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Abstract

We will give an extremely new idea to approach the homotopy group of sphere.
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1 Introduction

Recall that m(S!) is isomorphic to integer Z[1][4]. Tranditionally, we may use
some concepts of covering space and lifting lemma to obtain this result[3]. These
methods are more biased in favor of the topology view. Unlike the previous, we will
use a new idea to calculate m(S") in this paper.

Recall that 1-sphere S' = {(x,y) € R? | 2* + y* = 1}, we choose (1,0) be the
base point of S'. We can define that counterclockwise be positive direction on S*,
and clockwise be negative direction on S*. So there is an orientation on S*.

From now on, when we talk about a path f and a loop f, it means f : [0,1] — S*
with f(0) = (1,0) and f : [0,1] — S with f(0) = f(1) = (1,0), respectively.
Moreover, we always write f(s) = (x(s),y(s)) for all s € [0, 1].

Given a path f, we will define the cumulate length of f from 0 to s, where

€ (0,1]. Given s; and sy in [0,1], where $;°<C so. If the path f : [sq, s9] — S* moves
along counterclockwise direction; then we define the cumulate length of f from s; to
So 18 fs? \/(22)2 + (9)24s. If the path Ut {sy, s2] — S* moves along clockwise direc-
tion, then we define the cumulate length of f from s to sy is — [ 1/(55)2 + (%)2ds.
If the path f : [sq, 0] — S! stays at f(s1), then we define the cumulate length of
f from s; to s9 is 0. So given s € (0, 1], we can given a partition of [0, s] such that
for each subinterval [s;, s;11] of [0, s], the path f : [s;, s;11] — S* moves along either
counterclockwise or clockwise direction, for each i. We define f(s) be the sum of
each cumulate length of f from s; to s;;1, and called it the cumulate length of f
from 0 to s. Use the similar concept, we can also define the cumulate length of f
from a to b, where 0 < a < b < 1. Note that the cumulate length of f from 0 to 0
should be 0. That is, f(0) = 0.



For example, define a path f by

( (cos(4ms), sin(4ms)) ,if s € [0, %1],

—1,0 if s e [3,1],

PR A el
(cos(2ms), —sin(27s)) , if s € [3, 2],

| (cos(147s),sin(147s)) if s € 3,1],

then f(i) =, f(%) =T, f(%) =Z, f(g) =2m, and f(1) = 4n.

However, for any path f, we need to prove that f is well-defined. That is, we
have to claim that f(s) # 4oo for all s € [0,1]. We will prove it in section 2. So for
any path f, it induces a function f : [0,1] — R such that the meaning of f(s) is the
cumulate length of f from 0 to s, for each s € [0,1]. Moreover, f is continuous. It
will be proved in Theorem 2.1.

Obviously, if f is a loop, there is-an integer n such that f(1) = 2n7. That is,
for each loop f, it induces an integer % f(1)-. In Theorem 2.2, we describe that
given two loops f and g, then f'~ g rél {0,1} if and only if f(1) = g(1), where the
notation f ~ g rel {0,1} is defined by Definition 2.2.5 in p.27 of [2]. This theorem
will be proved in section 3. So we have a well-defined injective map x : 7;(S') — Z

by

1 _
x(1f]) = 5-7(1).
T
In Theorem 2.3, we will prove that x is also surjective and a homomorphism. Hence

X is an isomorphism. Therefore, m;(S') is isomorphic to Z, and we complete our

main purpose in this paper.

2 Prove that m(S') 2 Z

Given a path f, we have had the concept of the cumulate length of f from 0 to

s in section 1. However, we need to prove that f is well-defined. That is, we have
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to claim that f(s) # +oo for all s € [0,1]. In order to prove this result, we need a

lemma.

Lemma 2.1. Let f be a path. Then for any s € (0,1], there is no sequence {s;}52,,
0 < s; < s, with the property f([si, sis1]) = St and f(s;) = ¢, where i =1,2,3, -+,

and c is a fized point in St.

Proof. Suppose we had a sequence {s;}32; such that 0 < s; <'s, f([si,si11]) = S,
and f(s;) = ¢, where i = 1,2,3,---. Since {s;}2, would be bounded above, let
a = sup {s;}3°,. Then since f is continuous, f(a) = ¢ € S'. Pick up ¢ € S* with
¢ # c¢. Then since f([s;, si41]) = S*, for each i, there would be a;, s; < a; < 8441,
such that f(a;) = ¢ Since a = sup{s;}2;, a = sup{;}2,. There would be a

subsequence {a;}22, of {a;}32; such that lim a; = a. It implies
j=o00

¢ = fla)= fllima;)=lim f(a;) = ¢

J %00 >

So we get a contradiction, and complete this proof. O]

We are ready to write the form of f and to prove that f is well-defined. First
we assign an integer n, for each s € [0,1]. If s = 0, then define ny, = 0. If
s € (0,1], then let S = {x | * < s and f(z) = (1,0)}. Since S is bounded above,
let m = supS. Then since f is continuous, f(m) = (1,0). If m = 0, then define
ns = 0. If m € (0, s], then the cumulate length of f from 0 to m may be 2n7 or
+o00, where n € Z. That is, the path f : [0,m] — S may wrap completely |n| or
infinitely many circles around S*. We claim that the case of infinitely many circles
is impossible. Suppose the path f : [0,m] — S! wraped completely infinitely many
circles around S!. Then there would be a sequence {s;}2,, 0 < s; < m, with the
property f([s;, si11]) = S and f(s;) = (1,0), where i = 1,2,3,---. It contradicts

to Lemma 2.1. Hence the only possibility is there exsits an integer n such that the



cumulate length of f from 0 to m is 2nm. Let ng = n. So for each s € [0, 1], we get

an integer ng.

Remark 2.1. In the following, we keep in mind m = sup S, where S is defined as

above, f(m) = (1,0) and f((m,s]) does not contain (1,0).

We next define a map [ : [0,1] — (=27, 27) as follows. If f(s) = (1,0), then
define I(s) = 0. If f(s) # (1,0), then define
I(s) = (—1)*I7 4+ (—1)® /j(S) 1+ (%)Qdag.
Note that
0 ,ify(s) <0,
1, ifry(s) >0o0r f(s)=(—1,0),

p(s) =

and y(r) = V1 — 22 Moreover; X(s) = 0;:if the path f : [m,s] — S' is moving
away from f(m) = (1,0) along counterclockwise direction; A(s) = 1, if the path
[ :[m,s] — S'is moving away: fromf (m) = (1, 0) along clockwise direction. So the
meaning of [(s) is the cumulate length of f from m to s.

Therefore, [(s) + 2ng7 is the cumulate length of f from 0 to s, for some ng € Z.

That is,

f(s) =1(s) + 2n,m, (1)

for all s € [0,1]. Since n, € Z and —27 < I(s) < 2w, f(s) € R, for all s € [0,1].
That is, f is a function from [0, 1] into R.

We are on the position to describe our main theorem.

Theorem 2.1. Let f be a path. Then it induces a continuous function f : [0,1] — R
which is defined by equation (1), and the meaning of f(s) is the cumulate length of
f from 0 to s, for each s € [0,1].



Proof. According to the above argument, we have proved that f is well-defined and
the meaning of f(s) is the cumulate length of f from 0 to s, for each s € [0,1]. It
remains to prove that f is continuous.

Given sg € [0,1]. Then f(sg) may be equal to (1,0) or not. Suppose f(sg) #
(1,0). Then for any s is close to sg, it is obviously ny = ng, and I(s) is close to I(sp).
It implies that f(s) is close to f(so). Hence f is continuous at sq for f(sq) # (1,0).
Suppose f(so) = (1,0). Note that I(sg) = 0. Then for any s is close to sg, it
is obviously either ny = ng, and I(s) is close to I(sg) = 0 or ny = ng, F 1 and
I(s) is close to I(sg) & 27 = 42m. It implies that f(s) is close to f(sq). Hence f
is continuous at sy for f(so) = (1,0). To combine above two cases, we get f is

continuous at sg. Since s is arbitrary in [0, 1], f is a continuous function. So we

complete this proof. O]

Remark 2.2. Let f be a path! Since f(s) & S* for each s € [0,1], the cumulate

length is equal to the cumulate angle-of f from 0 to s. That is,
(cos(f(s)),sin(f(s))) = f(s),
for all s € [0,1].

Remark 2.3. If f is a loop, then f(1) = 2ny7 for some ny € Z by equation (1).

Therefore, for each loop f, it induces an integer %f(l)

Before to prove that 7 (S') = Z, we need a theorem. It will be proved in section

Theorem 2.2. Let f and g be loops. Then f ~ g rel {0, 1} if and only if f(1) = g(1).

We are on the position to prove that m;(S!) = Z.



Theorem 2.3. Define a map x : m1(S*) — Z by

for any loop f. Then x is an isomorphism. Therefore, w1 (S1) is isomorphic to 7Z.

Proof. First by Remark 2.3, the range of x is contained in Z. Secondly we have
to prove that y is well-defined and injective. Given two loops f and g. Assume
that f ~ g rel {0,1}. Then by Theorem 2.2, f(1) = g(1). So x is well-defined.
On the other hand, assume that f(1) = g(1). Then by Theorem 2.2, f ~ g rel
{0,1}. So x is injective. Moreover, let f(s) = (cos(2kws),sin(2kns)), where k € Z.
Then x([f]) = £ f(1) = k. So x is also surjective. It remains to prove that x is a

homomorphism. Given two loops f and g. Recall that

f(25) qif s € [0, 5,
H2s—1) -, if s € [3,1].

N

fryg(s) =

Obviously, fxg(1) = f(1) + g1 Sox([f] * [9) = x([f * g]) = 5-f*9(1) =
L(f(1)+g(1)) = x([f]) + x([g]). Hence x is a homomorphism. Therefore, x is an

isomorphism, and we complete this proof. O

3 Proof of Theorem 2.2

Before to prove Theorem 2.2, we give a remark and a lemma.

Remark 3.1. Let f and g be loops. If f ~ g rel {0,1}, then there is a homotopy
F(s,t) between f and g relative to {0,1} with the properties F(s,0) = f(s) and
F(s,1) = g(s) for all s € [0,1], and F(0,t) = F(1,t) = (1,0) for all t € [0,1]. Let
Fi(s) = F(s,t). Fiz sq € [0,1]. Then Fy(so) : [0,1] — S is a map with variable t.

Moreover, note that for eacht € [0,1], F, makes sence since Fy is a loop. Therefore,
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for each t € [0,1], we get a value Fy(sg) € R for the fized sy € [0,1]. That is,
Fi(s0) : [0,1] — R ids a function with variable t. In the following, we keep in mind

Fi(s0) and Fy(so) are both maps with variable t for some fized so.

Lemma 3.1. Given two loops f and g with f ~ g rel {0,1}. Let F; be described in
Remark 3.1. Then Fy(1) : [0,1] — R is a constant function.

Proof. Given t, € [0,1]. Since F' is continuous, Fy(s) is close to Fy,(s) as (s,t) is
close to (s,ty) for each s € [0,1]. So the cumulate length of F; from 0 to 1 is close
to the cumulate length of Fj, from 0 to 1. That is, F,(1) is close to F,(1). Hence
Fy(1) is continuous at t,. Since t, is arbitrary in [0, 1], F;(1) is a continuous function.
Since F} is a loop for any t € [0, 1], the range of F;(1) is {2n7 | n € Z}. Since F;(1)

is a continuous function and [0, 1] is connected, there is n € Z such that the range of

Fi(1) is {2n7}. That is, F;(1) isa'‘constant function. So we complete this proof. [
We are on the position to prove Theorem 2.2.

Proof of Theorem 2.2. Given two loops f and g with f ~ g rel {0,1}. Let F; be
described in Remark 3.1. Then by Lemma 3.1, Fy(1) : [0,1] — R is a constant
function. Therefore, f(1) = Fy(1) = Fi(1) = g(1).

On the other hand, given two loops f and g with f(1) = g(1). Define G(s,t) =
(1 —)f(s) +tg(s). Then G is a homotopy between f and g relative to {0,1}.
Define F(s,t) = (cos(G(s,t)),sin(G(s,t))). Then by Remark 2.2, F' is obviously a
homotopy between f and g relative to {0,1}. That is, f ~ g rel {0, 1}.

So we complete this proof. O
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