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Abstract 
We will give an extremely new idea to approach the homotopy group of sphere. 
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1 Introduction

Recall that π1(S
1) is isomorphic to integer Z[1][4]. Tranditionally, we may use

some concepts of covering space and lifting lemma to obtain this result[3]. These

methods are more biased in favor of the topology view. Unlike the previous, we will

use a new idea to calculate π1(S
1) in this paper.

Recall that 1-sphere S1 = {(x, y) ∈ R2 | x2 + y2 = 1}, we choose (1, 0) be the

base point of S1. We can define that counterclockwise be positive direction on S1,

and clockwise be negative direction on S1. So there is an orientation on S1.

From now on, when we talk about a path f and a loop f , it means f : [0, 1] → S1

with f(0) = (1, 0) and f : [0, 1] → S1 with f(0) = f(1) = (1, 0), respectively.

Moreover, we always write f(s) = (x(s), y(s)) for all s ∈ [0, 1].

Given a path f , we will define the cumulate length of f from 0 to s, where

s ∈ (0, 1]. Given s1 and s2 in [0, 1], where s1 < s2. If the path f : [s1, s2] → S1 moves

along counterclockwise direction, then we define the cumulate length of f from s1 to

s2 is
∫ s2
s1

√
(dx
ds
)2 + (dy

ds
)2ds. If the path f : [s1, s2] → S1 moves along clockwise direc-

tion, then we define the cumulate length of f from s1 to s2 is −
∫ s2
s1

√
(dx
ds
)2 + (dy

ds
)2ds.

If the path f : [s1, s2] → S1 stays at f(s1), then we define the cumulate length of

f from s1 to s2 is 0. So given s ∈ (0, 1], we can given a partition of [0, s] such that

for each subinterval [si, si+1] of [0, s], the path f : [si, si+1] → S1 moves along either

counterclockwise or clockwise direction, for each i. We define f̄(s) be the sum of

each cumulate length of f from si to si+1, and called it the cumulate length of f

from 0 to s. Use the similar concept, we can also define the cumulate length of f

from a to b, where 0 ≤ a < b ≤ 1. Note that the cumulate length of f from 0 to 0

should be 0. That is, f̄(0) = 0.
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For example, define a path f by

f(s) =



(cos(4πs), sin(4πs)) , if s ∈ [0, 1
4
],

(−1, 0) , if s ∈ [1
4
, 1
2
],

(cos(2πs),− sin(2πs)) , if s ∈ [1
2
, 3
4
],

(cos(14πs), sin(14πs)) , if s ∈ [3
4
, 1],

then f̄(1
4
) = π, f̄(1

2
) = π, f̄(3

4
) = π

2
, f̄(6

7
) = 2π, and f̄(1) = 4π.

However, for any path f , we need to prove that f̄ is well-defined. That is, we

have to claim that f̄(s) ̸= ±∞ for all s ∈ [0, 1]. We will prove it in section 2. So for

any path f , it induces a function f̄ : [0, 1] → R such that the meaning of f̄(s) is the

cumulate length of f from 0 to s, for each s ∈ [0, 1]. Moreover, f̄ is continuous. It

will be proved in Theorem 2.1.

Obviously, if f is a loop, there is an integer n such that f̄(1) = 2nπ. That is,

for each loop f , it induces an integer 1
2π
f̄(1). In Theorem 2.2, we describe that

given two loops f and g, then f ≃ g rel {0, 1} if and only if f̄(1) = ḡ(1), where the

notation f ≃ g rel {0, 1} is defined by Definition 2.2.5 in p.27 of [2]. This theorem

will be proved in section 3. So we have a well-defined injective map χ : π1(S
1) → Z

by

χ([f ]) =
1

2π
f̄(1).

In Theorem 2.3, we will prove that χ is also surjective and a homomorphism. Hence

χ is an isomorphism. Therefore, π1(S
1) is isomorphic to Z, and we complete our

main purpose in this paper.

2 Prove that π1(S
1) ∼= Z

Given a path f , we have had the concept of the cumulate length of f from 0 to

s in section 1. However, we need to prove that f̄ is well-defined. That is, we have
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to claim that f̄(s) ̸= ±∞ for all s ∈ [0, 1]. In order to prove this result, we need a

lemma.

Lemma 2.1. Let f be a path. Then for any s ∈ (0, 1], there is no sequence {si}∞i=1,

0 ≤ si ≤ s, with the property f([si, si+1]) = S1 and f(si) = c, where i = 1, 2, 3, · · · ,

and c is a fixed point in S1.

Proof. Suppose we had a sequence {si}∞i=1 such that 0 ≤ si ≤ s, f([si, si+1]) = S1,

and f(si) = c, where i = 1, 2, 3, · · · . Since {si}∞i=1 would be bounded above, let

a = sup {si}∞i=1. Then since f is continuous, f(a) = c ∈ S1. Pick up c̃ ∈ S1 with

c̃ ̸= c. Then since f([si, si+1]) = S1, for each i, there would be αi, si ≤ αi ≤ si+1,

such that f(αi) = c̃. Since a = sup {si}∞i=1, a = sup {αi}∞i=1. There would be a

subsequence {αj}∞j=1 of {αi}∞i=1 such that lim
j→∞

αj = a. It implies

c = f(a) = f( lim
j→∞

αj) = lim
j→∞

f(αj) = c̃.

So we get a contradiction, and complete this proof.

We are ready to write the form of f̄ and to prove that f̄ is well-defined. First

we assign an integer ns for each s ∈ [0, 1]. If s = 0, then define ns = 0. If

s ∈ (0, 1], then let S = {x | x ≤ s and f(x) = (1, 0)}. Since S is bounded above,

let m = supS. Then since f is continuous, f(m) = (1, 0). If m = 0, then define

ns = 0. If m ∈ (0, s], then the cumulate length of f from 0 to m may be 2nπ or

±∞, where n ∈ Z. That is, the path f : [0,m] → S1 may wrap completely |n| or

infinitely many circles around S1. We claim that the case of infinitely many circles

is impossible. Suppose the path f : [0,m] → S1 wraped completely infinitely many

circles around S1. Then there would be a sequence {si}∞i=1, 0 ≤ si ≤ m, with the

property f([si, si+1]) = S1 and f(si) = (1, 0), where i = 1, 2, 3, · · · . It contradicts

to Lemma 2.1. Hence the only possibility is there exsits an integer n such that the
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cumulate length of f from 0 to m is 2nπ. Let ns = n. So for each s ∈ [0, 1], we get

an integer ns.

Remark 2.1. In the following, we keep in mind m = supS, where S is defined as

above, f(m) = (1, 0) and f((m, s]) does not contain (1, 0).

We next define a map l : [0, 1] → (−2π, 2π) as follows. If f(s) = (1, 0), then

define l(s) = 0. If f(s) ̸= (1, 0), then define

l(s) = (−1)λ(s)π + (−1)µ(s)
∫ x(s)

−1

√
1 +

(
dy

dx

)2

dx.

Note that

µ(s) =

 0 , if y(s) < 0,

1 , if y(s) > 0 or f(s) = (−1, 0),

and y(x) =
√
1− x2. Moreover, λ(s) = 0, if the path f : [m, s] → S1 is moving

away from f(m) = (1, 0) along counterclockwise direction; λ(s) = 1, if the path

f : [m, s] → S1 is moving away from f(m) = (1, 0) along clockwise direction. So the

meaning of l(s) is the cumulate length of f from m to s.

Therefore, l(s) + 2nsπ is the cumulate length of f from 0 to s, for some ns ∈ Z.

That is,

f̄(s) = l(s) + 2nsπ, (1)

for all s ∈ [0, 1]. Since ns ∈ Z and −2π < l(s) < 2π, f̄(s) ∈ R, for all s ∈ [0, 1].

That is, f̄ is a function from [0, 1] into R.

We are on the position to describe our main theorem.

Theorem 2.1. Let f be a path. Then it induces a continuous function f̄ : [0, 1] → R

which is defined by equation (1), and the meaning of f̄(s) is the cumulate length of

f from 0 to s, for each s ∈ [0, 1].
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Proof. According to the above argument, we have proved that f̄ is well-defined and

the meaning of f̄(s) is the cumulate length of f from 0 to s, for each s ∈ [0, 1]. It

remains to prove that f̄ is continuous.

Given s0 ∈ [0, 1]. Then f(s0) may be equal to (1, 0) or not. Suppose f(s0) ̸=

(1, 0). Then for any s is close to s0, it is obviously ns = ns0 and l(s) is close to l(s0).

It implies that f̄(s) is close to f̄(s0). Hence f̄ is continuous at s0 for f(s0) ̸= (1, 0).

Suppose f(s0) = (1, 0). Note that l(s0) = 0. Then for any s is close to s0, it

is obviously either ns = ns0 and l(s) is close to l(s0) = 0 or ns = ns0 ∓ 1 and

l(s) is close to l(s0) ± 2π = ±2π. It implies that f̄(s) is close to f̄(s0). Hence f̄

is continuous at s0 for f(s0) = (1, 0). To combine above two cases, we get f̄ is

continuous at s0. Since s0 is arbitrary in [0, 1], f̄ is a continuous function. So we

complete this proof.

Remark 2.2. Let f be a path. Since f(s) ∈ S1 for each s ∈ [0, 1], the cumulate

length is equal to the cumulate angle of f from 0 to s. That is,

(cos(f̄(s)), sin(f̄(s))) = f(s),

for all s ∈ [0, 1].

Remark 2.3. If f is a loop, then f̄(1) = 2n1π for some n1 ∈ Z by equation (1).

Therefore, for each loop f , it induces an integer 1
2π
f̄(1).

Before to prove that π1(S
1) ∼= Z, we need a theorem. It will be proved in section

3.

Theorem 2.2. Let f and g be loops. Then f ≃ g rel {0, 1} if and only if f̄(1) = ḡ(1).

We are on the position to prove that π1(S
1) ∼= Z.
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Theorem 2.3. Define a map χ : π1(S
1) → Z by

χ([f ]) =
1

2π
f̄(1),

for any loop f . Then χ is an isomorphism. Therefore, π1(S
1) is isomorphic to Z.

Proof. First by Remark 2.3, the range of χ is contained in Z. Secondly we have

to prove that χ is well-defined and injective. Given two loops f and g. Assume

that f ≃ g rel {0, 1}. Then by Theorem 2.2, f̄(1) = ḡ(1). So χ is well-defined.

On the other hand, assume that f̄(1) = ḡ(1). Then by Theorem 2.2, f ≃ g rel

{0, 1}. So χ is injective. Moreover, let f(s) = (cos(2kπs), sin(2kπs)), where k ∈ Z.

Then χ([f ]) = 1
2π
f̄(1) = k. So χ is also surjective. It remains to prove that χ is a

homomorphism. Given two loops f and g. Recall that

f ∗ g(s) =

 f(2s) , if s ∈ [0, 1
2
],

g(2s− 1) , if s ∈ [1
2
, 1].

Obviously, ¯f ∗ g(1) = f̄(1) + ḡ(1). So χ([f ] ∗ [g]) = χ([f ∗ g]) = 1
2π

¯f ∗ g(1) =

1
2π
(f̄(1) + ḡ(1)) = χ([f ]) + χ([g]). Hence χ is a homomorphism. Therefore, χ is an

isomorphism, and we complete this proof.

3 Proof of Theorem 2.2

Before to prove Theorem 2.2, we give a remark and a lemma.

Remark 3.1. Let f and g be loops. If f ≃ g rel {0, 1}, then there is a homotopy

F (s, t) between f and g relative to {0, 1} with the properties F (s, 0) = f(s) and

F (s, 1) = g(s) for all s ∈ [0, 1], and F (0, t) = F (1, t) = (1, 0) for all t ∈ [0, 1]. Let

Ft(s) = F (s, t). Fix s0 ∈ [0, 1]. Then Ft(s0) : [0, 1] → S1 is a map with variable t.

Moreover, note that for each t ∈ [0, 1], F̄t makes sence since Ft is a loop. Therefore,
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for each t ∈ [0, 1], we get a value F̄t(s0) ∈ R for the fixed s0 ∈ [0, 1]. That is,

F̄t(s0) : [0, 1] → R is a function with variable t. In the following, we keep in mind

Ft(s0) and F̄t(s0) are both maps with variable t for some fixed s0.

Lemma 3.1. Given two loops f and g with f ≃ g rel {0, 1}. Let Ft be described in

Remark 3.1. Then F̄t(1) : [0, 1] → R is a constant function.

Proof. Given t0 ∈ [0, 1]. Since F is continuous, Ft(s) is close to Ft0(s) as (s, t) is

close to (s, t0) for each s ∈ [0, 1]. So the cumulate length of Ft from 0 to 1 is close

to the cumulate length of Ft0 from 0 to 1. That is, F̄t(1) is close to ¯Ft0(1). Hence

F̄t(1) is continuous at t0. Since t0 is arbitrary in [0, 1], F̄t(1) is a continuous function.

Since Ft is a loop for any t ∈ [0, 1], the range of F̄t(1) is {2nπ | n ∈ Z}. Since F̄t(1)

is a continuous function and [0, 1] is connected, there is n ∈ Z such that the range of

F̄t(1) is {2nπ}. That is, F̄t(1) is a constant function. So we complete this proof.

We are on the position to prove Theorem 2.2.

Proof of Theorem 2.2. Given two loops f and g with f ≃ g rel {0, 1}. Let Ft be

described in Remark 3.1. Then by Lemma 3.1, F̄t(1) : [0, 1] → R is a constant

function. Therefore, f̄(1) = F̄0(1) = F̄1(1) = ḡ(1).

On the other hand, given two loops f and g with f̄(1) = ḡ(1). Define G(s, t) =

(1 − t)f̄(s) + tḡ(s). Then G is a homotopy between f̄ and ḡ relative to {0, 1}.

Define F (s, t) = (cos(G(s, t)), sin(G(s, t))). Then by Remark 2.2, F is obviously a

homotopy between f and g relative to {0, 1}. That is, f ≃ g rel {0, 1}.

So we complete this proof. �
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