Combinational Logic

Hsi－Pin Ma 馬席彬

https：／／eeclass．nthu．edu．tw／course／3452
Department of Electrical Engineering National Tsing Hua University

Outline

- Combinational Circuits
- Analysis of Combinational Circuits
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoder
- Encoders
- Arbiters
- Multiplexers
- Shifters

正

20
范
rest

（as）
\qquad
O
（as）

都

，
－
，

\qquad
20
?
-
正

－

都

\qquad
\qquad


```
        < (a)
        |
```


Logic Circuits for the Digital System

- Combinational circuits
- Logic circuits whose outputs at any time are determined directly and only from the present input combination.
- Sequential circuits
- Circuits that employ memory elements + (combinational) logic gates
- Outputs are determined from the present input combination as well as the state of the memory cells.

ITRC Laboratory for

Combinational Logic Circuits

- Memoryless: $\mathrm{o}=\mathrm{f}(\mathrm{i})$
- Used for control, arithmetic, and data steering.

(a)

(b)

Closure

- Combinational logic circuits are closed under acyclic composition
- Cyclic composition of two combinational logic circuits
- The feedback variable can remember the history of the circuits
- Sequential logic circuit

\section*{}
 Analysis of Combinational Circuits

．

Analysis Procedure

- Analysis for an available logic diagram
- Make sure the given circuit is combinational
- No feedback path or memory element
- Derive the corresponding Boolean functions
- Derive the corresponding truth table
- Verify and analyze the design
- Logic simulation (waveforms)
- Explain the function
- Label all gate outputs that are functions of the input variables only. Determine the functions.
- Label all gate outputs that are functions of the input variables and previously labeled gate outputs, and find the functions.
- Repeat previous step until all the primary outputs are obtained.

Derivation of Boolean Functions (2/2)

- Example
- List all functions
- $\mathrm{F}_{2}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}$
- $\mathrm{T}_{1}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
- $\mathrm{T}_{2}=\mathrm{ABC}$
- $\mathrm{T}_{3}=\mathrm{F}_{2}{ }^{\prime} \mathrm{T}_{1}$
- $\mathrm{F}_{1}=\mathrm{T}_{3}+\mathrm{T}_{2}$

$$
\begin{aligned}
& -\mathrm{F}_{1}=\mathrm{T}_{3}+\mathrm{T}_{2}=\mathrm{F}_{2}{ }^{\prime} \mathrm{T}_{1}+\mathrm{ABC}=(\mathrm{AB}+\mathrm{AC}+\mathrm{BC})^{\prime}(\mathrm{A}+\mathrm{B}+\mathrm{C})+\mathrm{ABC} \\
& =\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB} \mathrm{~B}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC} \\
& - \text { Full adder }\left(\mathrm{F}_{1} \text { : sum, } \mathrm{F}_{2}: \text { carry }\right)
\end{aligned}
$$

Derivation of Truth Table (1/2)

- For n input variables
- List all the 2^{n} input combinations from 0 to 2^{n-1}.
- Partition the circuit into small single-output blocks and label the output of each block.
- Obtain the truth table of the blocks depending on the input variables only.
- Proceed to obtain the truth tables for other blocks that depend on previously defined truth tables.

Derivation of Truth Tables (2/2)

- Example

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{2}}^{\prime}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{1}}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Design Procedure

Design Procecurre
Hsi-Pin Ma
Hsi-Pin Ma
Hsi-Pin Ma
\qquad

> 路

Design Procecurre
\square

$$
\text { Sesien } \mathbb{C} O C \in \mathrm{CBC}
$$
 D®1

\square

\square
\square

 \qquad .

\square

\qquad
\qquad

Design Procedure

1- Specification: From the specifications, determine the inputs, outputs, and their symbols.
2- Formulation: Derive the truth table (functions) from the relationship between the inputs and outputs
${ }^{3}$ - Optimization: Derive the simplified Boolean functions for each output function. Draw a logic diagram or provide a netlist for the resulting circuits using AND, OR, and inverters.

4• Technology Mapping: Transform the logic diagram or netlist to a new diagram or netlist using the available implementation technology.

- Verification: Verify the design.

Computing
A BCD-to-Excess-3 Code Converter (1/3)

- Spec 1

- input (ABCD), output (wxyz) (MSB to LSB)
- ABCD: 0000 ~ 1001 (0~9) Input BCD Output Excess-3 Code
- Formulation 2
$-w x y z=A B C D+0011$

A	B	C	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	x	x	x	x
1	0	1	1	x	x	x	x
1	1	0	0	x	x	x	x
1	1	0	1	x	x	x	x
1	1	1	0	x	x	x	x
1	1	1	1	x	x	x	x

Laboratory for
Computing

A BCD-to-Excess-3 Code Converter (2/3)

- Optimization ${ }^{3}$

$$
\begin{aligned}
& z=D^{\prime} \\
& y=C D+C^{\prime} D^{\prime} \\
& x=B^{\prime} C+B^{\prime} D+B^{\prime} D^{\prime} \\
& w=A+B C+B D
\end{aligned}
$$

$$
\mathrm{z}=\mathrm{D}^{\prime}
$$

$$
\mathrm{y}=\mathrm{CD}+(\mathrm{C}+\mathrm{D})^{\prime}
$$

$$
\mathrm{x}=\mathrm{B}^{\prime}(\mathrm{C}+\mathrm{D})+\mathrm{BC}^{\prime} \mathrm{D}^{\prime}
$$

$$
\mathrm{w}=\mathrm{A}+\mathrm{B}(\mathrm{C}+\mathrm{D})
$$

reduce gate numbers

4 4. Draw logic diagram

A BCD-to-Seven-Segment Display Decoder (1/2)

- Spec 1

- input (ABCD), output (abcdefg) (MSB to LSB)
- ABCD: 0000 ~ 1001 (0~9)
- Formulation 2

BCD Input				Seven-Segment Decoder						
A	B	C	D	a	b	c	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
All other inputs				0	0	0	0	0	0	0

A BCD-to-Seven-Segment Decoder (2/2)

- Optimization 3
-7x K-Map simplification
$-\mathrm{a}=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BD}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
$-\mathrm{b}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{CD}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
$-\mathrm{c}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
$-d=A^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C+B^{\prime} C^{\prime} D^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}$
$-\mathrm{e}=\mathrm{A}^{\prime} \mathrm{CD}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
$-\mathrm{f}=\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
$-\mathrm{f}=\mathrm{A}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}$
- Technology Mapping 4

Brincin Ma NHuEE Computing NHue Compuing NHue Compuing
 Binary Alacier-suratiactor Msi-Pin Ma Brancicler
r
\qquad ?
-
\square

\square

$+$
$+$
\square

\square

[^0]\qquad
\qquad

Binary Half Adder \& Full Adder (1/3)

- Half adder

Inputs: x, y
${ }^{1}-$ Outputs: $\mathrm{C}($ carry $), \mathrm{S}$ (sum) $) \begin{array}{lllll}0 & 1 & 0 & 1 & C=x y \\ 1 & 0 & 0 & 1 & \end{array}$

- Full adder

$$
\begin{array}{lllll}
\hline \mathbf{x} & \mathbf{y} & \mathbf{2} & \mathrm{C} & \mathbf{S} \\
\hline 0 & 0 & 0 & 0 & S^{3}=x^{\prime} y+x y^{\prime}=x \oplus y \\
0 & 1 & 0 & 1 & C=x y \\
1 & 0 & 0 & 1 & \\
1 & 1 & 1 & 0 & \\
\hline
\end{array}
$$

-Inputs: $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (carry from previous lower significant bit) ${ }^{1}$ - Outputs: C (carry), S (sum)
$S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z=x \oplus y \oplus z$

			2	
\mathbf{x}	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1_{21}

Binary Half Adder \& Full Adder (2/3)

- Logic diagram 4

Half Adder

Binary Half Adder \& Full Adder (3/3)

- Full adder implemented with half adders
- Two half adders and one OR gate

$$
\begin{aligned}
& S=z \oplus(x \oplus y) \\
& C=z\left(x y^{\prime}+x^{\prime} y\right)+x y
\end{aligned}
$$

Ripple-Carry Adder (1/4)

unsigned addition

$$
\left(C_{n+1} S_{n} S_{n-1} \ldots S_{1}\right)=\left(A_{n} A_{n-1} \ldots A_{1}\right)+\left(B_{n} B_{n-1} \ldots B_{1}\right)
$$

eg. $S=A+B, A=A_{3} A_{2} A_{1} A_{0}, B=B_{3} B_{2} B_{1} B_{0}, S=S_{3} S_{2} S_{1} S_{0}$

Ripple-Carry Adder (2/4)

2				
A_{i}	B_{i}	C_{i}	C_{i+1}	S_{i}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

S_{i}

Ripple-Carry Adder (3/4)

define

$$
\begin{aligned}
S_{i} & =f\left(A_{i}, B_{i}, C_{i}\right)=A_{i} \oplus B_{i} \oplus C_{i} \\
C_{i+1} & =g\left(A_{i}, B_{i}, C_{i}\right)=A_{i} \cdot B_{i}+B_{i} \cdot C_{i}+C_{i} \cdot A_{i}
\end{aligned}
$$

$$
\begin{aligned}
& S_{0}=f\left(A_{0}, B_{0}, C_{0}\right) \\
& C_{1}=g\left(A_{0}, B_{0}, C_{0}\right)
\end{aligned}
$$

$$
S_{1}=f\left(A_{1}, B_{1}, C_{1}\right)
$$

$$
C_{2}=g\left(A_{1}, B_{1}, C_{1}\right)
$$

$$
S_{2}=f\left(A_{2}, B_{2}, C_{2}\right)
$$

$$
C_{3}=g\left(A_{2}, B_{2}, C_{2}\right)
$$

$$
S_{3}=f\left(A_{3}, B_{3}, C_{3}\right)
$$

$$
C_{4}=g\left(A_{3}, B_{3}, C_{3}\right)
$$

Multi-bit Notation

- Multi-bit signal or a bus

- Verilog bit-select (bit-slice) or part-select
-b[7:0]
-b[7]
- b[5:3]

Carry Lookahead Adder (1/3)

- For a full adder, define what happens to carry

1 - Carry-generate: $\mathrm{C}_{\text {out }}=1$ independent of $\mathrm{C}_{\text {in }}$

- $G_{i}=A_{i} \cdot B_{i}$
- Carry-propagate: $\mathrm{C}_{\text {out }}=\mathrm{C}_{\text {in }}$
- $P_{i}=A_{i} \oplus B_{i}$
- Carry-kill: $\mathrm{C}_{\text {out }}=0$ independent of $\mathrm{C}_{\text {in }}$

	$\mathbf{A}_{\mathbf{i}}$	$\mathbf{B}_{\mathbf{i}}$	$\mathbf{G}_{\mathbf{i}}$	$\mathbf{P}_{\mathbf{i}}$	$\mathbf{K}_{\mathbf{i}}$
2	0	0	0	0	1
	0	1	0	1	0
	1	0	0	1	0
	1	1	1	0	0

${ }^{\bullet} K_{i}=A_{i}^{\prime} \cdot B_{i}^{\prime}$

- Use the above info

$$
\begin{aligned}
& -C_{i+1}=A_{i} B_{i}+B_{i} C_{i}+A_{i} C_{i}=A_{i} B_{i}+\left(A_{i}+B_{i}\right) C_{i}=\underline{G_{i}+P_{i} C_{i}} \\
& -S_{i}=A_{i} \oplus B_{i} \oplus C_{i}=\underline{P_{i} \oplus C_{i}}
\end{aligned}
$$

Carry Lookahead Adder (2/3)

- Do not have to wait for C_{i} to compute $\mathrm{C}_{\mathrm{i}+1}$
$-C_{i+1}=G_{i}+P_{i} C_{i}$
$-C_{i+2}=G_{i+1}+P_{i+1} C_{i+1}=G_{i+1}+P_{i+1} G_{i}+P_{i+1} P_{i} C_{i}$
$-C_{i+3}=G_{i+2}+P_{i+2} C_{i+2}=G_{i+2}+P_{i+2} G_{i+1}+P_{i+2} P_{i+1} G_{i}+P_{i+2} P_{i+1} P_{i} C_{i}$
$C_{i+4}=G_{i+3}+P_{i+3} C_{i+3}=G_{i+3}+P_{i+3} G_{i+2}+P_{i+3} P_{i+2} G_{i+1}+P_{i+3} P_{i+2} P_{i+1} G_{i}+P_{i+3} P_{i+2} P_{i+1} P_{i} C_{i}$
- Fixed delay time for each carry (but not the same for every gate!)
- Fanout of G_{i} \& P_{i} also affect the overall delay => usually be limited to 4 bits

Carry Lookahead Adder (3/3)

Binary Adders/Subtractors

$$
\mathrm{B}_{\mathrm{i}} \mathrm{M} \mathrm{~A}_{\mathrm{i}}
$$

- Binary subtraction normally is performed by adding the minuend to the 2's complement of the subtrahend.

Decimal Adder

路
．

路

en ele
路

\qquad

路

路
，
路
Decimal Adder
路
路

（

\square

，
nihuet
Reana
Computing

Decimal Adders (1/3)

- Addition of 2 decimal digits in BCD
$-\left\{\mathrm{C}_{\text {out }}, \mathrm{S}\right\}=\mathrm{A}+\mathrm{B}+\mathrm{C}_{\text {in }}$
$1 \cdot \mathrm{~S}=\mathrm{S}_{8} \mathrm{~S}_{4} \mathrm{~S}_{2} \mathrm{~S}_{1}, \mathrm{~A}=\mathrm{A}_{8} \mathrm{~A}_{4} \mathrm{~A}_{2} \mathrm{~A}_{1}, \mathrm{~B}=\mathrm{B}_{8} \mathrm{~B}_{4} \mathrm{~B}_{2} \mathrm{~B}_{1}$
- A digit in BCD cannot exceed 9, add 6 (0110) for final correction.

Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

IraRC $\frac{\text { La aboratory for }}{\text { Refiafle }}$

Decimal Adders (2/3)

$$
\begin{aligned}
& \begin{array}{cccc}
\mathrm{Z}_{8} & \mathrm{Z}_{4} & \mathrm{Z}_{2} & \mathrm{Z}_{1} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array} \\
& \begin{array}{llll}
0 & 1 & 0 & 1
\end{array} \\
& 23 \\
& Z_{8} Z_{2}
\end{aligned}
$$

Decimal Adders (3/3)

$\underset{\text { mars }}{\substack{\text { Laboratory for } \\ \text { Retiable } \\ \text { Momputing }}}$
$\underset{\text { mars }}{\substack{\text { Laboratory for } \\ \text { Retiable } \\ \text { Momputing }}}$

Hsi-Pin Ma
Hsi-Pin Ma

Hsi-Pin Ma
\square

Multiplication

- Multiplication consists of
- Generation of partial products
- Accumulation of shifted partial products

M-bit x N-bit Multiplication

2-bit x 2-bit Binary Multiplier

4-bit x 3-bit Binary Multiplier

\mathbf{X}		A_{2}	A_{1}	A_{0}		
		$A_{0} B_{3}$	$A_{0} B_{2}$	$A_{0} B_{1}$	$A_{0} B_{0}$	
		$\mathrm{~A}_{1} \mathrm{~B}_{3}$	$\mathrm{~A}_{1} \mathrm{~B}_{2}$	$\mathrm{~A}_{1} \mathrm{~B}_{14}^{1}$	$\mathrm{~A}_{1} \mathrm{~B}_{0}$	
	$\mathrm{~A}_{2} \mathrm{~B}_{3}$	$\mathrm{~A}_{2} \mathrm{~B}_{2}$	$\mathrm{~A}_{2} \mathrm{~B}_{1}$	$\mathrm{~A}_{2} \mathrm{~B}_{0}$		
C_{6}	C_{5}	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}
			2,3			

$$
A
$$

Other Arithmetic Functions

- It is convenient to design the functional blocks by contraction
- Removal of redundancy from circuit to which input fixing has been applied
- Functions
- Increment
- Decrement
- Multiplication by constant
- Division by constant
- Zero fill and extension

Design by Contraction

- Simplify the logic in a functional block to implement a different function
- The new function must be realizable from the original function by applying rudimentary functions to its inputs
- Contraction is treated here only for application of 0s and $1 s$ (not for X and X^{\prime}).
- After application of 0 s and 1 s , equations or the logic diagram are simplified

Design by Contraction Example

- Contraction of a ripple carry adder to incrementer for $\mathrm{n}=1$ (Set $\mathrm{B}=001$)

(a)

(b)

Incrementing and Decrementing

- Incrementing
- Add a fixed value to an arithmetic variable
- Fixed value is often 1 , called counting up
- A+1, B+4
- Functional block is called incrementer
- Decrementing
-Subtracting a fixed value from an arithmetic variable
- Fixed value is often 1, called counting down
- A-1, B-4
- Functional block is called decrementer

Multiplication/Division by 2^{n}

- Shift left (multiplication) or right (division)

shift left by 2

shift right by 2

Multiplication by a Constant

Zero Fill

- Fill an m-bit operand with 0 s to become an n-bit operand with $n>m$.
- Filling usually is applied to the MSB end of the operand, but can also be done on the LSB end.
- 11110101 filled to 16 bits
- MSB end: 0000000011110101
- LSB end: 1111010100000000
\{11110101\{8\{0\}\}\}

Extension

- Increase in the number of bits at the MSB end of an operand by using a complement representation
- Copies the MSB of the operand into the new positions
- 01110101 extended to 16 bits
-0000000001110101
\{\{8\{a7\}\}a71110101\}
- 11110101 extended to 16 bits
- 1111111111110101

－

 Magnitude Comparator
ex ex
．
（
（
\qquad
.
－ Magnitude Comparator

 Magnitude Comparator Magnitude Comparator.
－ Magnitude Comparator Magnitude Comparator

\qquad
．
－
－

$$
\Gamma
$$

正

， －

9

A 4-bit Equality Comparator

- Spec 1
- input $\mathrm{A}(3: 0), \mathrm{B}(3: 0)$; output $\mathrm{E}(1 / 0$ for equal / unequal)
-Formulation 2
- Bypass the truth table approach due to its size (8 inputs)
- By algorithm to build a regular circuit
- $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}, \mathrm{~B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$
- $\mathrm{A}==\mathrm{B}$, if $\left(\mathrm{A}_{3}==\mathrm{B}_{3}\right)$ AND $\left(\mathrm{A}_{2}==\mathrm{B}_{2}\right)$ AND $\left(\mathrm{A}_{1}==\mathrm{B}_{1}\right)$ AND ($\mathrm{A}_{0}==\mathrm{B}_{0}$)
- bit equality $\mathrm{x}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}}{ }^{\prime} \mathrm{B}_{\mathrm{i}}{ }^{\prime},(\mathrm{A}==\mathrm{B})=\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$

A 4-bit Equality Comparator

- Optimization 3
- Regularity
- Reuse

Magnitude Comparator

Comparison of two numbers, three possible results $(A>B, A=B, A<B)$

- Design approaches (for n-bit numbers)
- By truth table: $2^{2 n}$ rows $=>$ not practicable $2 x$ - By algorithm to build a regular circuit

3

- $\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}, \mathrm{~B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$ - $\mathrm{A}==\mathrm{B}$, if $\left(\mathrm{A}_{3}==\mathrm{B}_{3}\right)$ AND $\left(\mathrm{A}_{2}==\mathrm{B}_{2}\right)$ AND $\left(\mathrm{A}_{1}==\mathrm{B}_{1}\right)$ AND ($\mathrm{A}_{0}==\mathrm{B}_{0}$)
- equality $x_{i}=A_{i} B_{i}+A_{i}{ }^{\prime} B_{i}{ }^{\prime}, \quad(A=B)=x_{3} x_{2} x_{1} x_{0}$
$\bullet(\mathrm{A}>\mathrm{B})=\mathrm{A}_{3} \mathrm{~B}_{3}{ }^{\prime}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}_{2}{ }^{\prime}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{~A}_{1} \mathrm{~B}_{1}{ }^{\prime}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0} \mathrm{~B}_{0}{ }^{\prime}$
$\cdot(\mathrm{A}<\mathrm{B})=\mathrm{A}_{3}{ }^{\prime} \mathrm{B}_{3}+\mathrm{x}_{3} \mathrm{~A}_{2}{ }^{\prime} \mathrm{B}_{2}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{~A}_{1}{ }^{\prime} \mathrm{B}_{1}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0}{ }^{\prime} \mathrm{B}_{0}$

Magnitude Comparator

Maximun Unit

$$
y=\max \{a, b\}
$$

 $\frac{T}{n}$
$\frac{1}{\square}$
\vdots
3
3
0 T. $\frac{T}{n}$
$\frac{1}{\square}$
\vdots
3
3
0

(D)

\section*{Decoders}

-

One-hot Representation

- Represent a set of N elements with N bits
- Exactly one bit is set

Binary	One-hot
000	00000001
001	00000010
010	00000100
011	00001000
100	00010000
101	00100000
110	01000000
111	10000000

Decoder

- A decoder is a combinational circuit that converts binary information from n input lines to m (maximum of 2^{n}) unique output lines
-n-to-m-line decoder

- A binary one-hot decoder converts a symbol from binary code to a one-hot code
- Output variables are mutually exclusive because only one output can be equal to 1 at any time (the very 1-minterm)
- Example
- binary input \boldsymbol{a} to one-hot output \boldsymbol{b}

$$
b[i]=1 \text { if } a=i \quad \text { or } \quad b=1 \ll a
$$

1-to-2-Line Decoder

1	2	x	D_{1}
	D_{0}		
	0	0	1
	1	1	0

2-to-4-Line Decoder

3-to-8-Line Decoder

Enabling

- Enabling permits an input signal to pass through to an output.

Decoder with Enable Input (1/3)

- Line decoder with enable control (E)
- Also called demultiplexer (DMUX, DEMUX)

1	2	E	A_{0}	C_{1}
1	C_{0}			
1	0	0	1	
1	1	1	0	
	0	x	0	0

graphic symbol/ block diagram

Decoder with Enable Input (2/3)

- Constructed with NAND gates
- decoder minterms in their complemented form (more economical)

$$
\begin{aligned}
& 3 \mathrm{D}_{0}=\left(\mathbf{E}^{\prime} \mathbf{A}^{\prime} \mathbf{B}^{\prime}\right)^{\prime} \\
& \mathrm{D}_{1}=\left(\mathbf{E}^{\prime} \mathbf{A}^{\prime} \mathbf{B}\right)^{\prime} \\
& \mathrm{D}_{2}=\left(\mathrm{E}^{\prime} \mathbf{A B} \mathbf{B}^{\prime}\right)^{\prime} \\
& \mathrm{D}_{3}=\left(\mathbf{E}^{\prime} \mathbf{A B}\right)^{\prime}
\end{aligned}
$$

Decoder with Enable Input (3/3)

- decoder with enable vs. demultiplexer

Decoder Expansion

- Larger decoders can be implemented with smaller decoders

A 4-to-16-line decoder from two 3-to-8-line decoders with Decoders

- Any combinational circuit with n inputs and m outputs can be implemented with an n-to- 2^{n} decoder in conjunction with m external OR gates

1	2	x	y	z	C	S
		0	0	0	0	0
		0	0	1	0	1
		0	1	0	0	1
		0	1	1	1	0
		1	0	0	0	1
		1	0	1	1	0
		1	1	0	1	0
		1	1	1	1	1

$$
\begin{aligned}
& S(x, y, z)=\sum(1,2,4,7) \\
& C(x, y, z)=\sum(3,5,6,7)
\end{aligned}
$$

号
品
 －

[^1]\qquad
\qquad

Abstract

而

\square
\square
\square號

Pr

（a）
\qquad
\qquad

Encoder

- An encoder is an inverse of a decoder.
- Encoder is a logic module that converts a one-hot input signal to a binary-encoded output signal
- Other input patterns are forbidden in the truth table.
- Example: a 4->2 encoder

a3	a2	a1	a0	b1	b0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Encoder (1/2)

- A combinational logic that performs the inverse operation of a decoder
- Only one input has value 1 at any given time
- Can be implemented with OR gates

Truth Table of Octal-to-Binary Encoder

$1{ }^{1} 2$	inputs							Outputs			
D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	x	y	z	
1	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	1	$\mathrm{x}=\mathrm{D}_{4}+\mathrm{D}_{5}+\mathrm{D}_{6}+\mathrm{D}_{7}$
0	0	1	0	0	0	0	0	0	1	0	$\mathrm{y}=\mathrm{D}_{2}+\mathrm{D}_{3}+\mathrm{D}_{6}+\mathrm{D}_{7}$
0	0	0	1	0	0	0	0	0	1	1	$\mathrm{z}=\mathrm{D}_{1}+\mathrm{D}_{3}+\mathrm{D}_{5}+\mathrm{D}_{7}$
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

Encoder (2/2)

However, when both D3 and D6 goes 1, illegal inputs the output will be 111 (ambiguity)!!!

Use priority encoder!

Priority Encoder (1/2)

- Ensure only one of the input is encoded
- D_{3} has the highest priority, while D_{0} has the lowest priority.
- X is the don't care conditions, V is the valid output indicator.

inputs				12	Outputs			
D_{0}	D_{1}	D_{2}	D_{3}			y		
0	0	0	0			X	0	
1	0	0	0			0	1	
X	1	0	0			1	1	
X	X	1	0			0	1	
X	X	X	1			1		

Priority Encoder (2/2)

Arbiters and Priority Encoders

\qquad

都

Asi-Pin Ma

\square
\square
2
\square

\square
\square

Asi-Pin Ma
Asi-Pin Ma
Arbiters and Priority Encoders

Arbiters and Priority Encoders
Arbiters and Priority Encoders

\qquad
\qquad
\qquad
\qquad

Arbiters

- Arbiter handles requests from multiple devices to use a single resource
- Also called find-first-one (FF1) unit
- Accepts an arbitrary input signal (r), and outputs a onehot signal (g) to indicate the least significant 1 (or the most significant 1) of the input
- Example: input: 01011100
- output: 00000100 (least significant 1)
- output: 01000000 (most significant 1)

Finds the first " 1 " bit in r $g[i]=1$ if $r[i]=1$ and $r[j]=0$ for $\mathrm{j}<\mathrm{i}$ (for the least significant 1)

Computing

Implementation of Arbiters

Priority Encoder

- n -bit one-hot input signal a
- m-bit output signal b
-b indicates the position of the first 1 bit in a

\begin{abstract}

Abstract

\end{abstract}

\qquad

Multiplexers/Selectors

- A Multiplexer selects (usually by n select lines) binary information from one of many (usually 2^{n}) input lines and directs it to a single output line.

$3 \mathrm{Y}=\mathbf{S}^{\prime} \mathbf{I}_{\mathbf{0}}+\mathbf{S I}_{\mathbf{1}}$

4:1 MUX

\square

Compuing

MUX as a Decoder

- MUX = decoder + OR gate + enable (optional)

Computing

Multiplexer Implementation

- One-bit 4:1 multiplexer

Using AND-OR circuit

Using Tri-state buffer

Quadruple 2:1 MUX (4-bit 2:1 MUX)

Function table
E $\quad S$ Output Y
$1 X$ all 0's
$\begin{array}{llll}0 & 0 & \text { select } A\end{array}$
$\begin{array}{lll}0 & 1 & \text { select } B\end{array}$

four 2:1 MUX with enable

Bus

- Bus is a common communication channel which is routed around modules on a microchip or PCB.
- To construct a bus, we use a component, tristate driver (buffer), which has three possible output states: 0, 1, Z (high impedance).
- Functionally, a bus is equivalent to a selector. It has many inputs but allow only one data on the bus at a time.

MUX with Three-State Gates

-

Abstract

\section*{Shifter
 Shifter}

r

Shifter

- A shifter shifts one bit position of its content to the left or right at a time, taking the input bit from the right or left when it shifts.

Shifter Types

- Logical shifter
-Shift the number to the left or right and fills empty spots with 0's
-Ex: 1101, LSR 1=0110, LSL 1=1010
- Arithmetic shifter
-Same as logical shifter but on right shift fills empty the MSBs with the sign bit (sign extension)
-Ex: 1101, ASR 1=1110, ASL 1=1010
- Barrel shifter (rotator, cyclic shift)
-Rotate numbers in a circle such that empty spots are filled with bits shifted off the other end
-Ex: 1101, RSR 1=1110, RSL 1=1011

[^0]: .

[^1]: T

