Chapter 1 Vector Analysis
1.1 Vector Algebra: 1.1.1 Vector Operations ()

Vectors: Quantities have both magnitude and direction,
denoted by boldface (A, B, and so on).

Scalars: Quantities have magnitude but no direction
denoted by ordinary type.

In diagrams, vectors are denoted by arrows: the length of

the arrow is proportional to the magnitude of the vector,
and the arrowhead indicates its direction.

Minus A (—=A) is a vector with the same magnitude as A
but of opposite direction.

Vectors have magnitude and direction but not location.
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1.1.1 Vector Operations (lI)

(1) Addition of two vectors:
Place the tail of B at the head of A.
Commutative: A+ B=B+ A
Associative: (A+B)+C=A+ (B+ C)
A-B=A+ (-B)

B -B
—

(A+B) (B+A) (A-B) A




1.1.1 Vector Operations (lll)

(i) Multiplication by a scalar:

Multiplies the magnitude but leaves the direction unchanged.

Distributive: a(A

B) = aA

aB

(111) Dot product of two vectors (scalar product):
The dot product of two vectors is defined by A-B = AB cos0,

where 0 is the angle they form when placed tail-to-tail.

Commutative: A-B=B-A

Distributive: A-(B+C)=A-B+AC /4 .B




1.1.1 Vector Operations (|V)

(Iv) Cross product of two vectors (vector product):

The cross product of two vectors is defined by

AxB = ABsind N, where ﬁ(is\a unit vector pointing
perpendicular to the plane of A and B. —— (pronounced n-hat’)

A hat is used to designate the unit vector and its direction is
determined by the right-hand rule.

Distributive: Ax(B + C) = AxB + AxC

not commutative: AxB =— BxA

B



1.1.2 Vector Algebra: Component form (I)

Let X,y and Z be unit vectors parallel to the x, y, and z
axes, respectively. An arbitrary vector A can be expressed In

terms of these basis vectors.

A= AX+AY+ Az

The numbers A,, A,, and A; are called components.
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1.1.2 Vector Algebra: Component form (ll)

Reformulate the vector operations as a rule for manipulating
components:

() To add vectors, add like components.
A+B=(AX+Ay+A;2)+(Byx+Byy+ B;2)
— (Ax Bx))A( (Ay By )y (Az B, )Z

() To multiply by a scalar, multiply each component.
aA =a(AX+ AyY + As2Z)
= aAX+aAyy +ahA;Z



1.1.2 Vector Algebra: Component form (lll)

(i) To calculate the dot product, multiply like components,
and add.

A-B=(AK+AY+A2)-(B,X+B,J+B,2)
= AB, + A,B, + A, B,

(iv) To calculate the cross product, form the determinant

whose first row is X, Y and Z , whose second row is A
(iIn component form), and whose third row is B.

x v 2| (AB;—AByX
AxB = AX Ay AZ — +(Asz - AXBZ)y
B, B, B,| +(ABy—AB)2




1.1.3 Triple Products (I)

Since the cross product of two vectors is itself a vector,
it can be dotted or crossed with a third vector to form a

triple product.

(1) Scalar triple product: A-(BxC). Geometrically,
|A-(BxC)| is the volume of a parallelepiped generated by
these three vectors as shown below.

A-(BxC)=B-(CxA)=C-(AxB)

In component form

A-(BxC) =

Ac A A

B, B, B,
Cy Cy C;

BxC
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1.1.3 Triple Products (Il)

(i1) Vector triple product: Ax(BxC). The vector triple
product can be simplified by the so-called BAC-CAB

e Ax(BxC)=B(A-C)-C(A-B)
Notice that (AxB)xC = Ax(BxC)
(AxB)xC=-Cx(AxB)=-A(B-C)+B(A-C)

https://en.wikipedia.org/wiki/Triple_product
Problem 1.6 Under what conditions does

(AxB)xC=Ax(BxC)?
Ans: Either A Is parallel to C,

or B Is perpendicular to A and C.



1.1.4 Position, Displacement, and Separation
Vectors (l)

Position vector: The vector to point P from the origin O.

r= XX+ Vy+2Z
oY
%y, 2

<

1 Y
r=r-r=x+y?+ 22 A P

lts direction unit vector (pointing radially outward)
s _ T _ XX+ VY + 27

r \/ X° +y° +2°

The infinitesimal displacement vector, from (X, vy, z) to
(x+dx, y+dy, z+dz), IS

dl = dxX + dyy + dzz

lts magnitude (the distance from the origin) r

10



1.1.4 Position, Displacement, and Separation
Vectors (ll)

In electrodynamics one frequently encounters problems
involving two points:

A source point, r’, where an electric charge is located.
A field point, r, at which you are calculating the electric field.

source point

A short-hand notation for the
separation vector from the source

point to the field point is

field point
—>

r=r—r', magnituder =|r —r’

. ] _ _ _ A r — rr
unit vector in the direction fromr' toris f =1 =

r \r—r’

11
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1.2 Differential Calculus Tsun-Hsu Chang

1.2.1 "Ordinary” Derivatives EEYIE REE
Suppose we have a function of f df )
one variable, f(x). What does the dx /df

derivative, df/dx, do for us? .
7 dx

> X

Ans: It tells us how rapidly the function f(x) varies when
we change the argument x by a tiny amount, dx.

O df
df = dr dx
L dX
In words, if we change x by an amount dx, then, f changes
by an amount df.

The derivative df/dx is the slope of the graph of f versus x.
12



_________________ﬂ

Suppose we have a function of three A mountain hill

variables. What does the derivative H (X, YV, 2)
mean in this case?

A theorem on partial derivatives states that

dH = Dy gy H g

OX oy 0z
(Mg B Mooy dxg+dyy +dz2)
OX oy 0z

= (VH)-(dI)

The gradient of H is a vector quantity, with three components.
vH_@Hg, 0H, oH,
OX oy 0z

13



1.2.2 Gradient (ll)

Geometrical interpretation: Like any vector, the gradient
has magnitude and direction.

A dot product in abstract form is: dH = VH -dl = |[VH||dl|cos6
where O Is the angle between VH and dl.

If we fix the magnitude |dl| and search around in various
directions (that is, vary 0 ), the maximum change in dH

eventually occurs when 0 =0). The gradient VH points in
the direction of maximum increase of the function H.

Analogous to the derivative of one variable, a vanishing
derivative signals a maximum (a summit), a minimum (a
valley), or an inflection (a saddle point or a shoulder).

14



Example 1.3 & Problem 1.13

Example 1.3 Find the gradient of I' = \/XZ + Y +2°

ANS :

Problem 1.13 Let r=(X—X)X+(y-Yy)Y+(z—-2")z
Show that

() Vr? =2

(b) V(Yr) ="




1.2.3 The Operator V ()

The gradient has the formal appearance of a vector, V,

“multiplying”, a scalar H.

VH = 8L +9Z+2-DH
0Z

oX oy
~~ del

V Is a vector operator that acts upon H, not a vector that

multiplies H.

V—k@+Ai+2—a
) y@y 0z

V mimics the behavior of an ordinary vector in virtually
every way, if we translate “multiply” by “act upon”.

It is @ marvelous piece of notational simplification.

16



1.2.3 The Operator V (ll)

An ordinary vector A can multiply in three ways:
1. Multiply a scalar a : aA
2. Multiply another vector (dot product): A-B

3. Multiply another vector (cross product): AxB

Correspondingly, there are three ways the operator V can act:

1. On a scalar function H: VH (gradient #E)
2. On a vector function (dot product): V- v (divergence 8 &)

3. On a vector function (cross product): Vxv (curl HEE)

17



1.2.4 The Divergence 'Khan Academy: O Divergence |

I Il IS IS S S S S - e - s s s e s sl

Divergence of a vector v is:

Vv 3L+ 9% 429Dy (& + vy + v, 2)

OX oy 0z
_ O, Oy oy
oXx oy 0oz

V-v Is a measure of how much the vector v spreads out
from the point in question.

\ / A A ' A A
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(a) positive (b) ZEIO (c) positive 18



Example 1.4

L T

<
/[\

ttrttttt

(a) (b) (c)

Example 1.4 Suppose the functions in above three figures
are Vg =XX+VYYy+12Z, vV, =2, V; =2Z. Calculate their
divergences.

Ans: V-v, _OX 0y 0z _aq.

» Prob. 1.15
OX oy 0z : :
X 0y O Vv, =?
\ Vc=@+@+az—l

19



1.2.5 The Curl !KhanAcademy: Q Curl

Curl of a vector v is:

X 'y 7
0 O
VXV = 0 &
oOX oy oz
Vy Vy Vg

= X(

oy

5Vz B aVy )
0z

OVy 8vz)
0Z  OX

VxV IS a measure of how much the vector v curls around

the point in question.

) - e - - - @ -

— = = = =
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Example 1.5

(a) ,{ (b)
Example 1.5 Suppose the functions in above two figures

are V, =—yX+ Xy, Vp =XYy. Calculate their curls.

Vxv, = (L -y, 9= A0y 50X Y]y oy
oy 0z Oz OX OX oy

Vv = (L -y g @y 5 X 0y _;
oy 0Oz 0z OX OX oY

ANS:

21
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1.2.6 Product Rules (I) Ayl

The sum rule:

d df dg _
—(f — | V(T =Vf +V
dx( +0) vy (f+09) g

V. (A+B)=V-A+V-B Vx(A+B)=VxA+VxB

The rule for multiplying by a constant k:

—(kf)  df V(Kf ) = kVf
dx

V- (kA) =kV - A Vx(kA) = kVx A

22



1.2.6 Product Rules (lI)

The product rule:

df
dx

d
~ (fa) =
OIX(g) g

V. (fA) = Vf-A+ f(V-A)
" scalar: A-B

V(A-B) = Ax(VxB)

V- (AxB)=B-(VxA)-A-(VxB)

]

9

" scalar: fg
‘vector: fA

V(fg) =gVt + fVg

\

Bx(VxA)

Vector : AxB

(A-V)B

Vx(fA)=VI xA+ f(VxA)

(B-V)A ~_
Chaps.
8 and 10

Vx(AxB)=(B-V)A—(A-V)B+A(V-B)-B(V-A) «+

23



1.2.6 Product Rules (lIl)

The quotient rule:

-

f A
df dg Jscalar:— Vvector:Z-

- f e
d f _gdx dx ! 9 9

V.(é): Q(V'A)Z_A'Vg
0 g

VX(é) _ g(VxA)=(VgxA) g(VxA)+AxVg
g g° g’

24



1.2.7 Second Derivatives ()

By applying V twice, we can construct five species of
second derivatives.

Three first derivatives VT, V.v, Vxv

(1) Divergence of gradient: V- (VT) «—— very important
(2) Curl of gradient: V x(VT) — always zero

(3) Gradient of divergence: V(V -v) «—— Chaps. 8 and 10

(4) Divergence of curl: V- (V x v) —— always zero

(5) Curl of curl: V x(V xv) - reduce to others

25



1.2.7 Second Derivatives (ll)

QV-(vT)=xL+yL 424 x Ly

oXx oy 0z OX oy 0z

2 2 2
_ o1 G_T G_T = V°T < the Laplacian of T
OX*  oy* 01°
The Laplacian of a vector is similar:

(V-V)V=V2(Rvy + YV +2V,) =X VA +Y VA + 2" VA,

(2) Vx (VT) = (VxV)T

The proof hinges on the equality of cross derivatives:

Vi (VT) = (k& +9- L+ 2D ux Ty i29hy 2o

oXx oy 0z OX oy 0z

0 0T 0 0T 0 0T 0 01 0 ol o0 ,0I
C=""0C), )= —)=_0)
OX 0y oy OX oy 0z 07 oy 0I OX OX 0Z .,




1.2.7 Second Derivatives (III)

. O ;o OV, OV ~ O o OV
(4) V- (Vx V) = ~ M4y : 2L (N _ vy,
oXx oy 0z oy 0z 8x oz oOX oY
— ( @Vy | i aVx — 8V 8V aVx
OX ay oz’ oy 0z  OX oy

=0 «—— always zero

(5) Vx(VxvV) Can we use the following vector identity?

Ax(BxC)=B(A-C)-C(A-B)

VX(VXV)I()’\(@—I—S\/a 5 O 9 AaVZ _% -I-)A/ @VX_aVZ
OX oy 0z oy 0z 0Z  OX

— . =V(V-V)=V2y

We will encounter this derivative when dealing with
the vector potential (magnetism).

T TCLRS)
oX oy

27



1.3 Integral Calculus

EM

Tsun-Hsu Chang

1.3.1 Line, Surface, and Volume () A

=Y SRIFAE

In electrodynamics, the line (or path) integrals, surface

integrals (or flux), and volume integrals are the most
Important integrals.

(a) Line integrals: a line integral is an expression of the

b
form V- dl,
aP

where v IS a vector function, dl is the infinitesimal

displacement vector, and the integral is to be carried out
along a prescribed path P from point a to point b.

Put a circle on the integral, in the path in question
forms a closed loop.

[v-d

28



1.3.1 Line, Surface, and Volume (ll)

The value of a line integral depends critically on the
particular path taken from a to b, but there is an important
special class of vector functions for which the line integral
IS Independent of the path, and Is determined entirely

by the end points, e.g., b
W=|" F-dl
aP
A force that has this property is called conservative.
Z4 P
dl b
a ~N : .
:f’_/ x\\.\___)l Y
X /(L,—-*”"

Figure 1.20 29



Example 1.6 Calculate the line integral of the function

vV =Yy°X+ 2X( Y +1)¥, from the point a = (1,1,0) to the point
b =(2,2,0), along the paths (1) and (2) in Fig.1.21. What is
the loop integral that goes from a to b along (1) and returns
to a along (2)7?

t ¥y
b

The strategy here is to get everything | (23;’1@
In terms of one variable. d a‘fm =

non-conservative
TA

i 5 X

30



1.3.1 Line, Surface, and Volume (lIl)

(b) Surface integrals: a surface integral is an expression

of the form
o da
| v-da. <4
S

where v Is a vector function, and da Is
the infinitesimal patch of area, with
direction perpendicular to the surface.

-y

The value of a surface integral depends on the particular
surface chosen, but there is a special class of vector
functions for which it is independent of the surface, and Is
determined entirely by the boundary.

31



Example 1.7 Calculate the surface integral of the function

V=2XzX+(2+X)y +Yy(z°—3)2 over five sides of the
cubical box. Let “upward and outward” be the positive

direction, as indicated by the arrow. 4 Tm At
Sol: Taking the sides one at a time: ok | T

¥ 1
() x=2, da=dydzx, v-da=2xzdydz=4zdydz .

jv-da_4jo dy_[O 20z =16

(v) z=2, da=dxdyZ, v-da=y(z%-3)dxdy = ydxdy
2 2
v-da=| dx| ydy=4
fu-do- oy

-y



1.3.1 Line, Surface, and Volume (lV)

(c) Volume integrals: a volume integral is an expression

of the form
I Tdrt,

where T Is a scalar function, and dt Is an infinitesimal
volume element. In Cartesian coordinates, dt = dxdydz

For example, if T is a density of a substance, then the
volume integral would give the total mass.

The volume integrals of vector functions:
I vdt = I (V,X+V,y+V,Z)dt

= kjvxdr +9jvydt + zAjvzdr

33



Example 1.8 Calculate the volume integral of the function
T = Xyz* over the prism in Fig. 1.24.

ZA

~
D

Sol: Let's do z first (O to 3); theny from 0 to 1- X;
finally x from O to 1.

H xyz > dxdydz = jjzzdz <f_f;x(_[;_x ydy)dx\

\

g \
~ 9. jo X(;, (1- x)?)dx |

J

1,,1, 3
:9(5)(5)25

34



1.3.2 The Fundamental Theorem of Calculus

Fundamental theorem of calculus:

jb df

a dx
Geometrical Interpretation: two ways to determine the total
change in the function:

1. go step-by-step adding up all the tiny increments as you go.
2. subtract the values at the ends.

dx = jdf_f(b)—f(a)

f(b)
f(@)

The integral of a derivative over an interval is given by the

value of the function at the end points (boundary).
35



1.3.3 The Fundamental Theorem for Gradients

A scalar function of three variables T(X, y, z) changes by

a small amount.
dT =(VT)-dl,

The total change in T in going from a to b along the path
selected Is: .

[2(vT)-dl =T (b)-T @)

dl,
\ PR <
| N

. I.-" \.._l./l ’
Fundamental theorem for gradient.  «

— e — — —T— TTE

=

Geometrical Interpretation: Measure the high of a skyscraper.

1. Measure the high of each floor and add them all up.
2. Place an altimeter at the top and the bottom, subtract the
readings at the ends.

36



1.3.3 The Fundamental Theorem for Gradients (ll)

b
[ (VT)-dI=T(b)-T (@) the right side of this equation makes
no reference to the path---only to the end points.

Thus gradients have special property that their line integrals
are path independent.

b
Corollary 1: ja (VT)-dl is independent of path taken from
a to b.

Corollary2:  |(VT)-dI=0, since the beginning and end
points are identical, and hence T(b)-T(a) = 0.

KK:[ kora len] #:zm

A conservative force may be associated with a scalar potential
energy function, whereas a non-conservative force cannot.

37



Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the
associated conservative force.

B
Us ~U, =—| F,-ds

*Conservative forces tend to minimize the potential

energy within any system: If allowed to, an apple falls
to the ground and a spring returns to its natural length.

Non-conservative force does not imply it is dissipative,
for example, magnetic force, and also does not mean it
will decrease the potential energy, such as hand force.

38



Distinction Between
Conservative and Non-conservative Forces

The distinction between conservative and non-
conservative forces is best stated as follows:

A conservative force may be associated with a scalar

potential energy function, whereas a non-conservative
force cannot.

B
Ug-U, =~| F,-ds

F, =-VU

39



Conservative Force and
Potential Energy Function

How can we find a conservative force if the associated
potential energy function is given?

A conservative force can be derived from a scalar
potential energy function.

R =-VU

The negative sign indicates that the force points in the
direction of decreasing potential energy.

. U
Gravity U, =mgy; Fy = dy = —m(g
dU
Spring Uy, = L k2. F, = ———" = —kx

2 dx

40
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1.3.4 The Fundamental Theorem for Divergences Tsun-Hsu Chang
/E __!F@}E gET—ﬁF

The fundamental theorem for divergences states that:
|, (v-v)dt = |v-da

The integration of a derivative (in this case the divergence)
over a region (in this case a volume) is equal to the value of
the function at the boundary (in this case the surface that

bounds the volume) Feynman:

Gauss’ theorem
Stokes’ theorem

Griffiths:
Gauss’s theorem
Stokes’ theorem

This theorem has at least three special names: Gauss’s
theorem, Green’s theorem, or the divergence theorem.

Geometrical Interpretation: Measure the total amount of

fluid passing out through the surface, per unit time.

1. Count up all the faucets, recording how much each put out.
2. Go around the boundary, measuring the flow at each point,

and add it all up.

Jackson:
Gauss’s theorem
Stokes’s theorem

41



Supplementary  (3guss’s divergence theorem

(Transformation between volume integrals and surface integrals)

| (v-v)dt = |v-nda

S
Rough V =VxX+Vyy+V;Z and N =CcosaX+CosPY +CosyZ

Proot: \where o, B, and y are the angles between A and x-, y -

and z - axis, respectively.

jv (V-v)dt =[] (@8"; | aavyy : aa"zz )dxdydz
V

= _[ _[ (vxdydz + vydzdx + v,dxdy)
S

=H(vx COSQL +Vy COS 3 +V; cosy)dazﬁv-ﬁda
S S

Rigorous proof can be found in: Erwin Kreyszig, Advanced Engineering

Mathematics (John Wiley and Sons, New York, 1993), 7th ed. Chap. 9,
pp. 546-547.

42



Example 1.10 Check the divergence theorem using the
function v = y?X+(2xy +z2)y +(2yz)2

and the unit cube situated at the origin.

Sol:Inthiscase V-v =2(x+Y) -

_[VZ(X

=2 [ G+ y)dy=2[ (1 +y)dy =2

(1V)

y)dxdydz =2 joldz _[01 _[Ol(x y)dxdy

X

_[VV -vdt =2

(1)

¥

/|

—

W) A

Zh \
l

——P

(111)

l(\'i)

To evaluate the surface integral we must consider
separately the six sides of the cube. The total flux is...

l

=y



1.3.5 The Fundamental Theorem for Curls (l)

The fundamental theorem for curls---Stokes’ theorem---
states that:
js (VxV)-da= P_[v-dl

The integration of a derivative (here, the curl) over a region
(here, a patch of surface) is equal to the value of the

function at the boundary (in this case the perimeter of the
patch). KK:[pa'rimate]

Geometrical Interpretation:
Measure the “twist” of the

vectors v; a region of high

curl is a whirlpool.

44



1.3.5 The Fundamental Theorem for Curls (Il)

Ambiguity in Stokes’ theorem: Concerning the boundary
line integral, which way are we supposed to go around
(clockwise or counterclockwise)? The right-hand rule.

Corollary 1: _[(VX v)-da depends only on the boundary
lines, not on the particular surface used.

Corollary 2: j(Vx v)-da=0 for any closed surface, since
the boundary line shrinks down to a point.

A
da

These corollaries are analogous to
those for the gradient theorem. @

dl

45



Supplementary

Stokes’ theorem
(Transformation between surface integrals and line integrals)

| (xv)-da=|v-d
P

Rigorous proof can be found in:

Erwin Kreyszig, Advanced Engineering Mathematics
(John Wiley and Sons, New York, 1993),

10th ed. Chap. 10, pp. 464-467.

46



Comments: graduate level (reference only)
* Green’s theorems:
Letv=fVg = V.-v=V-(fVg)=fVZ%g+Vf Vg
v-n=f(n-vg)

Green's first formula: jv (fvzg + VTt -Vg)dt = _ff ggda
n
S

Green's second formula: _[V (fvzg — sz f)dt = j(f %QL— g 2—f )da
n n

S
* Green’s theorem in the plane as a special case of

Stokes’ theorem

Let v be a vector function in the xy-plane.

Ny oV OVy oV
Y 9% y
(Vxv)-n= ~ ”( = X)da = _kvxdx +vydy)

P

47



Example 1.11 Suppose V= (2Xz +3y*)y +(4yz°)2

Check Stokes’ theorem for the square surface shown below.

Sol:Vxv=(4z°-2xX)X+2zZ; da=dydzX A

P (i)
o A | ——
I(VX v)-da:_.‘o_[O 47 °dydz = . i)Y
The line integral of the four segments _
: I

(i)x=0,z:0,v-dlz3y2dy, jv-dlzjé?uyzdy:l, X ®
N a2 (Y2, 4
() x=0,y=1,v-dl =4z°dz, _[v dl__[o4z dz_g,

(iii) x =0, z =1, v-dl = 3y 2dy, jv-d|=j03y2dy=—1,

(Iv) x=0,y=0,v-dl =0, jv dl—j 0dz =0

4
dl =1 41 0=—
IV 3 3

48



1.3.6 Integration by Parts

V-(fA)=Vf-A+ f(V-A
9 (tg)=g 9 +99 LA v

dx dx dx Integrate It over a volume and
Integrating both sides and Invoking the divergence theorem.
invoking the fundamental theorem L eft j V.( fA)dt = j( fA)-da
b .
Left j d (fg)dx_ fg\a Right I(Vf A+ f(V-A))dt
b df =|(Vf-A)dt +| f(V-A)dr
Right jaf dx+j 4 0¥ J (vt Ay + [ £(7-A)

Ibfwdx__j 0 fdx_|_fg‘a (158) | f(V-Aydt =—[(Vf-A)dt+ [(fA)-da (1.59)

49



Optional

Applications of Stokes’ and Divergence Theorems
(2) Curl of gradient:Vx (VT) — always zero

(4) Divergenceof curl :V-(Vxv) «—— alwayszero

Stokes’ theorem jg (Vxv)-da=|v-dl

P
[[(VxVT)-da= [VT-dl=T(a)-T(a)=0

Divergence theorem _[V (V-v)dt = jv-da
S

IV(V-(VXV))dTI I(va).da: Ilezo

_f(Vx v)-da=0 for any closed surface, since the boundary
line shrinks down to a point.
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Homework of Chap.

1 (part I)

Problem 1.5 Prove the BAC - CAB rule by writing out both sides in component

form.

point (X, Y, z), and let r be its length. Show that
(a) V(rz) =2r.

(B) V(LIr)= —¢Flr?.

(c) What is the general formula for V(r")?

Problem 1.16 Sketch the vector function
_ T
r2’
and compute Its divergence. The answer may surprise you.

V

Problem 1.33 Test the divergence theorem for the function
v = (Xxy)x+ (2yz)y +(3zx) z. Take as your volume the cube
shown in Fig. 1.30, with sides of length 2.

Problem 1.7 Find the separation vector r from the source point (2,8,7) to the field
point (4,6,8). Determine its magnitude (r), and construct the unit vector r.

Problem 1.13 Let r be the separation vector from a fixed point (x', y', z') to the

.. can you explain it?

FIGURE 1.30

-
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1.4 Curvilinear Coordinates
1.4.1 Spherical Polar Coordinates ()

The spherical (polar) coordinates (r, 0, ¢) of a point P are
defined below;

r : the distance from the origin (the magnitude of the
position vector).

O : the angle down from the z-axis (the polar angle).

¢ : the angle around from the x-axis (the azimuthal angle).

‘X =rsin® cosd ‘.
P .

LYy =rsinod sing o, T f

=T cosO

Murray R Spiegel, Vector Analysis
(McGraw-Hill, New York, 1989), 6th ed. Chap. 7.

EM
Tsun-Hsu Chang
a =R SR1FAE

mm
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1.4.1 Spherical Polar Coordinates (ll)

The direction of the coordinates: the unit vector t, 0, (I)A

They constitute an orthogonal (mutually perpendicular)
basis set (just like X,V, 2).

So any vector A can be expressed in terms of them:

A=Al + AP + A ’
In terms of Cartesian unit vector

=sinO cosdpx” +sinod sindy” +cosO 2 >"/’

r
0 =cos0 cospx” +cos0 singy” —sind 2 //_/_“’_
¢ =—sindx” + cosdy” :

(Or you can see Appendix A for more details.)
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1.4.1 Spherical Polar Coordinates (lll)

Warning: f,0,¢ are associated with particular point P,
and they change direction as P moves around.

For example, I' always points radially outward, but “radially

outward” can be the x direction, the y direction, or any other
direction, depending on where you are.

Notice: Since the unit vectors are function of position, we
must handle the differential and integral with care.

1. Differentiate a vector that is expressed in spherical
coordinates.

2. Do not take the unit vectors outside an integral.
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1.4.1 Spherical Polar Coordinates (IV)

ar rsind do
Y r do 0 A
/ do 0
rsin®

(a) (b) (¢)

The general infinitesimal displacement:
dl = drf + rde0 + rsinfddo

The infinitesimal surface element da for the surface
of a sphere.

da = (dlg )(dly ) = r® sin6dOdor”
The infinitesimal volume element dt
dt = (dl,)(dlg )(dly) = r*sinBdrd6dd
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1.4.1 Spherical Polar Coordinates (V)

The vector derivatives in spherical coordinates:

Gradient : yr=9lp 10T 1 g d.
or roo  rsind oo
Divergence : oV
V.oy=—rd (r°ve)+ 1 ° (SINBvg ) + 1 =
2 or rsind oo rsind oo

Curl : _
V xy = —1 [5 (sinevd))—%)mi —LNr 0 (ryy) |6
I

rsind \ 0o o SINO 09 or |

1( O oVy ),

+=) —(rvg)—=—L 0.

r(@r( 0) 00 j(l)

Laplacian :

1 0f 2(9Tj 1 a(. a_T) 1 &T
V2T = r<— |4 sino + -
2 5& or ) r?sing 09 00 ) r2sin20 o
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1.4.2 Cylindrical Coordinates (I)
The cylindrical coordinates (s, ¢, z) of a point P are defined
below: X=SC0S®, Yy=SSINQ, Z=12
S: the distance from the z axis.

¢: the same meaning as in spherical coordinates.
. the same as Cartesian.

The unit vectors are
S=CospX+SsIingy,

2:2 e

¢ =—SINGX+COosSQ Y, 2< ’,’%

The infinitesimal displacement: A ..
dl = dsé + sddd + dz2

S/



1.4.2 Cylindrical Coordinates (ll)

The vector derivatives in cylindrical coordinates:

Gradient :

_dlg, laldﬂ o,
oS S Op 0Z

VT

Divergence :

oV
V-v:l—a (svs)+l L +8vzl
S 0S S O0p 012

Curl :

oV .
Oovo |10V _ ¢\§+ Vs _ vy ), 1[0 OV
S O0Qp OZ 0z 05 S

|
A~
Q)
<
_e_
—r
|
N>

Laplacian :

2 2
V2T ;@(ﬁi}ga T T

+—
sos\ 0s) s?a9°  azf
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: : EM
9. The Dirac Delta Function Tsun-Hsu Chang

1. The Divergence of f/r? EEWE REE

Consider a vector function Vv =1/r?
The divergence of this vector function is: \ /
1
r or r r’ or Y

The surface integral of this function is:

<j§v.da=_[§ jOZ“ (r—l2 r°sin6)dodo

= ["sin0dd [ do = 4n = [ (V-v)dr

The divergence theorem is false?

No =» The Dirac delta function
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1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as
an infinitely high, infinitesimally narrow “spike”, with area just 1.

0 Ifx#0

5(X) =1 with [ (x)dx =1

o If Xx=0

Technically, o (x) is not a function at all, since its value is
not finite at x = 0. Such function is called the generalized
function, or distribution.

O(x) A
(\ > Ry(x)
5
‘/A | '/AR](\)
]
) N -
a -1/2-1/4 1/4 1/2 x -1 =1/2 12 1 %
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1.5.2 The One-Dimensional Dirac Delta Function (1)

If f(X) is some “ordinary” function (let’s say that it is
continuous), then the product f(x)o(x) is zero everywhere

except at x = 0. It follows that f(x)o(x) = f(0)o(x). In particular,

[ 198 (x)dx = (0) | "8 (x)dx = f(0)

We can shift the spike from x = 0 to some other point x = a.

f o
6(x—a)={0 7 with [ T8 (x-a)dx =1

o If xX=a

A generalized integration equation:

[ 108 (x—a)dx = f () | "8 (x)dx = f (a)
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1.5.2 The One-Dimensional Dirac Delta Function (lll)

Although o(x) is not a legitimate function, integrals over o(x)
are perfectly acceptabile.

It is best to think of the delta function as something that is
always intended for use under an integral sign.

In particular, two expressions involving delta function are
considered equal if:

j:o f (X)D,(X)dx = j:o f (X)D, (x)dx

for all ("ordinary") function of f (x).

Example 1.14 Evaltgjate the integral () .[03 X (X — 2)dx
(b) jo X3S (X — 4)dx o



Example 1.15 Show that 9 (kx) = i O (X)

where k is any (nonzero) constant. ‘ ‘

Sol: Consider the integral for an arbitrary test function f (x),

[ °OOO f (x)5 (kx)dx

Lety =kx, sothatx=y/k, dx=1/kdy
" positive : the integration runs from —oo to oo

k =
<Lnegative . the Integration runs from oo t0 — o0
[” 1003 (kx)dx =+ i [” £y /K03 (y)dy = ﬁ £ (0)

1

k|

So o (kx) serves the same purpose as —o(x) and o (—x) =0(X) .
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Prob. 1.45

(a) X di (5.(x)) = -5 (x)
X

(b) LetO(x) be the step function :

f

1, 1If x>0
0, If x<0
Show that dO /dx =0 (X)

0 (X) =-
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1.5.3 The three-Dimensional Dirac Delta Function

The generalized 3D delta function

6°(r) =6(x)5 () (2)

where r is the position vector. It is zero everywhere
except at (0,0,0), where it blows up.

lts volume integral is:

Jatoaced (0T = [ [ [ 5(08 (1)8 (2)dxdydz =1

As in the 1-D case, the integral with delta function picks
out the value of the function at the location of the spike.

Iall space f(r)o 3([’ —a)dt = f(a)
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1.5.3 The three-Dimensional Dirac Delta Function (lI)

We found that the divergence of I/ I “is zero everywhere
except at the origin, and yet its integral over any volume

containing the origin is a constant of 47. The Dirac delta
function can be defined as:

v-(rrz) = 4763 3(r)
More generally, A R
V-(rz) = 41o°(r)

where r is the separation vector r =r-r'. Note that the
differentiation here is with respect to r, while r' is held
constant.

VZ(i)—v-(vé)):v-(

A

) =-4n*(r)

2
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1.6 The Theory of Vector Fields
1.6.1 The Helmholtz Theorem

To what extent is a vector function F determined by its
divergence and curl?

The divergence of F is a specified scalar function D,
V:-F=D

and the curl of F is a specified vector function C,
VxE=C (le, V- (VxF)=V-C=0)

Can you determine the function F?

Helmholtz theorem guarantees that the field F is uniquely
determined by the divergence and curl with appropriate
boundary conditions. (For more details, see Appendix B

of Griffiths)
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1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then
F can be written as the gradient of a scalar potential (V):

VxF=0 = F:?VV
conventional

If the divergence of a vector field (F) vanishes (everywhere),
then F can be expressed as the curl of a vector potential (A):

V.-F=0 = F=VxA
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Homework of Chap. 1 (part II)

Problem 1.38 Express the unit vectors 9 ¢ interms of X, ¥, 2 (that is, derive

2 . A7 ~? A
Eg. 1.64). Check your answers several ways (f-r =1, 0 -¢ =0, rx0 =¢,...).

Also work out the inverse formulas, giving X, ¥, 2 in terms of 9 ¢ (and 0,d).

Problem 1.40 Compute the divergence of the function

v = (rcos0)f+(rsin®)d +(r sin 0 cosd)d .
Check the divergence theorem for this function, using as your volume
the inverted hemispherical bowl of radius R, resting on the xy plane
and centered at the origin (Fig. 1.40).

Problem 1.43
(a) Find the divergence of the function

v=s (2+sin’$) § + s sin ¢ cosd ¢ +3z 2.
(b) Test the divergence theorem for this function, using the quarter-cylinder

(radius 2, height 5) shown in Fig. 1.43.
(c) Find the curl of v.

2
_r/

N

Sy

—y

FIGURE 1.43
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Homework of Chap. 1 (part I1l)

Problem 1.46
(a) Show that

d —
x&(S(x)) = —0 (X).

[Hint: Use integration by parts.]
(b) Let 6 (x) be the step function:

0(x) = {
Show that dO /dx =0 (x).

1, if x> O}. (1.95)

0, If x<0

Problem 1.49 Evaluate the integral

_ —I r
J —jve (V-—Zjdr

.
(where V 1s a sphere of radius R, centered at the origin) by two different methods,

as Iin Ex. 1.16.



