ALGEBRA II SOLUTIONS

Medium Test, 2011.04.18

1.

Let $M \subset R$ be the maximal ideal and assume M is not prime. That is there are $a, b \in R - M$ but $ab \in M$. Since R with unit, $R = R^2$. Since Mis a maximal ideal and $a, b \in R - M, M + (a) = R$ and M + (b) = R. So

$$R = R^{2} = (M + (a))(M + (b)) = M^{2} + (a)M + (b)M + (a)(b) \subset M + (a)(b).$$

Since

$$(a)(b) = \{xayb|x, y \in R\} = \{xyab|x, y \in R\} \subset \{zab|z \in R\} = (ab) \subset M,$$

we have $R \subset M$, but it's impossible. Hence M is a prime ideal.

2.

Assume there is an ideal such that $M \subset N \subset R$ and $M \neq N$. That is there is an element in N-M say x+yi. Note that x+yi = y(2+i)+(x-2y)and we claim (x-2y,5) = 1. If the claim is false, that is x-2y = 5k for some integer k, then x-2y = 5k = k(2-i)(2+i). So

$$x + yi = y(2 + i) + (x - 2y) = y(2 + i) + k(2 - i)(2 + i) = [y + k(2 - i)](2 + i),$$

which is in M. It's impossible. Hence the claim is true.

Since (x-2y,5) = 1, there exist integers a, b such that (x-2y)a+5b = 1. That is

$$1 = (x - 2y)a + 5b = (x + yi)a - ya(2 + i) + (2 - i)b(2 + i) \in N.$$

So N = R and hence M is a maximal ideal.

റ	
.5	
\sim	2

Let R be a Euclidean ring. Then there is a function $d: R-\{0\} \longrightarrow \mathbb{N} \cup \{0\}$ such that (1) for all $a, b \in R-\{0\}, d(a) \leq d(ab)$, and (2) for all $a, b \in R-\{0\}$, there are $q, r \in R$ such that b = qa + r with r = 0 or d(r) < d(a).

Let $I \subset R$ be an ideal. Since $d(I - \{0\}) \subset \mathbb{N} \cup \{0\}$ and $\mathbb{N} \cup \{0\}$ has the well-ordering property, there exist $a \in I$ such that $d(a) = \min\{d(x) | x \in I\}$.

Claim: $I = \{xa | x \in R\}.$

It's clear that $I \supset \{a | x \in R\}$, because $a \in I$. Now for all $b \in I - \{0\}$, there are $q, r \in R$ such that b = qa + r with r = 0 or d(r) < d(a).

Since $r = b - qa \in I$ and $d(a) = min\{d(x)|x \in I\}$, r = 0. That is $b = qa \in \{a|x \in R\}$. Therefore $I = \{xa|x \in R\}$ is principal.

4.

If $f(x) = 0 \in F[x]$, then $\forall g(x) \in F[x]$, $f(x)g(x) = 0 \neq 1$. So 0 is not invertible.

Let $f(x) \neq 0 \in F[x]$ which is invertible, and say f(x)g(x) = 1 for some $g(x) \in F[x]$. By Lemma 4.5.2,

$$deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) \ge 0.$$

Since deg(f(x)g(x)) = deg(1) = 0, and $deg(f(x)) \ge 0$, and $deg(g(x)) \ge 0$, deg(f(x)) = deg(g(x)) = 0. So f(x) = a is a nonzero constant in F.

5.

(1) Since $3|3, 3|(-6), 3^2 \nmid (-6)$, by Eisenstein criterion, $x^4 + 3x^2 + 3x - 6$ is irreducible.

(2)
$$x^5 - 5x^3 - 2x^2 + 10 = (x^3 - 2)(x^2 - 5)$$
 is not irreducible.

(3) Let $f(x) = x^3 + 3x + 2$ and $g(x) = f(x+1) = x^3 + 3x^2 + 6x + 6$. Since $3|3, 3|6, 3^2 \nmid 6$, by Eisenstein criterion, g(x) is irreducible. Assume f(x) is not irreducible. Then there are $f_1(x)$ and $f_2(x)$ in $\mathbb{Q}[x]$ such that $f(x) = f_1(x)f_2(x)$. So

$$g(x) = f(x+1) = f_1(x+1)f_2(x+1)$$

is not irreducible, but it's impossible. Hence $x^3 + 3x + 2$ is irreducible.

6.

Let $\varphi \in Aut(\mathbb{Q}[x])$, then we have $\varphi(0) = 0$. Suppose $\varphi(1) = 0$, then for all $f(x) \in \mathbb{Q}[x], \varphi(f(x)) = \varphi(1 \cdot f(x)) = \varphi(1)\varphi(f(x)) = 0$, it's impossible. So $\varphi(1) \neq 0$. Since $\varphi(1) = \varphi(1 \cdot 1) = \varphi(1)\varphi(1)$ and $\mathbb{Q}[x]$ is an integral domain (because \mathbb{Q} is a field), we have $\varphi(1) = 1$. (1) For all $n \in \mathbb{N}$,

$$\varphi(n) = \varphi(1+1+\ldots+1) \ (n \ times)$$
$$= n\varphi(1)$$
$$= n.$$

(2) For all $m, n \in \mathbb{N}$,

$$n = \varphi(n)$$

= $\varphi(\frac{n}{m} \cdot m)$
= $\varphi(\frac{n}{m})\varphi(m)$
= $m\varphi(\frac{n}{m}),$

that is $\varphi(\frac{n}{m}) = \frac{n}{m}$. Hence for all $a \in \mathbb{Q}^+ = \{x \in \mathbb{Q} | x > 0\}, \varphi(a) = a$.

Note that $0 = \varphi(0) = \varphi(1-1) = \varphi(1) + \varphi(-1)$. So $\varphi(-1) = -1$.

(3) For all $a \in \mathbb{Q}^- = \{x \in \mathbb{Q} | x < 0\},\$

$$\varphi(a) = \varphi((-1) \cdot (-a))$$

= $\varphi((-1))\varphi(-a))$
= a .

By (1), (2) and (3), For all $a \in \mathbb{Q}$, $\varphi(a) = a$.

7	
1	•

Define $\varphi: F \longrightarrow K$ by $\varphi(\frac{r}{s}) = rs^{-1}$, where $r, s \in D, s \neq 0$. and let $r, s, r_1, s_1 \in D, s \neq 0, s_1 \neq 0$.

Claim: $F \cong \varphi(F)$

Check: φ is well-define

If $\frac{r}{s} = \frac{r_1}{s_1}$, then $rs_1 = r_1s \in D$. That is $rs^{-1} = r_1s_1^{-1} \in K$. Hence $\varphi(\frac{r}{s}) = \varphi(\frac{r_1}{s_1})$.

Check: φ is homomorphism

$$\begin{split} \varphi(\frac{r}{s} + \frac{r_1}{s_1}) &= \varphi(\frac{rs_1 + r_1s}{ss_1}) \\ &= (rs_1 + r_1s)(ss_1)^{-1} \\ &= rs^{-1} + r_1s_1^{-1} \\ &= \varphi\frac{r}{s}) + \varphi(\frac{r_1}{s_1}).\varphi(\frac{r}{s} \cdot \frac{r_1}{s_1}) \\ &= \varphi(\frac{rr_1}{ss_1}) \\ &= (rr_1)(ss_1)^{-1} \\ &= (rs^{-1})(r_1s_1^{-1}) \\ &= \varphi(\frac{r}{s})\varphi(\frac{r_1}{s_1}). \end{split}$$

Check: φ is one to one

Let $\frac{r}{s} \in \ker(\varphi)$, that is $\varphi(\frac{r}{s}) = 0$. So we have $rs^{-1} = 0$, and thus r = 0in D. Hence $\frac{r}{s} = 0$ in F. So we have $F \cong \varphi(F)$.

Check: $D \subset \varphi(F)$

 $\begin{array}{l} \text{For all } a\in D \text{ with } a\neq 0, \, \varphi(\frac{aa}{a})=aaa^{-1}=a.\\ \text{Let } F'=\varphi(F), \, \text{then } D\subset F'\subset K. \end{array}$

8	
O	•

4

Case1: Suppose $\tau(i) = j$, $i \neq j$. Since σ , τ are disjoint, $\sigma(j) = j$, $\sigma(i) = i$. Therefore $\sigma\tau(i) = \sigma(j) = j$, and $\tau\sigma(i) = \tau(i) = j$.

Case2: Suppose $\sigma(i) = j$, $i \neq j$. Since σ , τ are disjoint, $\tau(j) = j$, $\tau(i) = i$. Therefore $\sigma\tau(i) = \sigma(i) = j$, and $\tau\sigma(i) = \tau(j) = j$.

Case3: Suppose $\sigma(i) = i$, $\tau(i) = i$, then $\sigma\tau(i) = \sigma(i) = i$, and $\tau\sigma(i) = \tau(i) = i$.

So $\sigma \tau = \tau \sigma$, and hence $\sigma = \tau \sigma \tau^{-1}$.

10.

Given $\tau = (i_1 \ i_2 \ \dots \ i_k)$, and any permutation σ .

Claim: $\sigma \tau \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \ \dots \ \sigma(i_k)).$

For all $j = 1, 2, ..., k-1, \sigma\tau\sigma^{-1}(\sigma(i_j)) = \sigma\tau(i_j) = \sigma(i_{j+1})$, and $\sigma\tau\sigma^{-1}(\sigma(i_k)) = \sigma\tau(i_k) = \sigma(i_1)$. For all $s \notin \{\sigma(i_1), \sigma(i_2), ..., \sigma(i_k)\}, \sigma^{-1}(s) \notin \{i_1, i_2, ..., i_k\}$, that is $\tau\sigma^{-1}(s) = \sigma^{-1}(s)$. So $\sigma\tau\sigma^{-1}(s) = \sigma\sigma^{-1}(s) = s$. Hence $\sigma\tau\sigma^{-1} = (\sigma(i_1) \sigma(i_2) \dots \sigma(i_k))$ is a k-cycle.

9.