

ALGEBRA II SOLUTIONS

Final Report, 2011.06.08

1.

(1)

$x^6 + x^5 + x^3 + x + 1 = (x^2 + x + 1)^3$ is not irreducible over \mathbb{Z}_2 .

(2)

$\sum_{i=1}^n y^{p(n-i)} x^{pi} + 1 = (\sum_{i=1}^n y^{(ni)} x^i)^p + 1 = (\sum_{i=1}^n y^{(n-i)} x^i + 1)^p$ is not irreducible over $F(y)$.

(3)

$x^4 - 4x^2 + 5 = (x^2 - 2 - i)(x^2 - 2 + i)$ is not irreducible over $\mathbb{Q}(i)$.

(4)

Let $f(x) = x^4 - 4x^3 + 3x^2 + 2x - 2 + \sqrt{3}$ and $g(x) = f(x+1) = x^4 - 3x^2 + \sqrt{3}$. Since

$$g(x) = (x^2 - \frac{3}{2} + \frac{\sqrt{3}}{2}i)(x^2 - \frac{3}{2} - \frac{\sqrt{3}}{2}i),$$

which has no root in $\mathbb{Q}(\sqrt{3})$. (Since $x^2 - \frac{3}{2} + \frac{\sqrt{3}}{2}i$ and $x^2 - \frac{3}{2} - \frac{\sqrt{3}}{2}i$ has no root in $\mathbb{Q}(\sqrt{3})$.)

Assume

$$g(x) = (x^2 + ax + b)(x^2 - ax + c),$$

then $g(x) = x^4 + (b + c - a^2)x^2 + (ac - ab)x + bc$. That is $bc = \sqrt{3}$, $ac - ab = 0$, $b + d - a^2 = -3$.

If $a = 0$, then $b = -\frac{3}{2} + \frac{\sqrt{3}}{2}i \notin \mathbb{Q}(\sqrt{3})$, $c = -\frac{3}{2} - \frac{\sqrt{3}}{2}i \notin \mathbb{Q}(\sqrt{3})$. If $b = c$, then

$b = c = \sqrt[4]{3} \notin \mathbb{Q}(\sqrt{3})$. So $g(x)$ is irreducible over $\mathbb{Q}(\sqrt{3})$, and hence $f(x)$ is irreducible over $\mathbb{Q}(\sqrt{3})$.

(5)

Let $f(x) = x^4 + 2x^2 + x + 3$. Since $f(1) = 7$, $f(-1) = 5$, $f(3) = 105$ and $f(-3) = 99$, by Gauss Lemma $f(x)$ has no root in \mathbb{Q} . Assume

$$f(x) = (x^2 + ax + 1)(x^2 - ax + 3),$$

where $a \in \mathbb{Q}$, then $f(x) = x^4 + (-a^2 + 4)x^2 + 2ax + 3$. That is $2a = 1$ and $-a^2 + 4 = 2$, which is impossible. Assume

$$f(x) = (x^2 + ax - 1)(x^2 - ax - 3),$$

where $a \in \mathbb{Q}$, then $f(x) = x^4 + (-a^2 - 4)x^2 - 2ax + 3$. That is $-2a = 1$ and $-a^2 - 4 = 2$, which is impossible. So $f(x)$ is irreducible over \mathbb{Q} .

2.

It's clear that the roots of $x^3 - 2$ are $\sqrt[3]{2}$, $\sqrt[3]{2}\omega$ and $\sqrt[3]{2}\omega^2$, where $\omega = \frac{-1 + \sqrt{3}i}{2}$. Note that

(1)

$$\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{2}\omega, \sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2})(\sqrt[3]{2}\omega)(\sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2})(\omega)(\sqrt[3]{2}\omega^2) = \mathbb{Q}(\sqrt[3]{2})(\omega) = \mathbb{Q}(\omega)(\sqrt[3]{2})$$

and the minimal polynomial of ω and $\sqrt[3]{2}$ are $x^2 + x + 1$ and $x^3 - 2$,

(2) The roots of $x^2 + x + 1$ are ω and ω^2 .

Since $\forall \varphi \in \text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega, \sqrt[3]{2}))$ sends the roots of $x^2 + x + 1$ to the roots of itself and sends the roots of $x^3 - 2$ to the roots of itself, $\text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega, \sqrt[3]{2})) = \{a, b, c, d, e, f\}$, where a satisfies the conditions (I)(a), b satisfies the conditions (I)(b), c satisfies the conditions (I)(c), d satisfies the conditions (II)(a), e satisfies the conditions (II)(b), f satisfies the conditions (II)(c) and (I), (II), (a), (b), (c) in the table below.

$$\begin{array}{ll} \text{(I)} \omega \longmapsto \omega & \text{(II)} \omega \longmapsto \omega^2 \\ \text{(a)} \sqrt[3]{2} \longmapsto \sqrt[3]{2} & \text{(b)} \sqrt[3]{2} \longmapsto \sqrt[3]{2}\omega \quad \text{(c)} \sqrt[3]{2} \longmapsto \sqrt[3]{2}\omega^2 \end{array}$$

In fact, $a = \text{id}$, $b = df = ed = fe$, $c = de = ef = fd$ and $d^2 = \text{id}$, $e^2 = \text{id}$, $f^2 = \text{id}$, hence $\text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\omega, \sqrt[3]{2})) = \{\text{id}, df, fd, d, e, f\} \cong S_3$ which is Galois (Since the fixed field is \mathbb{Q}). And it's has the subgroups $\{\text{id}, f\}$, $\{\text{id}, e\}$, $\{\text{id}, d\}$, $\{\text{id}, df, fd\}$, and the intermediate fields are $\{\text{id}, f\}' = \mathbb{Q}(\sqrt[3]{2}\omega)$, $\{\text{id}, e\}' = \mathbb{Q}(\sqrt[3]{2}\omega^2)$, $\{\text{id}, d\}' = \mathbb{Q}(\sqrt[3]{2})$, $\{\text{id}, df, fd\}' = \mathbb{Q}(\omega)$.

3.

It's clear that $K(u^2) \subseteq K(u)$. Let $f(x) = x^2 - u^2 \in K(u^2)[x]$. Since $f(x) = x^2 - u^2 \in K(u^2)[x]$, which is irreducible over $K(u^2)$ and u is a root of $f(x)$. So $[K(u) : K(u^2)] \leq 2$. If $[K(u) : K(u^2)] = 2$, then $[K(u) : K] = [K(u) : K(u^2)][K(u^2) : K] = 2[K(u^2) : K]$, but $[K(u) : K]$ is odd, which is impossible. Therefore $[K(u) : K(u^2)] = 1$, that is $K(u) = K(u^2)$ and hence $[K(u^2) : K]$ is odd.

4.

Since every permutation can be split as the product of 2-cycles, S_n is generated by all the two cycles in S_n .

Since $(i \ j) = (1 \ i)(1 \ j)(1 \ i)$ for each $i \neq j$ and $1 \leq i, j \leq n$, S_n is generated by $(1 \ i)$ for $i = 2, \dots, n$.

Since $(i-1 \ i) = (1 \ i-1)(1 \ i)(1 \ i-1)$ for $i = 2, \dots, n$, S_n is generated by $(i-1 \ i)$ for $i = 2, \dots, n$.

Since $(i-1 \ i) = \tau^{i-2}\sigma\tau^{-i+2}$ for $i = 2, \dots, n$, S_n is generated by σ and τ .

5.

Consider $F = \mathbb{Z}_2(u^2)$, where u is transcendental over \mathbb{Z}_2 , and consider $K = \mathbb{Z}_2(u)$ which is an extension field of F . Let $f(x) = x^2 - u^2$ in $F[x]$, then $f(x) = (x - u)^2$ in $K[x]$ and u is a root of multiplicity 2

6.

Let $g(x) \in F[x]$ be the minimal polynomial of v , then $q = [F(v) : F] = \deg(g)$.

Since $g(x) \in F[x] \subset F(u)[x]$ with root v , $[F(u, v) : F(u)] \leq q$.

So we have

$$[F(u, v) : F] = [F(u, v) : F(u)] [F(u) : F] \leq pq.$$

Since

$$[F(u, v) : F] = [F(u, v) : F(u)] [F(u) : F] = p [F(u, v) : F(u)]$$

and

$$[F(u, v) : F] = [F(u, v) : F(v)] [F(v) : F] = q [F(u, v) : F(v)],$$

$p \mid [F(u, v) : F]$ and $q \mid [F(u, v) : F]$.

Since $\gcd(p, q) = 1$, $pq \mid [F(u, v) : F]$. Hence $[F(u, v) : F] = pq$.

7.

By Theorem 5.6.5, there exists an extension field L of F containing all roots of $x^{p^n} - x$. Let $K \subseteq L$ be the set of all roots of $x^{p^n} - x$, and it's clear that $0, 1 \in K$. Let $a, b, c \in K$ and $a \neq 0, b \neq 0, c \neq 0$, then a, b, c are roots of $x^{p^n} - x$. That is $a^{p^n} - a = 0, b^{p^n} - b = 0, c^{p^n} - c = 0$.

(1) Since $(a + b)^{p^n} = a^{p^n} + b^{p^n} = a + b$ and $(ab)^{p^n} = a^{p^n} \cdot b^{p^n} = ab$, $a + b$ and ab are roots of $x^{p^n} - x$. That is $a + b, ab \in K$.

(2) Since $(\frac{1}{a})^{p^n} = \frac{1}{a^{p^n}} = \frac{1}{a}, \frac{1}{a}$ is a root of $x^{p^n} - x$. That is $\frac{1}{a} \in K$.

(3) Since $a, b, c \in F(a, b, c)$ and $F(a, b, c)$ is a field, $a + b = b + a$, $a + (b + c) = (a + b) + c$, $a(b \cdot c) = (a \cdot b)c$, $a(b + c) = ab + ac$ and $(a + b)c = ac + bc$ are holds.

(4) Note that $(-a)^{p^n} = (-1)^{p^n} \cdot a^{p^n}$. If $p = 2$, then $(-a)^{2^n} = (-1)^{2^n} \cdot a^{2^n} = a^{2^n} = a = -a$. ($-1 = 1$ in the field with characteristic 2) That is $(-a)^{2^n} - (-a) = 0$. If $p > 2$, then $(-a)^{p^n} = -a^{p^n} = -a$. (p^n is odd) That is $(-a)^{p^n} - (-a) = 0$. Hence $(-a) \in K$.

From (1)(2)(3)(4) we conclude that K is a field.