
ALGEBRA II SOLUTIONS

Medium Test, 2011.04.18

1.

Let M ⊂ R be the maximal ideal and assume M is not prime. That is
there are a, b ∈ R −M but ab ∈ M . Since R with unit, R = R2. Since M
is a maximal ideal and a, b ∈ R−M , M + (a) = R and M + (b) = R. So

R = R2 = (M + (a))(M + (b)) = M2 + (a)M + (b)M + (a)(b) ⊂M + (a)(b).

Since

(a)(b) = {xayb|x, y ∈ R} = {xyab|x, y ∈ R} ⊂ {zab|z ∈ R} = (ab) ⊂M,

we have R ⊂M , but it’s impossible. Hence M is a prime ideal.

2.

Assume there is an ideal such that M ⊂ N ⊂ R and M 6= N . That is
there is an element in N−M say x+yi. Note that x+yi = y(2+i)+(x−2y)
and we claim (x − 2y, 5) = 1. If the claim is false, that is x − 2y = 5k for
some integer k, then x− 2y = 5k = k(2− i)(2 + i). So

x+ yi = y(2 + i) + (x− 2y) = y(2 + i) + k(2− i)(2 + i) = [y+ k(2− i)](2 + i),

which is in M . It’s impossible. Hence the claim is true.
Since (x−2y, 5) = 1, there exist integers a, b such that (x−2y)a+5b = 1.

That is

1 = (x− 2y)a+ 5b = (x+ yi)a− ya(2 + i) + (2− i)b(2 + i) ∈ N.

So N = R and hence M is a maximal ideal.

3.

Let R be a Euclidean ring. Then there is a function d : R−{0} −→ N∪{0}
such that (1) for all a, b ∈ R−{0}, d(a) ≤ d(ab), and (2) for all a, b ∈ R−{0},
there are q, r ∈ R such that b = qa+ r with r = 0 or d(r) < d(a).

Let I ⊂ R be an ideal. Since d(I − {0}) ⊂ N ∪ {0} and N ∪ {0} has the
well-ordering property, there exist a ∈ I such that d(a) = min{d(x)|x ∈ I}.
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Claim: I = {xa|x ∈ R}.

It’s clear that I ⊃ {a|x ∈ R}, because a ∈ I. Now for all b ∈ I − {0},
there are q, r ∈ R such that b = qa+ r with r = 0 or d(r) < d(a).

Since r = b − qa ∈ I and d(a) = min{d(x)|x ∈ I}, r = 0. That is
b = qa ∈ {a|x ∈ R}. Therefore I = {xa|x ∈ R} is principal.

4.

If f(x) = 0 ∈ F [x], then ∀g(x) ∈ F [x], f(x)g(x) = 0 6= 1. So 0 is not
invertible.

Let f(x) 6= 0 ∈ F [x] which is invertible, and say f(x)g(x) = 1 for some
g(x) ∈ F [x]. By Lemma 4.5.2,

deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) > 0.

Since deg(f(x)g(x)) = deg(1) = 0, and deg(f(x)) > 0, and deg(g(x)) > 0,
deg(f(x)) = deg(g(x)) = 0. So f(x) = a is a nonzero constant in F .

5.

(1) Since 3|3, 3|(−6), 32 - (−6), by Eisenstein criterion, x4 + 3x2 + 3x− 6 is
irreducible.

(2) x5 − 5x3 − 2x2 + 10 = (x3 − 2)(x2 − 5) is not irreducible.

(3) Let f(x) = x3 + 3x+ 2 and g(x) = f(x+ 1) = x3 + 3x2 + 6x+ 6. Since
3|3, 3|6, 32 - 6, by Eisenstein criterion, g(x) is irreducible. Assume f(x) is
not irreducible. Then there are f1(x) and f2(x) in Q[x] such that
f(x) = f1(x)f2(x). So

g(x) = f(x+ 1) = f1(x+ 1)f2(x+ 1)

is not irreducible, but it’s impossible. Hence x3 + 3x+ 2 is irreducible.

6.

Let ϕ ∈ Aut(Q[x]), then we have ϕ(0) = 0. Suppose ϕ(1) = 0, then for
all f(x) ∈ Q[x], ϕ(f(x)) = ϕ(1 ·f(x)) = ϕ(1)ϕ(f(x)) = 0, it’s impossible. So
ϕ(1) 6= 0. Since ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) and Q[x] is an integral domain
( because Q is a field), we have ϕ(1) = 1.
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(1) For all n ∈ N,

ϕ(n) = ϕ(1 + 1 + ...+ 1) (n times)

= nϕ(1)

= n.

(2) For all m, n ∈ N,

n = ϕ(n)

= ϕ(
n

m
·m)

= ϕ(
n

m
)ϕ(m)

= mϕ(
n

m
),

that is ϕ(
n

m
) =

n

m
. Hence for all a ∈ Q+ = {x ∈ Q|x > 0}, ϕ(a) = a.

Note that 0 = ϕ(0) = ϕ(1− 1) = ϕ(1) + ϕ(−1). So ϕ(−1) = −1.

(3)For all a ∈ Q− = {x ∈ Q|x < 0},

ϕ(a) = ϕ((−1) · (−a))

= ϕ((−1))ϕ(−a))

= a.

By (1), (2) and (3), For all a ∈ Q, ϕ(a) = a.

7.

Define ϕ : F −→ K by ϕ(
r

s
) = rs−1, where r, s ∈ D, s 6= 0. and let

r, s, r1, s1 ∈ D, s 6= 0, s1 6= 0.

Claim: F ∼= ϕ(F )

Check: ϕ is well-define

If
r

s
=

r1
s1

, then rs1 = r1s ∈ D. That is rs−1 = r1s
−1
1 ∈ K. Hence

ϕ(
r

s
) = ϕ(

r1
s1

).
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Check: ϕ is homomorphism

ϕ(
r

s
+
r1
s1

) = ϕ(
rs1 + r1s

ss1
)

= (rs1 + r1s)(ss1)
−1

= rs−1 + r1s
−1
1

= ϕ
r

s
) + ϕ(

r1
s1

).ϕ(
r

s
· r1
s1

)

= ϕ(
rr1
ss1

)

= (rr1)(ss1)
−1

= (rs−1)(r1s
−1
1 )

= ϕ(
r

s
)ϕ(

r1
s1

).

Check: ϕ is one to one

Let
r

s
∈ ker(ϕ), that is ϕ(

r

s
) = 0. So we have rs−1 = 0, and thus r = 0

in D. Hence
r

s
= 0 in F .

So we have F ∼= ϕ(F ).

Check: D ⊂ ϕ(F )

For all a ∈ D with a 6= 0, ϕ(
aa

a
) = aaa−1 = a.

Let F ′ = ϕ(F ), then D ⊂ F ′ ⊂ K.

8.

Consider

(
i1 i2 ... in
1 2 ... n

)
, then(

1 2 ... n
i1 i2 ... in

)(
i1 i2 ... in
1 2 ... n

)
=

(
i1 i2 ... in
i1 i2 ... in

)
= id

and (
i1 i2 ... in
1 2 ... n

)(
1 2 ... n
i1 i2 ... in

)
=

(
1 2 ... n
1 2 ... n

)
= id.

So the inverse of

(
1 2 ... n
i1 i2 ... in

)
is

(
i1 i2 ... in
1 2 ... n

)
.
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9.

Case1: Suppose τ(i) = j, i 6= j. Since σ, τ are disjoint, σ(j) = j, σ(i) = i.
Therefore στ(i) = σ(j) = j, and τσ(i) = τ(i) = j.

Case2: Suppose σ(i) = j, i 6= j. Since σ, τ are disjoint, τ(j) = j, τ(i) = i.
Therefore στ(i) = σ(i) = j, and τσ(i) = τ(j) = j.

Case3: Suppose σ(i) = i, τ(i) = i, then στ(i) = σ(i) = i, and
τσ(i) = τ(i) = i.

So στ = τσ, and hence σ = τστ−1.

10.

Given τ =
(
i1 i2 ... ik

)
, and any permutation σ.

Claim: στσ−1 =
(
σ(i1) σ(i2) ... σ(ik)

)
.

For all j = 1, 2, ..., k−1, στσ−1(σ(ij)) = στ(ij) = σ(ij+1), and στσ−1(σ(ik)) =
στ(ik) = σ(i1).

For all s /∈ {σ(i1), σ(i2), ..., σ(ik)}, σ−1(s) /∈ {i1, i2, ..., ik}, that is
τσ−1(s) = σ−1(s). So στσ−1(s) = σσ−1(s) = s.

Hence στσ−1 =
(
σ(i1) σ(i2) ... σ(ik)

)
is a k-cycle.
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