ALGEBRA II

Medium Test, 2011.04.18

- 1. (10 points) Let R be a commutative ring with unit. An ideal P is said to be a prime ideal if $P \neq R$, and whenever $a, b \in R$ and $ab \in P$ then $a \in P$ or $b \in P$. Show that every maximal ideal M in R is prime.
- 2. (10 points) Let $R = \{a + bi \mid a, b \in \mathbb{Z}\}$. Show that $M = \{x(2+i) \mid x \in R\}$ is a maximal ideal of R.
- 3. (10 points) If R is a Euclidean ring, show that every ideal of R is principal.
- 4. (10 points) If F is a field, show that the only invertible elements in F[x] are the nonzero elements of F.
- 5. Check the following polynomials are irreducible in Q [x] or not.
 (1)(3 points) x⁴ + 3x² + 3x 6
 (2)(4 points) x⁵ 5x³ 2x² + 10
 (3)(3 points) x³ + 3x + 2
- 6. (10 points) Let $Aut(\mathbb{Q}[x])$ be the set of all automorphisms from $\mathbb{Q}[x]$ to itself. Show that for all $\varphi \in Aut(\mathbb{Q}[x]), \varphi(a) = a$ for every $a \in \mathbb{Q}$.
- 7. (10 points) Let D be an integral domain, F be the field of quotients of D. If K is any field that contains D, show that there is a field F' with $F' \cong F$ such that $K \supset F' \supset D$.
- 8. (10 points) Find the inverse of $\begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$ and prove it.
- 9. (10 points) Show that if σ , τ are two disjoint cycles, then $\sigma = \tau \sigma \tau^{-1}$.
- 10. (10 points) Show that if τ is a k-cycle, then $\sigma\tau\sigma^{-1}$ is also a k-cycle, for any permutation σ .

Typeset by LATEX