

Combinational Logic

Hsi-Pin Ma 馬席彬

<u>https://eeclass.nthu.edu.tw/course/3452</u> Department of Electrical Engineering National Tsing Hua University

Outline

- Combinational Circuits
- Analysis of Combinational Circuits
- Design Procedure
- Binary Adder-Subtractor
- Decimal Adder
- Binary Multiplier
- Magnitude Comparator
- Decoder
- Encoders
- Arbiters
- Multiplexers
- Shifters

Combinational Circuits

Logic Circuits for the Digital System

Combinational circuits

-Logic circuits whose outputs at any time are determined *directly* and *only* from the present *input combination*.

Sequential circuits

- Circuits that employ memory elements + (combinational) logic gates
- -Outputs are determined from the present input combination as well as the state of the memory cells.

Combinational Logic Circuits

• Memoryless: o=f(i)

– Used for control, arithmetic, and data steering.

Closure

- Combinational logic circuits are closed under *acyclic* composition
- Cyclic composition of two combinational logic circuits
 - The *feedback* variable can remember the *history* of the circuits
 - -Sequential logic circuit

Analysis of Combinational Circuits

Analysis Procedure

- Analysis for an available logic diagram
 - Make sure the given circuit is combinational
 - No feedback path or memory element
 - Derive the corresponding *Boolean functions*
 - Derive the corresponding *truth table*
 - -Verify and analyze the design
 - •Logic simulation (waveforms)
 - -Explain the function

Derivation of Boolean Functions (1/2)

- Label all gate outputs that are functions of the input variables only. Determine the functions.
- Label all gate outputs that are functions of the input variables and previously labeled gate outputs, and find the functions.
- Repeat previous step until all the primary outputs are obtained.

Beliable Computing Derivation of Boolean Functions (2/2)

• Example

- -List all functions
 - $F_2 = AB + AC + BC$
 - • $T_1=A+B+C$
 - $T_2 = ABC$
 - $T_3 = F_2'T_1$
 - $F_1 = T_3 + T_2$

- $-F_1=T_3+T_2=F_2'T_1+ABC=(AB+AC+BC)'(A+B+C)+ABC$ =A'BC'+A'B'C+AB'C'+ABC
- Full adder (F₁: sum, F₂: carry)

Derivation of Truth Table (1/2)

• For *n* input variables

- List all the 2^n input combinations from 0 to 2^n -1.
- Partition the circuit into small single-output blocks and label the output of each block.
- -Obtain the truth table of the blocks depending on the input variables only.
- Proceed to obtain the truth tables for other blocks that depend on previously defined truth tables.

Derivation of Truth Tables (2/2)

• Example

Α	B	С	F ₂	F ' ₂	T 1	T 2	T 3	F 1
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Design Procedure

Design Procedure

- Specification: From the specifications, determine the inputs, outputs, and their symbols.
- Formulation: Derive the *truth table (functions)* from the relationship between the inputs and outputs
- Optimization: Derive the simplified Boolean functions for each output function. Draw a logic diagram or provide a netlist for the resulting circuits using AND, OR, and inverters.
- <u>Technology Mapping</u>: Transform the logic diagram or netlist to a new diagram or netlist using the available implementation technology.
 - <u>Verification</u>: Verify the design.

Laboratory for Reliable Computing

A BCD-to-Excess-3 Code Converter (1/3)

• Spec 1

- -input (ABCD), output (wxyz) (MSB to LSB)
- -ABCD: 0000 ~ 1001 (0~9)

• Formulation ²

-wxyz = ABCD + 0011

lr	BCL	Ou	tput	Exc	ess-(3 Code		
Α	В	С	D	W	x	У	Ζ	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	
1	0	1	0	X	Х	X	X	
1	0	1	1	X	X	X	X	
1	1	0	0	X	Х	X	X	don't care
1	1	0	1	X	Х	X	X	
1	1	1	0	X	Х	X	X	
1	1	1	1	X	X	X	X	

A BCD-to-Excess-3 Code Converter (2/3)

• Optimization 3

z=D' y=CD+C'D' x=B'C+B'D+BC'D' w=A+BC+BDfrom K-map

z=D'y=CD+(C+D)' x=B'(C+D)+BC'D' w=A+B(C+D)

reduce gate numbers

4 4. Draw logic diagram

Laboratory for

A BCD-to-Seven-Segment Display Decoder (1/2)

• Spec 1

- -input (ABCD), output (abcdefg) (MSB to LSB)
- -ABCD: 0000 ~ 1001 (0~9)

• Formulation ²

BCD Input				Seven-Segment Decoder						
Α	В	С	D	a	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
All other inputs			0	0	0	0	0	0	0	

A BCD-to-Seven-Segment Decoder (2/2)

• Optimization ₃

- -7x K-Map simplification
- -a=A'C+A'BD+B'C'D'+A'B'C'
- -b=A'B'+A'C'D'+A'CD+AB'C'
- -c=A'B+A'D+B'C'D'+AB'C'
- -d=A'CD'+A'B'C+B'C'D'+AB'C'+A'BC'D
- -e=A'CD'+B'C'D'
- -f = A'BC' + A'C'D' + A'BD' + AB'C'
- -f = A'CD' + A'B'C + A'BC' + AB'C'
- Technology Mapping 4

Binary Adder-Subtractor

Binary Half Adder & Full Adder (1/3) Half adder x y 2 C S 3

0

0

1

0

0

0

Inputs: x, y Outputs: C (carry), S(sum)

• Full adder

Inputs: x, y, z(carry from previous lower significant bit) Outputs: C(carry), S(sum) $S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$ $x = y = z \oplus z$ $x = y = z \oplus z$

 $0 \quad S = x'y + xy' = x \oplus y$

C = xy

Binary Half Adder & Full Adder (2/3)

Binary Half Adder & Full Adder (3/3)

• Full adder implemented with half adders

- Two half adders and one OR gate

 $S = z \oplus (x \oplus y)$

C = z(xy' + x'y) + xy

Ripple-Carry Adder (2/4)

Ripple-Carry Adder (3/4)

define

$S_i = f(A)$ $C_{i+1} = g(A)$	$A_i, B_i, C_i) = A_i \oplus B_i \oplus C_i$ $A_i, B_i, C_i) = A_i \cdot B_i + B_i \cdot C_i + C_i \cdot A_i$
	$S_0 = f(A_0, B_0, C_0)$ $C_1 = g(A_0, B_0, C_0)$
	$S_1 = f(A_1, B_1, C_1)$ $C_2 = g(A_1, B_1, C_1)$
	$S_2 = f(A_2, B_2, C_2)$ $C_3 = g(A_2, B_2, C_2)$
	$S_3 = f(A_3, B_3, C_3)$ $C_4 = g(A_3, B_3, C_3)$

Multi-bit Notation

• Multi-bit signal or a bus

- Verilog bit-select (bit-slice) or part-select
 - -b[7:0]
 - -b[7]
 - -b[5:3]

1

Carry Lookahead Adder (1/3)

• For a full adder, define what happens to carry

-Carry-generate: Cout=1 independent of Cin

• $G_i = A_i \cdot B_i$ Gi **P**_i Bi Ki Ai - Carry-propagate: Cout=Cin 1 ()()()()2 • $P_i = A_i \oplus B_i$ 1 1 $\mathbf{0}$ $\left(\right)$ $\left(\right)$ - Carry-kill: C_{out}=0 independent of C_{in} 1 1 () \mathbf{O} $\left(\right)$ • $K_i = A'_i \cdot B'_i$ 1 1 1 \mathbf{O} ()• Use the above info

$$-C_{i+1} = A_i B_i + B_i C_i + A_i C_i = A_i B_i + (A_i + B_i) C_i = G_i + P_i C_i$$

$$S_i = A_i \oplus B_i \oplus C_i = P_i \oplus C_i$$

3

3

Carry Lookahead Adder (2/3)

• Do not have to wait for C_i to compute C_{i+1}

 $- C_{i+1} = G_i + P_i C_i$

$$- C_{i+2} = G_{i+1} + P_{i+1}C_{i+1} = G_{i+1} + P_{i+1}G_i + P_{i+1}P_iC_i$$

 $- C_{i+3} = G_{i+2} + P_{i+2}C_{i+2} = G_{i+2} + P_{i+2}G_{i+1} + P_{i+2}P_{i+1}G_i + P_{i+2}P_{i+1}P_iC_i$

 $C_{i+4} = G_{i+3} + P_{i+3}C_{i+3} = G_{i+3} + P_{i+3}G_{i+2} + P_{i+3}P_{i+2}G_{i+1} + P_{i+3}P_{i+2}P_{i+1}G_i + P_{i+3}P_{i+2}P_{i+1}P_iC_i$

• Fixed delay time for each carry (but not the same for every gate!)

Fanout of G_i & P_i also affect the overall delay => usually be limited to 4 bits

Carry Lookahead Adder (3/3)

Laboratory for

Reliable Computing

Binary Adders/Subtractors

 $B_i M A_i$

FA

 C_i

 C_{i+1}

 Binary subtraction normally is
performed by adding the minuend to the 2's complement of the subtrahend.

Decimal Adder

Decimal Adders (1/3)

Addition of 2 decimal digits in BCD

$-\{C_{out},S\}=A+B+C_{in}$				
$1 \circ S - S_0 S_1 S_0 S_1 \Delta - \Delta$	Decimal	BCD digit		
	symbol			
– A digit in BCD ca	0	0000		
for final correction	1	0001		
10 10			2	0010
10 10	000		3	0011
8_{10} A 1	$0\ 0\ 0_{2}$	2 3	4	0100
9 ₁₀ B 1	001_{2}		5	0101
17.5 K7 10		hinary coded regults	6	0110
	0012	billary coded results	7	0111
0	110_{2}	if >9, add 6	8	1000
00010	$1 \ 1 \ 1_2$	BCD coded results	9	1001

Decimal Adders (2/3)

Decimal Adders (3/3)

Hsi-Pin Ma

Binary Multiplier

Multiplication

Multiplication consists of

- -Generation of partial products
- Accumulation of shifted partial products

M-bit x N-bit Multiplication

$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

						У ₅	У ₄	У ₃	У ₂	У ₁	У ₀		Multiplicand
						X_5	X ₄	X ₃	x ₂	X ₁	x ₀	_	Multiplier
						x ₀ y ₅	x ₀ y ₄	x ₀ y ₃	x ₀ y ₂	x ₀ y ₁	x ₀ y ₀	_	
					x ₁ y ₅	x ₁ y ₄	x ₁ y ₃	x ₁ y ₂	x ₁ y ₁	x ₁ y ₀			
				x ₂ y ₅	$x_2 y_4$	x ₂ y ₃	x ₂ y ₂	x ₂ y ₁	x ₂ y ₀				Partial
			x ₃ y ₅	$x_3 y_4$	$x_3 y_3$	x ₃ y ₂	$x_3 y_1$	$x_3 y_0$					Products
		x ₄ y ₅	x ₄ y ₄	$x_4 y_3$	$x_4 y_2$	x ₄ y ₁	x ₄ y ₀						
	x ₅ y ₅	x ₅ y ₄	x ₅ y ₃	x ₅ y ₂	x ₅ y ₁	$x_5 y_0$						_	
р ₁₁	p ₁₀	p ₉	p ₈	p ₇	p ₆	р ₅	p ₄	p ₃	p ₂	p ₁	p ₀	-	Product

2-bit x 2-bit Binary Multiplier

4-bit x 3-bit Binary Multiplier

Other Arithmetic Functions

- It is convenient to design the functional blocks by *contraction*
 - Removal of redundancy from circuit to which input fixing has been applied

Functions

- -Increment
- -Decrement
- -Multiplication by constant
- -Division by constant
- -Zero fill and extension

Design by Contraction

Simplify the logic in a functional block to implement a different function

- The new function must be realizable from the original function by applying rudimentary functions to its inputs
- Contraction is treated here only for application of 0s and 1s (not for X and X').
- After application of 0s and 1s, equations or the logic diagram are simplified

Design by Contraction Example

 Contraction of a ripple carry adder to incrementer for n=1 (Set B=001)

Incrementing and Decrementing

Incrementing

- -Add a fixed value to an arithmetic variable
- Fixed value is often 1, called counting up

•A+1, B+4

– Functional block is called incrementer

Decrementing

- Subtracting a fixed value from an arithmetic variable
- Fixed value is often 1, called counting down

• A-1, B-4

– Functional block is called decrementer

Multiplication/Division by 2ⁿ

• Shift left (multiplication) or right (division)

shift left by 2

shift right by 2

Multiplication by a Constant

Zero Fill

- Fill an *m*-bit operand with 0s to become an *n*-bit operand with *n* > *m*.
- Filling usually is applied to the MSB end of the operand, but can also be done on the LSB end.
- 11110101 filled to 16 bits
 - –MSB end: 000000011110101
 - –LSB end: 111101010000000

 $\{\{8\{0\}\}11110101\}$ $\{11110101\{8\{0\}\}\}$

Extension

- Increase in the number of bits at the MSB end of an operand by using a complement representation
 - Copies the MSB of the operand into the new positions
 - -01110101 extended to 16 bits
 - **000000001110101**

 $\{\{8\{a_7\}\}a_71110101\}$

- -11110101 extended to 16 bits
 - **11111111111**1110101

Magnitude Comparator

A 4-bit Equality Comparator

• Spec 1

$$\begin{array}{c|c} A \xrightarrow{4} \\ B \xrightarrow{4} \\ 4 \end{array} & \begin{array}{c} 4 \text{-bit Equality} \\ Comparator \end{array} \xrightarrow{} B \end{array}$$

-input A(3:0), B(3:0); output E (1/0 for equal/unequal)

• Formulation ²

- -Bypass the truth table approach due to its size (8 inputs)
- –By algorithm to build a regular circuit

•
$$A = A_3 A_2 A_1 A_0$$
, $B = B_3 B_2 B_1 B_0$

• A==B, if $(A_3==B_3)$ AND $(A_2==B_2)$ AND $(A_1==B_1)$ AND $(A_0==B_0)$

- bit equality $x_i = A_i B_i + A_i' B_i'$, (A==B) = $x_3 x_2 x_1 x_0$

A 4-bit Equality Comparator

- Optimization
 A
 -Regularity
 - -Reuse

Magnitude Comparator

- Comparison of two numbers, three possible
 results (A>B, A=B, A<B)
- Design approaches (for *n*-bit numbers)
 - -By truth table: 2^{2n} rows => not practicable **2** x
 - By algorithm to build a regular circuit
 A=A₃A₂A₁A₀, B=B₃B₂B₁B₀
 - A==B, if $(A_3==B_3)$ AND $(A_2==B_2)$ AND $(A_1==B_1)$ AND $(A_0==B_0)$
 - equality $x_i = A_i B_i + A_i' B_i'$, (A=B) = $x_3 x_2 x_1 x_0$
 - $(A > B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$
 - $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$

Maximun Unit

 $y = \max\{a, b\}$

Decoders

One-hot Representation

- Represent a set of N elements with N bits
- Exactly one bit is set

Binary	One-hot
000	0000001
001	0000010
010	00000100
011	00001000
100	00010000
101	00100000
110	0100000
111	1000000

Decoder

- A decoder is a combinational circuit that converts binary information from *n* input lines to *m* (maximum of 2^{*n*}) *unique* output lines 'n m
 - *–n-to-m-line decoder*

- A binary one-hot decoder converts a symbol from binary code to a one-hot code
 - -Output variables are *mutually exclusive* because only one output can be equal to 1 at any time (the very 1-minterm)
 - Example
 - binary input *a* to one-hot output *b*

$$b[i] = 1$$
 if $a = i$ or $b = 1 << a$

1-to-2-Line Decoder

2-to-4-Line Decoder

1 2	a ₁	a_0	b ₃	b ₂	b_1	b_0	
	0	0	0	0	0	1	
	0	1	0	0	1	0	
	1	0	0	1	0	0	
	1	1	1	0	0	0	

3
$$b_3 = a_1 a_0$$

 $b_2 = a_1 a'_0$
 $b_1 = a'_1 a_0$
 $b_0 = a'_1 a'_0$

Enabling

• Enabling permits an input signal to pass through to an output.

EN	X	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F = \mathrm{EN} \cdot X$$

Decoder with Enable Input (1/3)

- Line decoder with *enable* control (E)
- Also called demultiplexer (DMUX, DEMUX)

Decoder with Enable Input (2/3) Constructed with NAND gates

decoder minterms in their complemented form (more economical)

Decoder with Enable Input (3/3)

decoder with enable vs. demultiplexer

Decoder Expansion

• Larger decoders can be implemented with smaller decoders

A 4-to-16-line decoder from two 3-to-8-line decoders

Laboratory for Reliable **Computing** Computing Computing Complementational Logic Implementation with Decoders

• Any combinational circuit with *n* inputs and *m* outputs can be implemented with an *n*-to-2^{*n*} decoder in conjunction with *m* external OR gates

Encoders

Encoder

- An encoder is an inverse of a decoder.
- Encoder is a logic module that converts a *one-hot* input signal to a binary-encoded output signal
- Other input patterns are *forbidden* in the truth table. ∞ ∞ ∞ ∞
- Example: a 4->2 encoder

a3	a2	a1	a0	b1	b0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Encoder (1/2)

• A combinational logic that performs the inverse operation of a decoder

- Only one input has value 1 at any given time
- Can be implemented with OR gates

1	2		ing	outs				0	Dutpu	ts
D_0	D_1	D_2	D3 .	D4	D_5	D_6	D7	x	ý	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	- 0
0	0	0	0	0	0	0	1	1	1	1

Truth Table of Octal-to-Binary Encoder

3
$$x=D_4+D_5+D_6+D_7$$

 $y=D_2+D_3+D_6+D_7$
 $z=D_1+D_3+D_5+D_7$

z

However, when both D3 and D6 goes 1, illegal inputs the output will be 111 (ambiguity)!!!

Use priority encoder!

Priority Encoder (1/2)

- Ensure only one of the input is encoded
- D₃ has the highest priority, while D₀ has the lowest priority.
- X is the don't care conditions, V is the valid output indicator.

	Inp	uts		1 2	Outpu	ts	
\mathbf{D}_{0}	D_1	D_2	D_3		x y	$\overline{\mathbf{V}}$	
0	0	0	0		XX	0	
1	0	0	0		0 0	1	$V = D_0 + D_1 + D_2 + D_3$
X	1	0	0		0 1	1	
Χ	X	1	0		1 0	1	
X	X	X	1		11	1	

Priority Encoder (2/2)

Laboratory for

Reliable

Computing

THU P

Arbiters and Priority Encoders

Arbiters

- Arbiter handles requests from multiple devices to use a single resource
 - Also called *find-first-one* (FF1) unit
 - Accepts an arbitrary input signal (r), and outputs a onehot signal (g) to indicate the least significant 1 (or the most significant 1) of the input
 - Example: input: 01011100
 - output: 00000100 (least significant 1)
 - •output: 01000000 (most significant 1)

Finds the first "1" bit in r g[i] = 1 if r[i] = 1 and r[j] = 0 for j < i(for the least significant 1)

Implementation of Arbiters

1 bit cell of arbiter

Using look ahead

Priority Encoder

- n-bit one-hot input signal a
- m-bit output signal b

– b indicates the position of the first 1 bit in a

Multiplexers

Multiplexers/Selectors

• A Multiplexer selects (usually by *n* select lines) binary information from one of many (usually 2^{*n*}) input lines and directs it to a single output line.

4:1 MUX

MUX as a Decoder

• MUX = decoder + OR gate + enable (optional)

Multiplexer Implementation

• One-bit 4:1 multiplexer

Using AND-OR circuit

Using Tri-state buffer

	$A_0 \longrightarrow Y_0$
	A_1
Function table	A_2
E S Output Y	
1 X all 0's	
0 0 select A	
0 1 select B	

four 2:1 MUX with enable

Hsi-Pin Ma

Laboratory for

Reliable

THU EE

Bus

- Bus is a common communication channel which is routed around modules on a microchip or PCB.
- To construct a bus, we use a component, <u>tristate driver</u> (<u>buffer</u>), which has three possible output <u>states</u>: 0, 1, Z (high impedance).
- Functionally, a bus is equivalent to a selector. It has many inputs but allow only one data on the bus at a time.

MUX with Three-State Gates

Hsi-Pin Ma

Shifter

Shifter

• A shifter shifts one bit position of its content to the left or right at a time, taking the input bit from the right or left when it shifts.

Shifter Types

Logical shifter

-Shift the number to the left or right and fills empty spots with *0's*

-Ex: 1101, LSR 1=0110, LSL 1=1010

Arithmetic shifter

- -Same as logical shifter but on right shift fills empty the *MSBs* with the sign bit (sign extension)
- -Ex: 1101, ASR 1=**1**110, ASL 1=101**0**

• Barrel shifter (rotator, cyclic shift)

-Rotate numbers in a circle such that empty spots are filled with *bits shifted off* the other end

-Ex: 1101, RSR 1=1110, RSL 1=1011