiny increments as you go.

2. subtract the values at the ends.

The integral of a derivative over an interval is given by the 

value of the function at the end points (boundary).

df = f (b) − f (a)
b b

a dx a

df
dx = 

35



1.3.3 The Fundamental Theorem for Gradients

b

A scalar function of three variables T(x, y, z) changes by 

a small amount.
dT = (T )  dl1

The total change in T in going from a to b along the path 

selected is:

a
(T )  dl = T (b) −T (a)

Fundamental theorem for gradient.

Geometrical Interpretation: Measure the high of a skyscraper.

1. Measure the high of each floor and add them all up.

2. Place an altimeter at the top and the bottom, subtract the 

readings at the ends.
36
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1.3.3 The Fundamental Theorem for Gradients (II)

Thus gradients have special property that their line integrals 

are path independent.

A conservative force may be associated with a scalar potential 

energy function, whereas a non-conservative force cannot.

b

a
(T )  dl = T (b) −T (a) the right side of this equation makes 

no reference to the path---only to the end points.

Corollary 1:

a to b.

Corollary 2: (T )  dl = 0 , since the beginning and end

points are identical, and hence T(b)−T(a) = 0.

KK:[ˈkɒrǝˌlɛrɪ] 推論

b

a
(T )  dl is independent of path taken from
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Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the 

associated conservative force.

B

*Conservative forces tend to minimize the potential 

energy within any system: If allowed to, an apple falls 

to the ground and a spring returns to its natural length.

Non-conservative force does not imply it is dissipative, 

for example, magnetic force, and also does not mean it 

will decrease the potential energy, such as hand force.

A
cA F dsUB −U = −
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Distinction Between 

Conservative and Non-conservative Forces

The distinction between conservative and non-

conservative forces is best stated as follows:

A conservative force may be associated with a scalar 

potential energy function, whereas a non-conservative 

force cannot.

B

A
cF dsAU B −U = −

Fc = −U



Conservative Force and 

Potential Energy Function

How can we find a conservative force if the associated 

potential energy function is given?

A conservative force can be derived from a scalar 

potential energy function.

Fc = −U

The negative sign indicates that the force points in the 

direction of decreasing potential energy.

Spring
402

gGravity U = mgy; y

sp
spU =

1
kx2; x

dy

dUg
F = − = −mg

dU
F = − = −kx

dx



Feynman: 

Gauss’ theorem 

Stokes’ theorem

Griffiths: 

Gauss’s theorem 

Stokes’ theorem

Jackson: 

Gauss’s theorem

Stokes’s theorem
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1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

v
(  v)d = v da

S

The integration of a derivative (in this case the divergence)

over a region (in this case a volume) is equal to the value of 

the function at the boundary (in this case the surface that

bounds the volume)

This theorem has at least three special names: Gauss’s 

theorem, Green’s theorem, or the divergence theorem.

Geometrical Interpretation: Measure the total amount of 

fluid passing out through the surface, per unit time.
1. Count up all the faucets, recording how much each put out.
2. Go around the boundary, measuring the flow at each point, 

and add it all up.

EM
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Gauss’s divergence theorem

S

(Transformation between volume integrals and surface integrals)

v
(  v)d = v  n̂da

Rough v = vxx̂ + vyŷ + vz ẑ and n̂ = cos x̂ + cos  ŷ + cos ẑ

Supplementary

proof: where ,  , and  are the angles between n̂ and x-, y -

and z - axis, respectively.

yx z

v
v

vv v
+ + )dxdydz

x y z (  v)d = (

=  (vxdydz + vydzdx + vzdxdy)

S

=  (vx cos + vy cos  + vz cos )da =  v  n̂da

S S

Rigorous proof can be found in: Erwin Kreyszig, Advanced Engineering 

Mathematics (John Wiley and Sons, New York, 1993), 7th ed. Chap. 9,
pp. 546-547.



Example 1.10 Check the divergence theorem using the

43

function

and the unit cube situated at the origin.

Sol : In this case   v = 2(x + y)

v = y2x̂ + (2xy + z 2 )ŷ + (2yz)ẑ

  

  

( + y)dy = 2

(x + y)dxdy2(x + y)dxdydz =2 dz

v

= 2

v 0

1 1

0 0

  vd = 2

1

0 2
( 1 + y)dy = 21

2

1 1 1

0 0

To evaluate the surface integral we must consider 

separately the six sides of the cube. The total flux i s …



1.3.5 The Fundamental Theorem for Curls (I)

The fundamental theorem for curls---Stokes’ theorem---

states that:

patch).

S
P

The integration of a derivative (here, the curl) over a region

(here, a patch of surface) is equal to the value of the 

function at the boundary (in this case the perimeter of the

 ( v)  da = v  dl

Geometrical Interpretation: 

Measure the “twist” of the 

vectors v; a region of high 

curl is a whirlpool.

KK:[pǝˈrɪmǝtɚ]
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1.3.5 The Fundamental Theorem for Curls (II)

Ambiguity in Stokes’ theorem: Concerning the boundary 

line integral, which way are we supposed to go around 

(clockwise or counterclockwise)? The right-hand rule.

Corollary 1:  ( v)  da depends only on the boundary

lines, not on the particular surface used.

Corollary 2: ( v) da = 0 for any closed surface, since 

the boundary line shrinks down to a point.

These corollaries are analogous to 

those for the gradient theorem.

45



Stokes’ theorem
(Transformation between surface integrals and line integrals)

S
( v)  da = v  dl

P

Supplementary

Rigorous proof can be found in:

Erwin Kreyszig, Advanced Engineering Mathematics

(John Wiley and Sons, New York, 1993), 

10th ed. Chap. 10, pp. 464-467.
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Comments: graduate level (reference only)

• Green’s theorems:

Let v = f g    v =   ( f g) = f 2g + f g

2

2 2

v  n̂ = f (n̂ g)

Green's first formula: ( f  g + f g)d = f

Green's second formula:


S

( f  g − g f )d = ( f − g )da

v

v
S

g 

n
da

g f

n n



 

• Green’s theorem in the plane as a special case of 

Stokes’ theorem

Let v be a vector function in the xy-plane.

( v)  n̂ =
vy

−
vx 

x y
47

vy v
(

x
−

y
x )da = (vxdx + vydy)

S


P
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Example 1.11 Suppose

Check Stokes’ theorem for the square surface shown below.

Sol : v = (4z 2 − 2x)x̂ + 2zẑ ; da = dydzx̂

v = (2xz + 3y2 )ŷ + (4yz2 )ẑ

  
1 1

0 0

2 4

3
( v)  da = 4z dydz =

1

0

The line integral of the four segments

2

1

0

0

1

0

2

(iv) x = 0, y = 0, v dl = 0,  v dl = 1 0dz = 0.

2

2

2 2

3y dy =1,

4

3
(ii) x = 0, y =1, v dl = 4z dz, 4z dz = ,

(iii) x = 0, z = 1, v  dl = 3y dy, 1,

 (i) x = 0, z = 0, v dl = 3y dy, v dl =

 v dl =

 v dl = 3y dy = −

v  dl =1+
4

−1+ 0 =
4

.
3 3



1.3.6 Integration by Parts

Integrating both sides and 

invoking the fundamental theorem

49

(1.58)

Left

Right

b b 

a

b

a a

a dx

b b b 

aa a

d df dg( fg) = g + f
dx dx dx

d

f

g

dx

dg

dx

df

dx
f

g
dg

dx

df

dx

( fg)dx = fg

b
dx +

dx = − dx + fg





 

( fA) = f  A + f ( A) 

Integrate it over a volume and 

invoking the divergence theorem.

 f ( A)d = − (f  A)d + ( fA)  da (1.59)

Left

Right  (f  A + f (  A))d

=  (f  A)d +  f (  A)d

( fA)d = ( fA)  da



(2) Curl of gradient : (T )

(4) Divergence of curl :  ( v)

always zero 

always zero

S
(T )  da = T  dl = T (a) −T (a) = 0

P

Stokes’ theorem S
( v)  da = v  dl

P

Divergence theorem v
(  v)d = v  da

S

v
(  ( v))d = ( v)  da = v  dl = 0

S P

( v) da = 0 for any closed surface, since the boundary 

line shrinks down to a point.

Optional

Applications of Stokes’ and Divergence Theorems

50



2(a) (
→

Problem 1.5 Prove the BAC - CAB rule by writing out both sides in component 

form.

Problem 1.7 Find the separation vector r from the source point (2,8,7) to the field 

point (4,6,8). Determine its magnitude (r), and construct the unit vector r̂.

Problem 1.13 Let r be the separation vector from a fixed point (x ', y ', z ') to the 

point (x, y, z), and let r be its length. Show that

r ) = 2r .

() (1/r )= − r̂ /r 2.

(c) What is the general formula for (r n )?

Problem 1.16 Sketch the vector function

Problem 1.33 Test the divergence theorem for the function 

v = (xy)x̂+ (2yz )ŷ+(3zx) ẑ. Take as your volume the cube 

shown in Fig. 1.30, with sides of length 2.

r2

and compute its divergence. The answer may surprise you. . . can you explain it?

v =
r̂

,

Homework of Chap. 1 (part I)

51



52

1.4 Curvilinear Coordinates

1.4.1 Spherical Polar Coordinates (I)

The spherical (polar) coordinates (r, , ) of a point P are 
defined below;

r : the distance from the origin (the magnitude of the

position vector).

 : the angle down from the z-axis (the polar angle).

 : the angle around from the x-axis (the azimuthal angle).

x = r sin cos







y = r sin sin

z = r cos

Murray R Spiegel, Vector Analysis

(McGraw-Hill, New York, 1989), 6th ed. Chap. 7.
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1.4.1 Spherical Polar Coordinates (II)

The direction of the coordinates: the unit vector r̂,  ,̂ ̂

They constitute an orthogonal (mutually perpendicular) 

basis set (just like x̂, ŷ, ẑ ).

So any vector A can be expressed in terms of them:

A = Arr̂ + A̂ + A̂

In terms of Cartesian unit vector

r̂ = sin cosxˆ + sin sinyˆ + cos ẑ

̂ = cos cosxˆ + cos sinyˆ − sin ẑ

̂ = −sinxˆ + cosyˆ

(Or you can see Appendix A for more details.)
53
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1.4.1 Spherical Polar Coordinates (III)

Warning: r̂,  ,̂ ̂ are associated with particular point P,
and they change direction as P moves around.

For example, r̂ always points radially outward, but “radially 

outward” can be the x direction, the y direction, or any other

direction, depending on where you are.

Notice: Since the unit vectors are function of position, we 

must handle the differential and integral with care.

1. Differentiate a vector that is expressed in spherical 

coordinates.

2. Do not take the unit vectors outside an integral.



1.4.1 Spherical Polar Coordinates (IV)

The general infinitesimal displacement:

dl = drr̂ + rdˆ + r sindˆ

The infinitesimal surface element da for the surface 

of a sphere.

da = (dl )(dl )r̂ = r2 sinddrˆ

The infinitesimal volume element d

d = (dlr )(dl )(dl ) = r2 sindrdd
55



1.4.1 Spherical Polar Coordinates (V)

The vector derivatives in spherical coordinates:

Divergence :

 v =

Curl :

Laplacian :

Gradient : 1 T
̂ .

r r  r sin 
T =

T
r̂ +

1 T
̂ +

21  

r2 r

1  

r sin 

1
.

r sin 
r(r v ) +

v
(sinv ) +

v   ˆ1    1  1 vr  

r  r  

   

 v =  (sinv ) −  r̂ +  − (rv )
r sin   r sin  r

 
+

1   
(rv ) −

vr  .̂

2
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2 2
.

1 2T

r2 sin2  

1    1    T 

 sin
  +

r sin
T =2 r

2 T 

r r  +
r


   



1.4.2 Cylindrical Coordinates (I)

The cylindrical coordinates (s, , z) of a point P are defined

below: x = s cos, y = s sin, z = z
s: the distance from the z axis.

: the same meaning as in spherical coordinates.

z: the same as Cartesian.

The unit vectors are

ŝ = cos x̂ + sin ŷ,

̂ = −sin x̂ + cos ŷ,

ẑ = ẑ.

The infinitesimal displacement:

dl = dsŝ + sdˆ+ dzẑ
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1.4.2 Cylindrical Coordinates (II)

The vector derivatives in cylindrical coordinates:

Gradient :

Divergence :

Curl :

Laplacian :

s s  z
T =

T
ŝ +

1 T
̂ +

T
ẑ.

1  

s s

1 z
s(sv ) +

v
+ .

s  z

v
 v =

ˆˆ ẑ.s sz v 
 s  z 

v


v v 1  

 
  

− z s  s s  
 + (sv ) −

 
 v =

 1 vz − s +

2
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1 2T 2T1    T 
2

+
2

.T =  s  +
s s s  s  z

2



5. The Dirac Delta Function

1. The Divergence of r̂ / r

Consider a vector function v = r̂ / r 2

2

The divergence of this vector function is:


(1) = 0

1
) =

1

r 2r rr 2 r 2
 v =

1 
(r 2

The surface integral of this function is:

2

0 0

 2

0 0 v

 2

(
1

r2
r sin )dd

sind

v da =

d  



=

 

  = 4  ( v)d

The divergence theorem is false?

No ➔ The Dirac delta function
59
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1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as

an infinitely high, infinitesimally narrow “spike”, with area just 1.


+

-
 (x)dx = 1

if x  0

 if x = 0
 (x) =

0
with

Technically,  (x) is not a function at all, since its value is 

not finite at x = 0. Such function is called the generalized 

function, or distribution.

60
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1.5.2 The One-Dimensional Dirac Delta Function (II)

If f(x) is some “ordinary” function (let’s say that it is 

continuous), then the product f(x)(x) is zero everywhere 

except at x = 0. It follows that f(x)(x) = f(0)(x). In particular,

+

f (x) (x)dx = f (0)-
 (x)dx = f (0)

+

-

We can shift the spike from x = 0 to some other point x = a.


+

-
 (x − a)dx =1

if x  a

 if x = a
 (x − a) =

0
with

A generalized integration equation:

+

f (x) (x − a)dx = f (a)-
 (x)dx = f (a)

+

-
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1.5.2 The One-Dimensional Dirac Delta Function (III)

Although (x) is not a legitimate function, integrals over (x) 
are perfectly acceptable.

It is best to think of the delta function as something that is

always intended for use under an integral sign.

In particular, two expressions involving delta function are 

considered equal if:

for all ("ordinary") function of f (x).

f (x)D2 (x)dx
+

f (x)D1(x)dx = -

+

-

Example 1.14 Evaluate the integral (a)
3

0

3x  (x − 2)dx


3

0

3x  (x − 4)dx(b)



Example 1.15 Show that

where k is any (nonzero) constant.

f (x) (kx)dx

Sol: Consider the integral for an arbitrary test function f (x),




negative : the integration runs from  to − 

f (x)

−

Let y  kx, so that x  y k , dx  1 k dy

k =
 positive : the integration runs from −  to 



1

k



 (kx)dx = 

So  (kx) serves the same purpose as

k
f (y / k) (y)dy =

1
f (0)

k

1
 (x) and  (−x) =  (x) .

 

− − 

k
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 (kx) =
1

 (x)



Prob. 1.45

dx
(a) x

d
( (x)) = − (x)

Show that d dx =  (x)

64


0, if x  0

(b) Let (x) be the step function :

 (x) =
1, if x  0
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1.5.3 The three-Dimensional Dirac Delta Function

The generalized 3D delta function

 3(r) =  (x) (y) (z)

where r is the position vector. It is zero everywhere 

except at (0,0,0), where it blows up.

Its volume integral is:

3

all space
 (r)d =  (x) (y) (z)dxdydz = 1

+ + +

− − −   

f (r) 3(r − a)d = f (a)
all space

As in the 1-D case, the integral with delta function picks 

out the value of the function at the location of the spike.
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1.5.3 The three-Dimensional Dirac Delta Function (II)

We found that the divergence of r̂ / r 2
is zero everywhere 

except at the origin, and yet its integral over any volume 

containing the origin is a constant of 4. The Dirac delta 

function can be defined as:

  (
r̂

) = 4 3(r)

More generally,

r 2
  (

→

r 2

r̂
) = 4 3(r )

where r is the separation vector r = r − r. Note that the 

differentiation here is with respect to r, while r is held 

constant.

2 3

2

r̂1 1
( ) =   (( )) =   (−

→
) = −4 (r )

r r r
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1.6 The Theory of Vector Fields

1.6.1 The Helmholtz Theorem

To what extent is a vector function F determined by its 

divergence and curl?

The divergence of F is a specified scalar function D,

 F = D

and the curl of F is a specified vector function C,

Can you determine the function F?

Helmholtz theorem guarantees that the field F is uniquely 

determined by the divergence and curl with appropriate 

boundary conditions. (For more details, see Appendix B 

of Griffiths)

 F = C (i.e.,   ( F) =  C = 0)



1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then

F can be written as the gradient of a scalar potential (V):

 F = 0  F = −V

conventional

68

If the divergence of a vector field (F) vanishes (everywhere), 

then F can be expressed as the curl of a vector potential (A):

 F = 0  F =  A



Also work out the inverse formulas, giving x̂, ŷ, ẑ in terms of r̂ ,̂ ,̂ (and  ,).

Problem 1.40 Compute the divergence of the function

v = (r cos  ) r̂ + (r sin  )̂ + (r sin  cos)ˆ.

Check the divergence theorem for this function, using as your volume 

the inverted hemispherical bowl of radius R, resting on the xy plane

and centered at the origin (Fig. 1.40).

Problem 1.43

(a) Find the divergence of the function

v = s (2 + sin2 ) ŝ + s sin  cos ̂ + 3z ẑ.

(b) Test the divergence theorem for this function, using the quarter-cylinder 

(radius 2, height 5) shown in Fig. 1.43.

(c) Find the curl of v.

? ? ?

Problem 1.38 Express the unit vectors r̂ ,̂ ,̂ in terms of x̂, ŷ, ẑ (that is, derive

ˆ ˆ ˆ ˆˆ ˆ ˆEq. 1.64). Check your answers several ways (r r =1,   = 0, r  = ,...).

Homework of Chap. 1 (part II)
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Problem 1.46

(a) Show that

x
d

( (x)) = − (x).
dx

[Hint: Use integration by parts.]

(b) Let  (x) be the step function:

 (x) 
1, if x  0

. (1.95)
0, if x  0


 

Show that d /dx =  (x).

Problem 1.49 Evaluate the integral

2
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ˆ

(where V is a sphere of radius R, centered at the origin) by two different methods, 

as in Ex. 1.16.

J = e−r
v

d
 
  

 r 

r

Homework of Chap. 1 (part III)


