
2.Statement of the Main Result and Proof of Main Theorems

By using the formula of (f2n) , we find out the following result.

Theorem 1. The generators of H (Y2, Z/2) of the type boddbodd must be

b2k+2t+1b2k+1n+2k+1 1,

where n 0, k 1 and 1 2t+ 1 < 2k 1.

Proof of Main Theorems

We know that H (Y2, Z/2) = ker (f2) . In order to prove the theorem,
we have to discuss the following five cases:
Case1 b2m / ker (f2) , where m > 0.
The remainder cases must satisfy the condition r < s of brbs.
Case2 b2k 1b2k+1n+2v+1 / ker (f2) , where k 1 , n 0, and 1 2v+1 <

2k+1 1.
Case3 b2k+2t+1b2k+1n+2v+1 / ker (f2) , where k 1 , n > 0, and 1

2v + 1 2k+ 2t+ 1 < 2k+1 1.
Case4 b2k+2t+1b2k+1n+2k+2l+1 / ker (f2) , where k 2, n 0 and

1 2t+ 1 2l + 1 < 2k 1.
Case5 b2k+2t+1b2k+1n+2k+1 1 ker (f2) .
We need some lemmas.

Lamma 2. Let 0 b a, if a = h

m=0 am2
m, b = h

m=0 bm2
m, then

a

b
h
m=0

am
bm

(mod 2), where am, bm = 0 or 1.

Proof. The prove follows N.E.Steenrod[3]. In the polynomial ring Z2[x], we
have (1+x)2 = 1+x2. It follows by induction on m that (1+x)2

m

= 1+x2
m

.
Therefore
(1 + x)a = (1 + x)

h

m=0
am2m = h

m=0(1 + x)
am2m = h

m=0(1 + x
2m)am =

h
m=0

am
s=0

am
s

xs×2
m

.

The coe cient of xb = x
h

m=0
bm2m in the usual expansion of (1 + x)a is

a

b
. But, from the above expansion, we see that it is h

m=0

am
bm

.
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From this Lemma , we can easily get some results.

(2-1)
a

b
0(mod 2), If a is even , b is odd.

(2-2)
2a+ 1

2b+ 1

2a

2b

a

b
(mod 2).

(2-3)
2kn+ a

b
0(mod 2), if n 1 , a < b < 2k.

Case1
Proof. We separate (f2) (b

2
m) =

(i+j)!
i!j!
bi+jbm ibm j into three parts,

0 i<j m

(i+j)!
i!j!
bi+jbm ibm j, 0 j<i m

(i+j)!
i!j!
bi+jbm ibm j, and 0 i m

(2i)!
i!i!
b2ib

2
m i.

Clearly that the first two parts are the same and the coe cient of each
term in the last part are congruent to zero modulo 2 except i = 0, thus
(f2) (b

2
m) = b

2
m in H (BO(3);Z/2).

Case2

Proof. Since b2k 1b2k+1n+2v+1
(f2)

0 i 2k 1
0 j 2k+1n+2v+1

i+ j

i
bi+jb(2k 1) ib(2k+1n+2v+1) j.

We observe 2k+1n + 2v + 1 as two parts: 1 2v + 1 2k 1 (under
n > 0), and 2k + 1 2v + 1 < 2k+1 1.
If 1 2v + 1 2k 1, we take i = 2v + 1, j = 2kn, then we have

b2kn+2v+1b2k 1 ib2kn+2v+1 with the coe cient
i+ j

i
=

2kn+ 2v + 1

2kn
2kn

2kn

2v + 1

0
1(mod 2). Since H (BO(3);Z/2) is abelian, for this term

b2kn+2v+1b2k 1 ib2kn+2v+1, we may take the choices of i, j to produce such term
in the combination of (f2) (b2k 1b2k+1n+2v+1).They are b2k 1 ib2kn+2v+1b2kn+2v+1
and b2kn+2v+1b2kn+2v+1b2k 1 i.Clearly, there is only one choice of i, j to pro-
duce such term(since 2kn+ 2v + 1 > 2k 1).
If 2k + 1 2v + 1 < 2k+1 1, we rewrite 2v + 1 as 2k + 2l + 1, where

1 2l + 1 < 2k 1. We take j = 2k+1n+ 2k, i = 2k 1 (2l + 1).
We have the term bi+jb(2k 1) ib(2k+1n+2k+2l+1) j = b2k+1n+2k+1 (2l+2)b2l+1b2l+1

with the coe cient
i+ j

i
=

i+ j

j
=

2k+1n+ 2k+1 (2l + 2)

2k+1n+ 2k

2k+1n

2k+1n

2k+1 (2l + 2)

2k
2k+1 (2l + 2)

2k
(mod 2)(by Lemma2).

Let 2k+1 (2l + 2) = k+1
m=0 am2

m, then ak+1 = 0 and ak = 1
(since 1 2l + 1 < 2k 1 2 2l + 2 < 2k ).
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By Lemma 2,
i+ j

i
=

2k+1 (2l + 2)

2k
1

1
k 1
m=0

am
0

1(mod 2).

As above, for this term b2k+1n+2k+1 (2l+2)b2l+1b2l+1,we also have b2l+1b2k+1n+2k+1 (2l+2)b2l+1
and b2l+1b2l+1b2k+1n+2k+1 (2l+2) in the combination of (f2) (b2k 1b2k+1n+2k+2l+1),
but they do not exist. First, we consider b2l+1b2k+1n+2k+1 (2l+2)b2l+1. We
must choose i, such that (2k 1) i = 2k+1n + 2k+1 (2l + 2) i =
(2k 1) [2k+1n+ 2k+1 (2l + 2)] = 2k+1n 2k + 2l + 1
< 2k+1n 2k + 2k 1 < 0 (since 1 2l + 1 < 2k 1 ).
We consider b2l+1b2l+1b2k+1n+2k+1 (2l+2). We have to choose i, such that

(2k 1) i = 2l+1, then we have the coe cient
i+ j

i
=

2l + 1

(2k 1) (2l + 1)
.

Let 2l + 1 = k 1
m=0 bm2

m and 2k 1 = k 1
m=0 1× 2

m

(2k 1) (2l + 1) = k 1
m=0(1 bm)× 2

m.
We can find w such that bw = 0 (since 2l + 1 < 2k 1), therefore
bw

1 bw

0

1
0(mod 2) (by Lemma 2) . Hence

i+ j

i
0 (mod 2),

that is b2l+1b2l+1b2k+1n+2k+1 (2l+2) also does not exist.
By the discussion above, (f2) (b2k 1b2k+1n+2k+2l+1) = 0 b2k 1b2k+1n+2k+2l+1 /

ker (f2) .
Case3

Proof. We take j = 2k+1n, and i = 2k+2t 2v, then we have b2k+1n+2k+2t 2vb2v+1b2v+1

with the coe cient i+j
i
= i+j

j
=

2k+1n+ 2k + 2t 2v

2k+1n

n

n

2k + 2t 2v

0
1(mod 2) (by Lemma 2). There doesn’t exist any choice of i, j to produce
such term, since 2k+1n+ 2k + 2t 2v 2k+1n 2k+1 > 2k + 2t+ 1.
Hence (f2) (b2k+2t+1b2k+1n+2v+1) = 0, that is b2k+2t+1b2k+1n+2v+1 / ker (f2) .
Case4
We need a lemma.

Lemm 3. Given c 0, d 1, if

2c+ j

2c
+

2c+ 2d j

2c
0(mod 2),

j, d > j 0, then
2c+m

2c
1(mod 2), d > m 0.

Proof. We prove by induction hypothesis on m.
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m = 0, since
2c+ 0

2c

2c

2c
1(mod 2), this lemma is true.

Suppose m = n (n must less then d 1), this lemma is also true.
when m = n+ 1,

If n is even,
2c+ n

2c 1
0(mod 2) (by (2-1),

even

odd
0(mod 2)),

by induction hypothesis
2c+ n

2c
1(mod 2), and we know

2c+ (n+ 1)

2c
=

2c+ n

2c 1
+

2c+ n

2c
,

hence
2c+ (n+ 1)

2c
0 + 1 1(mod 2).

If n is odd, we have
2c+ 2d (n+ 1)

2c 1
0(mod 2) (by (2-1)).

We know that

2c+ 2d n

2c
=

2c+ 2d (n+ 1)

2c 1
+

2c+ 2d (n+ 1)

2c
.

According to the condition, we know that
2c+ n

2c

2c+ 2d n

2c
(mod 2),

and
2c+ (n+ 1)

2c

2c+ 2d (n+ 1)

2c
(mod 2).

Therefore
2c+ (n+ 1)

2c
+

2c+ 2d (n+ 1)

2c 1

2c+ n

2c
(mod 2).

If n is odd, we have
2c+ 2d (n+ 1)

2c 1
0(mod 2) (by (2-1)), and by

induction hypothesis,
2c+ n

2c
1(mod 2). Hence

2c+ (n+ 1)

2c
+ 0

1(mod 2), which implies
2c+ (n+ 1)

2c
1(mod 2).

By induction hypothesis, this lemma holds.

Corollary 4. Give c 0, d 1, if j, d > j 0 such that

2c+ j

2c
+

2c+ 2d j

2c
0(mod 2),
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then
2c+ d

2c
1(mod 2).

Proof.

If d is odd, we have
2c+ d

2c
=

2c+ (d 1)

2c 1
+

2c+ (d 1)

2c
.

By Lemma3,
2c+ (d 1)

2c
1(mod 2), and by (2-1),

2c+ (d 1)

2c 1
0(mod 2), therefore

2c+ d

2c
1 + 0 1(mod 2).

If d is even, we have
2c+ (d+ 1)

2c
=

2c+ d

2c 1
+

2c+ d

2c
. Clearly

2c+ d

2c 1
0(mod 2), and by condition and Lemma3 we know

2c+ (d+ 1)

2c
2c+ 2d (d 1)

2c

2c+ (d 1)

2c
1(mod 2).

Hence
2c+ (d+ 1)

2c
=

2c+ d

2c 1
+
2c+ d

2c
1 0+

2c+ d

2c
(mod 2),

which implies
2c+ d

2c
1(mod 2).

By the cases above, we know
2c+ d

2c
1(mod 2).

In the case3, we consider the formula b2k+2t+1b2k+1n+2k+2l+1 / ker (f2) ,
where k, l, t Z, k 3, n 0 and 1 2t+1 2l+1 < 2k 1(if n = 0, 2t+1
< 2l + 1), then we have the equation : 0 t l < 2k 1 1 (if n = 0, t < l).
Now we denote r = 2k + 2t+ 1, s = 2k+1n+ 2k + 2l + 1, and r < s.

Proposition 5. If any one of the following statement is true, then the case4
is true.

(a) If there exists I, where 0 < I r,

such that
s+ I

s
+

s+ I

r
1(mod 2).

(b)If there exist J, where 0 J < s r
2
,

such that
r + J

r
+

s J

r
1(mod 2).

(c)
s+r
2

r
1(mod 2).
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If any one of them holds ,then brbs / ker (f2) .

Proof of (a) Since brbs
(f2)

0 i r
0 j s

i+j
i
bi+jbr ibs j, now we take j = s, i =

I, for some I, 0 < I r, then we have the term bs+Ibr Ib0 with the

coe cient
s+ I

s
.

Since H (BO(3);Z/2) is abelian, there are five kinds of formulas to pro-
duce such term except the case above.
For example, we take j = s r + I, i = r,then we have bi+jbr ibs j =

bs+Ib0br I .
There are the other four kinds of possible formulas: br Ib0bs+I , b0br Ibs+I

(they don’t exist, since I > 0 s + I > s ), br Ibs+Ib0 and b0bs+Ibr I

(they don’t exist, since I > 0 s+ I > s > r ) .
Hence we have only two formulas to produce this term. They are bs+Ibr Ib0

with the coe cient
s+ I

s
and bs+Ib0br I with the coe cient

s+ I

r
.

If we can find some I, where 0 < I r, such that
s+ I

s
+

s+ I

r
1(mod 2), this term bs+Ibr Ib0 survives in the image of (f2) , therefore

brbs / ker (f2) .

Proof of (b) By the method above, we take i = r, j = J, for some J (

0 J < s r
2
) , then we have br+Jb0bs J with the coe cient

r + J

r
.

If we choose J = 0, then there four kinds of formula to represent this term

: brb0bs, bsb0br, b0brbs, bsbrb0, but the coe cient of b0brbs is
0

0
1(mod 2),

the coe cient of bsbrb0 is
s

0
1(mod 2), they cancel each other.

If
r

r
+

s

r
1(mod 2), where

r

r
is the coe cient of brb0bs, and

s

r
is the coe cient of bsb0br, then this term will survive. Hence brbs /

ker (f2) .
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If 0 < J < s r
2
, it is easy to see r < s+r

2
< s J < s. So we only have two

kinds of choices: br+Jb0bs J with the coe cient
r + J

r
and bs Jb0br+J with

the coe cient
s J

r
. If we can find some J, 0 < J < s r

2
, such that

r + J

r
+

s J

r
1(mod 2), then brbs / ker (f2) .

Proof of (c) In this condition, we take i = r, j = s r
2
, then we have this

term b s+r
2

b0b s+r
2

. There is only one formula to produce this term. It

is b s+r
2

b0b s+r
2

with the coe cient
s+r
2

r
. If

s+r
2

r
1(mod 2), then

brbs / ker (f2) .

We will prove case4 by considering the four parts.

P.1 l is odd , t is even .

P.2 l is even , t is odd .

P.3 l is even , t is even .

P.4 l is odd , t is odd .

We denoted that r = 2k + 2t+ 1, s = 2k+1n+ 2k + 2l + 1.

Proof of P.1 l is odd , t is even :

We want to find I ( 0 < I r) such that
s+ I

s
+

s+ I

r
1(mod 2).

We may choose that I is even, such that I = 2 I1. Since 0 < I r =
2k + 2t+ 1 0 < 2I1 2k + 2t 0 < I1 2k 1 + t.
We let l + 1 = h

m=1 am2
m, t = h

m=1 bm2
m, where am, bm = 1 or 0, and

both of them are even, so m starts from 1. Since 0 t < l < 2k 1 1
l + 1 < 2k 1, therefore h < k 1.

Now we take I1 = 1 +
h

m=1 cm2
m, where cm =

1 if am < bm
0 if am bm

.

Since
s+ 2I1
s

=
2k+1n+ 2k + 2l + 1 + 2I1
2k+1n+ 2k + 2l + 1

2kn+ 2k 1 + l + I1
2k+1n+ 2k 1 + l

(mod 2)(by (2-2)).
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By (2-1),
2kn+ 2k 1 + l + I1
2k+1n+ 2k 1 + l

0(mod 2) (since l is odd ,l+I1 is even)

i.e.
s+ 2I1
s

0(mod 2).

Nowwe want to show
s+ 2I1
r

1(mod 2). By (2-2) again,
s+ 2I1
r

=

2k+1n+ 2k + 2l + 1 + 2I1
2k + 2t+ 1

2kn+ 2k 1 + l + I1
2k 1 + t

(mod 2).

Since l + I1 = l + 1 +
h

m=1 cm2
m = h

m=1 am2
m + h

m=1 cm2
m

=denote m=1 dm2
m, where dm = 1 or 0.

By the definition of cm, if am = 1, cm must be 0, therefore am + cm 1
dm = 0 m > h. Hence l+ I1 < 2

h+1 2k 1 (since h < k 1 ), it means
l + I1 < 2

k 1. By Lemma 2 we have
2kn+ 2k 1 + l + I1

2k 1 + t

2kn

0

2k 1

2k 1

l + I1
t

l + I1
t

(mod 2)

i.e.
s+ 2I1
r

l + I1
t

(mod 2) .

Since
l + I1
t

h

m=1

am+cm
bm

(mod 2) (by Lemma2).

If bm = 0, am = 0, then cm = 1
am+cm
bm

0 + 1

1
1(mod 2).

bm = 0, am = 1, then cm = 0
am+cm
bm

1 + 0

1
1(mod 2).

If bm = 0, then
am+cm
bm

am+cm
0

1(mod 2).

Then
l + I1
t

h

m=1

am+cm
bm

h

m=1 1 1(mod 2)
s+ 2I1
r

1(mod 2).

Hence
s+ I

s
+

s+ I

r
0 + 1 1(mod 2), by Proposition5-(a),

brbs / ker (f2) .

Proof of P.2 l is even , t is odd:

We consider
r + J

r
+

s J

r
, and we take J = 0. Since

s 0

r
=

s

r
=

2k+1n+ 2k + 2l + 1

2k + 2t+ 1
. By (2-2), we know

2k+1n+ 2k + 2l + 1

2k + 2t+ 1
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n

0

2k + 2l

2k + 2t

2k 1 + l

2k 1 + t
(mod 2). By (2-1)

2k 1 + l

2k 1 + t
0(mod 2),

therefore
s

r

2k 1 + l

2k 1 + t
0(mod 2). Clearly,

r + 0

r
=

r

r
1(mod 2).

Hence
r + 0

r
+
s 0

r
1(mod 2), by Proposition5-(b), brbs / ker (f2) .

Proof of P.3 l is even , t is even :

If there exists J ( 0 J < s r
2
) such that

r + J

r
+

s J

r
1(mod 2),

then we are done (by porposition7-(b)).

Suppose not, that is for all 0 J < s r
2
such that

r + J

r
+

s J

r

0
2k + 2t+ 1 + J

2k + 2t+ 1
+

2k+1n+ 2k + 2l + 1 J

2k + 2t+ 1
(mod 2).

By this condition, we want to use Corollary 4 to show such r and s satisfy
s+r
2

r
1(mod 2). Hence brbs / ker (f2) , by Proposition 5-(c).

We observe J is even, let J = 2J1, t = 2T and l = 2L (t and l are even),
0 J < s r

2
= 2kn+ l t 0 J1 < 2

k 1n+ l t
2
= 2k 1n+ L T.

And 0
2k + 2t+ 1 + J

2k + 2t+ 1
+

2k+1n+ 2k + 2l + 1 J

2k + 2t+ 1
=

2k + 2t+ 1 + 2J1
2k + 2t+ 1

+
2k+1n+ 2k + 2l + 1 2J1

2k + 2t+ 1
2k 1 + t+ J1
2k 1 + t

+
2kn+ 2k 1 + l J1

2k 1 + t
(mod 2) (by (2-2))=

2k 1 + 2T + J1
2k 1 + 2T

+
2kn+ 2k 1 + 2L J1

2k 1 + 2L
=

2k 1 + 2T + J1
2k 1 + 2T

+
2kn+ 2k 1 + 2T + 2(L T ) J1

2k 1 + 2T
2k 1 + 2T + J1
2k 1 + 2T

+
2k 1 + 2T + 2(2k 1n+ L T ) J1

2k 1 + 2T
(mod 2)

for all 0 J1 < 2
k 1n+ L T.

By Corollary4,
2k 1 + 2T + (2k 1n+ L T )

2k 1 + 2T
1(mod 2), that is
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2k 1n+ 2k 1 + L+ T

2k 1 + 2T

2k 1 + 2T + (2k 1n+ L T )

2k 1 + 2T
1(mod 2).

Since
s+r
2

r
=

2kn+ 2k + l + t+ 1

2k + 2t+ 1
=

2kn+ 2k + 2L+ 2T + 1

2k + 2(2T ) + 1

2k 1n+ 2k 1 + L+ T

2k 1 + 2T
(mod 2)

(by (2-2)).

Hence
s+r
2

r
1(mod 2).

By Proposition5-(c) , brbs / ker (f2) .
By proving the following statement, we can complete this case.

• If r = 2k + 2t+ 1 and s = 2k+1n+ 2k + 2l+ 1 satisfy k 3, n 0, 0
t l < 2k 1 1 (if n = 0, t < l), then one of the Proposition5 must
hold:

(a) If I , where 0 < I r, such that
s+ I

s
+

s+ I

r
1(mod 2).

(b)If J ,where 0 J < s r
2
, such that

r + J

r
+

s J

r
1(mod 2).

(c)
s+r
2

r
1(mod 2).

Proof. By induction hypothesis on k
k = 2,
Consider 0 t l < 22 1 1 = 1, the pair of (t, l) is (0, 0) and n > 0.
Then the case holds, since the statement is true except l and t are odd.(We

proved in P.1 ,P.2 and P.3).
k = 3,
r = 8 + 2t+ 1, s = 16n+ 8 + 2l + 1.
Consider 0 t < l < 23 1 1 = 3, the pair of (t, l) is (0, 1), (0, 2) and

(1, 2).
Consider 0 t = l < 3 (under n > 0), the pair of (t, l) is (0, 0), (1, 1),

(2, 2).
We only have to prove the case of (t, l) = (1, 1), since the statement is

true except l and t are odd.
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If t = 1, i.e r = 11 and s = 16n + 11. We take J = 4, then
11 + 4

11
+

16n+ 7

11

15

11
+
16n

0

7

11
1(mod 2)(by (b)). Hence the statement

of k = 3 is true..
Suppose k = q, the statement is also true.
When k = q + 1
r = 2q+1+2t+1, s = 2q+2n+2q+1+2l+1. The statement is true except

l and t are odd. We see that l and t are odd. Now, we let l = 2L + 1,
t = 2T + 1, r1 = 2

q + 2T + 1 and s1 = 2
q+1n+ 2q + 2L+ 1.

By induction hypothesis, one of (a),(b)or(c) is true for pair (r1, s1). Since
0 t < l < 2q 1 0 T < L < 2q 1 1, the pair (r1, s1) satisfies the
condition of the statement.
Now, we check (a) , (b) , (c) for (r, s),
where r = 2q+1 + 2t+ 1, s = 2q+2n+ 2q+1 + 2l + 1

(a)
s+ I

s
+

s+ I

r
(let I = 2I1)

s+ 2I1
s

+
s+ 2I1
r

=

2q+2n+ 2q+1 + 2l + 1 + 2I1
2q+1 + 2l + 1

+
2q+2n+ 2q+1 + 2l + 1 + 2I1

2q+1 + 2t+ 1
2q+1n+ 2q + l + 2I1

2q + l
+

2q+1n+ 2q + l + I1
2q + t

(by (2-2))

2q+1n+ 2q + 2L+ 1 + I1
2q + 2L+ 1

+
2q+1n+ 2q + 2L+ 1 + I1

2q + 2T + 1
s1 + I1
s1

+
s1 + I1
r1

(mod 2),

where 0 < I1 r1
(since 0 < I = 2I1 r 0 < I1 2q + t = 2q + 2T + 1 = r1).

Hence
s+ I

s
+

s+ I

r

s1 + I1
s1

+
s1 + I1
r1

(mod 2).

(b)
r + J

r
+

s J

r
, by the same argument as above, we let J =

2J1
r + 2J1
r

+
s 2J1
r

=

2q+1 + 2t+ 1 + 2J1
2q+1 + 2t+ 1

+
2q+2n+ 2q+1 + 2l + 1 2J1

2q+1 + 2t+ 1
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2q + t+ J1
2q + t

+
2q+1n+ 2q + l J1

2q + t
(by (2-2))

2q + 2T + 1 + J1
2q + 2T + 1

+
2q+1n+ 2q + 2L+ 1 J1

2q + 2T + 1
r1 + J1
r1

+
s1 J1
r1

(mod 2), where 0 J1 <
s1 r1
2

(since 0 J = 2J1 <
s r
2

0 J1 <
s r
2

1
2
= (l t) 1

2
= (2L 2T ) 1

2
=

s1 r1
2
).

Hence
r + J

r
+

s J

r

r1 + J1
r1

+
s1 J1
r1

(mod 2).

(c)
s+r
2

r
=

2q+1n+ 2q+1 + l + t+ 1

2q+1 + 2t+ 1
=

2q+1n+ 2q+1 + 2L+ 1 + 2T + 1 + 1

2q+1 + 2(2T + 1) + 1
=

2q+1n+ 2q+1 + 2(L+ T + 1) + 1

2q+1 + 2(2T + 1) + 1
2qn+ 2q + (L+ T + 1)

2q + 2T + 1
(by (2-2))

s1+r1
2

r1
(mod 2).

Hence
s+r
2

r

s1+r1
2

r1
(mod 2).

By induction hypothesis, one of (a),(b)or(c) is true for pair (r1, s1) and by
above discussion , so does for pair (r = 2q+1+2t+1, s = 2q+2n+2q+1+2l+1
), when l and t are odd. Hence this statement is true.
By this statement and Proposition5, case4 is true.
Case5

Proof.
Let r = 2k + 2t+ 1, s = 2k+1n+ 2k+1 1.
We want to show (f2) (b2k 1b2k+2l+1) = 0. Now we take i = I, j = J, then

we have the term bI+Jbr Ibs J with coe cient
I + J

I
.

Now we fix I and change J. If J > s I, we let J = s I +(u+1 ), then
we get 0 u I 1 (since s I +1 J = s I + (u+1 ) s). Therefore
I + J

I
=

s+ 1 + u

I
=

2k+1n+ 2k+1 + u

I

2k+1n+ 2k+1

0

u

I
u

I
0(mod 2) (since 0 u I 1, and by (2-3)).

If 0 J s I, under such J which we choice, we need another one
to cancel it. We take i = I, j = s I J, then we have another term

14



bi+jbr ibs j = bs Jbr IbI+J with the coe cient
s J

I
except J = s I J.

We let J = 2k+1n1 + J1, where n1 n, J1 2k+1 1.

Since 0 I r < 2k+1 1, we have
I + J

I

n1
0

I + J1
I

I + J1
I

(mod 2), and
s J

I
=

2k+1(n n1) + 2
k+1 1 J1

I
2k+1 1 J1

I
(mod 2).

In order to show
I + J

I
+

s J

I
0(mod 2), we need a simple result,

which is
a

b

1 b

1 a
(mod 2), where a , b = 0 or 1. By this result, we

know that
A

B

2k+1 1 B

2k+1 1 A
(mod 2), where B A 2k+1 1.

If I+J1 2k+1 1, then we have
I + J1
I

=
I + J1
J1

2k+1 1 J1
2k+1 1 (I + J1)

=

2k+1 1 J1
I

=
s J

I
(mod 2).Hence

I + J

I
+
s J

I
0(mod 2).

If I+J1 > 2
k+1 1, then 2k+1 1 J1 < I,

s J

I

2k+1(n n1) + 2
k+1 1 J1

I
0(mod 2)(by (2-3)). We let I + J1 = 2k+1 + D, then 0 D < I (since

I D = 2k+1 J1 and J1 2k+1 1). So
I + J

I
=

2k+1(n1 + 1) +D

I
0(mod 2), by (2-3) again.

Hence
I + J

I
+

s J

I
0(mod 2), if 0 J s I.

We still have to discuss J = s I J. In this case, I is odd and J = s I
2
.

We want to show
I + J

I
0(mod 2).

In our notation s+I = 2k+1(n+1)+(I 1), and s I = 2k+1n+2k+1 1 I.

We can see that
I + J

I
=

I + J

J

2(I + J)

2J
(by2-2)=

s+ I

s I
2k+1(n+ 1)

2k+1n

(I 1)

2k+1 1 I
(mod 2).

We focus on
(I 1)

2k+1 1 I
. Let I 1 = k

q=1 bq2
q (since I is odd and
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I r < 2k+1 1) and 2k+1 1 = k

q=0 1× 2
q (2k+1 1) I = k

q=0(1

bq) × 2
q. We can find w such that bw = 0 (since I < 2k+1 1), therefore

bw
1 bw

0

1
0(mod 2) (by Lemma 2). Hence

I + J

I
0(mod 2).

If we give arbitrary 0 I r and 0 J s, then the coe cient of such
”form” bI+Jbr Ibs J must be zero in the combination of (f2) (b2k 1b2k+1n+2k+2l+1).
We can say (f2) (b2k 1b2k+1n+2k+2l+1) = 0.
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