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ABSTARCT

It is well-known that H(Z/2) is a Thom spectrum,
observed by Mark Mahowald. In this paper, our main
purpose is to give a generalization of this. The gen-
eralization is observed by Dung-Yung Yan. Our proof
will follow closely a short proof by Dung-Yung Yan in
[7].
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1 Introduction

The main result of this paper is to give a generalization
of Mahowald’s striking observation that the mod 2 Eilenberg-
MacLane spectrum is a Thom spectrum. This generalization is
observed by Dung-Yung Yan in [7].

First, we recall the definition of Thom spectra as follow.

Let f : L −→ BO be an H-map. Choose a filtration {Ln}
of L such that f(Ln) ⊆ BO(n). Let fn = f |Ln

. Consider a
universal n-plane bundle γn over BO(n). Set γn = (fn)

∗(γn).
Then we define Th(f)n = E(γn)/A, where A is the subset of
E(γn) consisting of those vectors of length at least 1 in each
fibre. We call it a Thom space with respect to γn.

Because we have the commutative diagram

γn ⊕ ε1

��

// γn+1

��
Ln

⊆ // Ln+1,

where ε1 is a trivial 1-plane bundle over Ln, we have the struc-
ture map

εn : S1 ∧ Th(f)n −→ Th(f)n+1.

Hence, we obtain the Thom spectrum, Th(f).
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In [4], Mahowald shows that the Thom spectrum, Th(f), is
a ring spectrum, with the ring structure map induced by the
following commutative diagram:

L× L

f×f
��

µL // L

f
��

BO ×BO
µBO // BO,

where µL and µBO are multiplications for H-spaces L and BO,
respectively.

Furthermore, if L is a commutative H-space and f is a mor-
phism of commutative H-spaces, then Th(f) is a commutative
ring spectrum.

According to [1], we can see that Th(f) is (−1)-connected
and π0(Th(f)) is either Z or Z/2. As f is non-orientable, i.e.,
f ∗(ω1) 6= 0, π0(Th(f)) = Z/2. Otherwise, π0(Th(f)) = Z.

For example, if we take L = BO, which is the infinite loop
space, and f is the identity mapping of BO, we obtain the Thom
spectrum MO.

Note that the homology H∗(X) always means with (Z/2)-
coefficient in this paper. Now we state our main results as follow.

Theorem 1.1. Given a connected CW-complex L. Suppose
f : L −→ BO is a non-orientable double loop map. Then
H∗(Th(f)) is an extended comodule over the mod 2 dual Steen-
rod algebra A∗ = H∗(H(Z/2)), i.e., H∗(Th(f)) ∼= A∗ ⊗Z/2 C,
with the following comodule structure:

A∗ ⊗Z/2 C
ψ⊗id //(A∗ ⊗Z/2 A∗)⊗Z/2 C

∼= //A∗ ⊗Z/2 (A∗ ⊗Z/2 C) ,

where ψ : A∗ −→ A∗ ⊗ A∗ is the co-product on A∗.
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Theorem 1.2. Given a connected CW-complex L. Suppose
f : L −→ BO is a non-orientable double loop map. Then
the Thom spectrum Th(f) can be split as a wedge of suspen-
sions of Eilenberg-MacLane spectra H(Z/2).

Corollary 1.3 (Thom, [2]). H∗(MO) is an extended A∗-comodule.
Hence MO can be stably split as the wedge of suspensions of
Eilenberg-MacLane spectra H(Z/2).

Corollary 1.4. Consider a Thom spectrum Th(f1) induced by
the following fibration:

U/O
f1 //BO //BU .

Then H∗(Th(f1)) is an extended comodule, and so Th(f1) can
be stably split as the wedge of suspensions of Eilenberg-MacLane
spectra H(Z/2).

Corollary 1.5. Consider a Thom spectrum Th(f2) induced by
the following fibration:

Sp/O
f2 //BO //BSp.

Then H∗(Th(f2)) is an extended comodule, and so Th(f2) can
be stably split as the wedge of suspensions of Eilenberg-MacLane
spectra H(Z/2).
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2 Proof of Our Theorems

In order to prove Theorem 1.1 and Theorem 1.2, we will
apply two theorems; one is Mahowald’s Theorem due to [3], and
the other is the comodule structure theorem due to [5]. Now,
we recall them as follow.

Let η represent the generator of π1(BO) = Z/2. Since BO is
a double loop space, we have a map

g : Ω2S3 = Ω2Σ2S1 Ω2Σ2η //Ω2Σ2BO //BO.

Theorem 2.1 (Mahowald, [3]). Thom spectrum Th(g) is the
Eilenberg-MacLane spectrum H(Z/2).

Remark 2.2. In [6], Priddy shows that the composite map

H(Z/2)
g //MO α //H(Z/2)

is a homotopic equivalence, where the first map g is the map of
Thom spectra induced by g and the second map α is the Thom
class which represents the generator of H0(MO) = Z/2. Hence,
there exists a map λ : MO −→ H(Z/2) such that the following
composite map

H(Z/2)
g //MO λ //H(Z/2)

is homotopic to the identity map. �
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Next, we state the comodule structure theorem. Before we
state this theorem, we recall the definition about cotensor prod-
uct.

Definition 2.3 (Cotensor product). Given a Hopf algebra
A over K. If M is a right A-comodule, with the right coaction
∆M : M −→ M ⊗ A, and N is a left A-comodule, with the left
coaction ∆N : N −→ A⊗N , then the cotensor product of M and
N , denoted by M2AN , is the kernel of [∆M ⊗ idN − idM ⊗∆N ] :
M ⊗N //M ⊗ A⊗N.

Theorem 2.4 (Milnor and Moore, [5]). Let A be a com-
mutative connected Hopf algebra over a field K, i.e., A0

∼= K.
Let B be a connected left A-comodule algebra and C = K2AB,
the cotensor product of K and B. If there is a surjective homo-
morphism g : B −→ A of left A-comodule algebras, then B is
isomorphic to A⊗K C simultaneously as a left A-comodule and
a right C-module.

Before we start to prove our main theorems, we first prove
the following lemma.

Lemma 2.5. Given two spectra X and Y of finite type. Sup-
pose that there exists a map f : X −→ Y , such that f∗ is an
isomorphism from H∗(X,Z/2) onto H∗(Y,Z/2), then f(2) is a
homotopy equivalence from X(2) to Y(2), which is induced by f .
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Proof. Consider a cofibration X
f //Y i //Cf . Then we have a

long exact sequence

· · · //H∗(X,Z/2)
f∗ //H∗(Y,Z/2)

i∗ //H(Cf ,Z/2) // · · ·.

Since H∗(X,Z/2) ∼= H∗(Y,Z/2), H∗(Cf ,Z/2) ∼= 0. It is following
that H∗((Cf)(2),Z/2) ∼= 0.

By the Adams spectral sequence, we have π∗((Cf)(2)) ∼= 0.
Because

X(2)
f(2) //Y(2)

i(2) //(Cf)(2) ' Cf(2)

is also a cofibration, it is a fibration in the stable category. This
implies that we have a long exact sequence

· · · //π∗(X(2))
(f(2))#//π∗(Y(2))

(i(2))#//π∗((Cf)(2)) // · · ·,

and so there is a short exact sequence

0 ∼= π∗+1((Cf)(2)) //π∗(X(2))
(f(2))#//π∗(Y(2))

(i(2))#//π∗((Cf)(2)) ∼= 0.

Thus, (f(2))# is an isomorphism from π∗(X(2)) onto π∗(Y(2)).
That is to say, f(2) is a homotopy equivalence from X(2) to Y(2),
and then we complete the proof.
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Now we prove our main theorems.

Proof of Theorem 1.1:

First, let L = Ω2X, for some space X. Since f ∗(ω1) 6= 0 and
the following diagram commutes

π1(Ω
2X)

onto
��

f# // π1(BO)

onto
��

H1(Ω
2X)

f∗ // H1(BO),

there is a map ι : S1 −→ Ω2X such that the composite map

S1 ι //Ω2X
f //BO

is homotopic to the map η, representing the generator of π1(BO).

Since f is a double loop map, this implies that the following
diagram

Ω2S3

h

$$IIIIIIIII

g // BO

Ω2X

f
;;wwwwwwwww

commutes up to homotopy, where h : Ω2S3 −→ Ω2X is induced
by ι.

By Theorem 2.1, we have the commutative diagram:

H(Z/2)
h

%%KKKKKKKKKK g
//

'id
--

MO
λ

// H(Z/2),

Th(f)

f
::vvvvvvvvvv

where h and f are thomfied by h and f , respectively.
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This induces the commutative diagram

A∗
h∗

%%KKKKKKKKKKK
g∗ //

	

H∗(MO)
λ∗ // A∗,

H∗(Th(f))

f∗
77ooooooooooo

where λ∗ ◦ g∗ = id.

So we have a map Φ = λ∗ ◦ f ∗ : H∗(Th(f)) −→ A∗, which
is a surjective homomorphism of left comodule algebras. Set
C = (Z/2)2A∗(H∗(Th(f))). By Theorem 2.4, H∗(Th(f)) is iso-
morphic to A∗ ⊗Z/2 C, as a left comodule algebra. That is to
say, H∗(Th(f)) is an extended A∗-comodule. �

Proof of Theorem 1.2:

In Theorem 1.1, we have shown the algebraic isomorphism.
Now we only have to construct the topological map such that it
induces an isomorphism of mod 2 homology and then we com-
plete the proof.

First, we claim that every element of C is a stable sphere,
i.e., C is equal to the image of Hurewicz homomorphism which
maps π∗(Th(f)) to H∗(Th(f)).

Since C is the set of consisting of coaction primitive ele-
ments in the A∗- comodule H∗(Th(f)), we see that the image of
Hurewicz homomorphism is contained in C. Next, we want to
show that E2-term for the Adams spectral sequence collapses to
E∞-term.
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It is easy to check that

Es,t
2 = Exts,tA∗

(Z/2, H∗(Th(f)))

∼= Exts,tA∗
(Z/2, A∗ ⊗Z/2 C)

= Exts,tA∗
(Z/2, A∗)⊗Z/2 C

=

{
C , if s = 0
0 , if s 6= 0

This implies E∗,∗
2
∼= E∗,∗

3
∼= · · · ∼= E∗,∗

∞ , and so each generator of
C is a permanent cycle.

Moreover, since π0(Th(f)) = Z/2, π∗(Th(f)) has character-
istic 2, and thus Th(f) is 2-local. This implies that the Adams
spectral sequence E∗,∗

2 converges to π∗(Th(f)). It is following
that each generator of C is stably spherical.

Next, let c be any generator of C. Then there exists an
essential map gα from Sα to Th(f), such that (gα)∗(iα) = c,
where iα is the generator of Hα(Sα). Let γ be the following
composite map:

∨
α S

α
∨

α gα //
∨
α Th(f) ∇ //Th(f),

where the second map ∇ is the folding map. Note that γ∗ is
an isomorphism from H∗(

∨
α S

α) onto C, by the construction of
gα. Thus, we have the following composite map θ:

H(Z/2) ∧ (
∨
α S

α)
id∧γ //H(Z/2) ∧ Th(f) h∧id //Th(f) ∧ Th(f)

µ //Th(f),

where µ : Th(f)∧Th(f) −→ Th(f) is the structure map of Th(f).

In order to prove that θ∗ is an isomorphism, we need to de-
scribe two homomorphisms

h∗ : A∗ −→ H∗(Th(f)) and γ∗ : H∗(
∨
α

Sα) −→ H∗(Th(f)).
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Clearly, γ∗ maps H∗(
∨

α S
α) onto C. By Theorem 2.1, we see

that h∗ is an isomorphism fromA∗ onto the partA∗ ofH∗(Th(f)) ∼=
A∗ ⊗Z/2 C, and so θ∗ is an isomorphism.

By Lemma 2.5, we see that

θ# : π∗(H(Z/2) ∧ (
∨
α

Sα)) −→ π∗(Th(f))

is an isomorphism. By Whitehead Theorem, we have

Th(f) ' H(Z/2) ∧ (
∨
α

Sα) =
∨
α

ΣαH(Z/2).

�
Proof of Corollary 1.4:

It is well-known that U/O and BO are infinite loop spaces,
and f1 : U/O −→ BO is an infinite double loop map. It is
enough to show that f1 is non-orientable. Moreover, we know
that

U/O
f1 //BO //BU

is a fibration. Hence, we have an exact sequence

π1(U/O)
(f1)# //π1(BO) //π1(BU) = 0.

That is to say, (f1)# : π1(U/O) −→ π(BO) is surjective. Hence,
(f1)

∗(w1) 6= 0. By Theorem 1.1 and Theorem 1.2, we see that
Th(f1) can be stably split as the wedge of suspensions of Eilenberg-
MacLane spectra H(Z/2). �

Proof of Corollary 1.5:

Similar to Corollary 1.4 �
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