Boolean Algebra and Logic Gates

Hsi－Pin Ma 馬席彬

https：／／eeclass．nthu．edu．tw／course／3452
Department of Electrical Engineering
National Tsing Hua University

Outline

- Algebraic Properties
- Boolean Algebra
- Two-valued Boolean Algebra
- Basic Theorems and Properties of Boolean Algebra
- Boolean Functions
- Normal and Standard Forms
- Other Logic Operations

菏
$\frac{\text { I }}{\frac{1}{1}}$
\vdots
\vdots
3
3
3
\qquad

$\frac{1}{n}$
$\frac{1}{n}$
$\frac{1}{3}$
2
2
品

$\substack{\text { I } \\ \vdots \\ \vdots \\ 3}$
3
0
品
品
（os）
\qquad

品

$\frac{\text { I }}{\text { n．}}$
D．
B．
3
3
2

I．
品
$\frac{\text { I }}{\text { n．}}$
D．
B．
3
3
2

2

Basic Definition

- A set is a collection of objects with a common property.
- A binary operator on a set S is a rule that assigns to, each pair of elements in S, another unique element in S.
- The axioms (postulates) of an algebra are the basic assumptions from which all theorems of the algebra can be proved.
- It is assumed that there is an equivalent relation (=), which satisfies that principle of substitution.
- It is reflexive, symmetric, and transitive.

Most Common Axioms Used to

Formulate an Algebra Structure (1/2)

- Closure
- A set S is closed with respective to a binary operator *if and only if $\forall x, y \in S,(x * y) \in S$
- Associativity
- A binary operator * on S is associative if and only if $\forall x, y, z \in S,(x * y) * z=x *(y * z)$
- Commutativity
- A binary operator * defined on S is commutative if and only if $\forall x, y \in S, x * y=y * x$

Most Common Axioms Used to

Formulate an Algebra Structure (2/2)

- Identity element
- A set S has an identity element with respective to *if and only if $\exists e \in S$ such that $\forall x \in S, e * x=x * e=x$
- Inverse element
- A set S having the identity element e with respect to * has an inverse if and only if $\forall x \in S, \exists y \in S$ such that $x * y=e$
- Distributivity
- If * and •are binary operators on S, * is distributive over • if and only if $\forall x, y, z \in S, x *(y \cdot z)=(x * y) \cdot(x * z)$

Example: A Field

- A field is a set of elements, together with two binary operators.
- The set of real numbers together with the binary operators + and \bullet, forms the field of real numbers.
-‘+' defines addition.
- The additive identity is 0 .
- The additive inverse defines the subtraction.
- The binary operator \bullet defines multiplication.
- The multiplicative identity is 1 .
-For $a \neq 0,1$ a (the multiplicative inverse of a) defines devision.
- The only distributive law applicable is that of \bullet over +

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$ Hsi－Pin Ma

\qquad Hsi－Pin Ma Hsi－Pin Ma
Manne
－ Hsi－Pin Ma
 \qquad Hsi－Pin Ma

 an

 \section*{
 \section*{路

 \section*{
 \section*{路

 \section*{
 \section*{路
}}
}}
}}
－ －

I

\square

震

Boolean Algebra

.
．
\qquad號

Axiomatic Definition

- Boolean algebra
- An algebraic system of logic introduced by George Boole in 1854
- Switching algebra
- A 2-valued Boolean algebra introduced by Claude Shannon in 1938
Huntington postulates
- A formal definition of Boolean Algebra in 1904
- Defined on a set B with binary operators + and \bullet, and the equivalence relation $=$.

Huntington Postulates (1/2)

- Defined by a set B with binary operators + and \cdot
- Closure with respect to + and \bullet (P1)
- $x, y \in B \Rightarrow x+y \in B, x \cdot y \in B$
- An identity element with respect to + and \bullet (P2)
- $0+x=x+0=x, 1 \cdot x=x \cdot 1=x$
- Commutative with respective to + and - (P3)
- $x+y=y+x, x \cdot y=y \cdot x$

Huntington Postulates (2/2)

- Distributive over + and • (P4)
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $x+(y \cdot z)=(x+y) \cdot(x+z)$
$-\forall x \in B, \exists x^{\prime} \in B$ (called the complement of x) such that $x+x^{\prime}=1, x \cdot x^{\prime}=0 \quad$ (P5)
- There are at least 2 distinct elements in B (P6)
- There exist at least two $x, y \in B$, such that $x \neq y$

Notes (1/2)

- The axioms are independent, none can be proved from others.
- Associativity is not included, since it can be derived (both + and \bullet) from the given axioms.
- In ordinary algebra, + is not distributive over •.
- No additive or multiplicative inverses; no subtraction or division operations.
- Complement is not available in ordinary algebra.
$-B$ is as yet undefined. It it to be defined as the set $\{0,1\}$ (two-valued Boolean Algebra). In ordinary algebra, the set S can contain an infinite set of elements.

Notes (2/2)

- Boolean algebra
- Set B of at least 2 elements (not variables)
- Rules of operation for the 2 binary operators (+ and \bullet)
- Huntington postulates satisfied by the elements of B and the operators.
- Two-valued Boolean algebra (switching algebra)
$-B \equiv\{0,1\}$
- The binary operators are defined as the logical AND ($\boldsymbol{\bullet}$) and OR (+). For convenience, a unary operation NOT (complement) is also included for basic operations.
- The Huntington postulates are still valid.
- Unless otherwise noted, we will use the term Boolean algebra for the 2-valued Boolean algebra.

vet
Computing

Two-valued Boolean Algebra

- $B \equiv\{0,1\}$ is the set.
- The binary operator for + and \bullet, and the unary operator complement.

input	output
$x y$	$x \cdot y$
00	0
01	0
10	0
11	1

	input
$x y$	output
00	$x+y$
0	1
1	0
1	0
1	1

input output	
x	x^{\prime}
0	1
1	0

Huntington Postulates Test (1/3)

- Closure
$-\{0,1\}$ of the operator results still in B.
- Identity elements
$-0+0=0,0+1=1+0=1$ (0 : identity of +)
$-1 \cdot 1=1,1 \cdot 0=0 \cdot 1=0 \quad$ (1: identity of $\bullet)$
- Commutative
- Obviously from the table

Huntington Postulates Test (2/3)

- Distributive
- Holds for \bullet over +

x	y	z	$y+z$	$x \cdot(y+z)$	$x \cdot y$	$x \cdot z$	$(x \cdot y)+(x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- Can be shown to hold for + over \bullet.

Huntington Postulates Test (3/3)

- Complement
$-x+x^{\prime}=1$ since $0+0^{\prime}=0+1=1$ and $1+1^{\prime}=1+0=1$
$-x \cdot x^{\prime}=0$ since $0 \cdot 0^{\prime}=0 \cdot 1=0$ and $1 \cdot 1^{\prime}=1 \cdot 0=0$
- The two-valued Boolean algebra has two distinct elements, 0 and 1 , with $0 \neq 1$.

Basic Theorems and Properties of Boolean Algebra

Duality

- Every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
- Binary operators: AND $<=>$ OR
- Identity elements: $1<=>0$

Postulates and Theorems of Boolean Algebra

> (a)

P2	$\mathbf{x}+0=\mathbf{x}$	$\mathbf{x} \cdot 1=\mathbf{x}$
p5	$x+x^{6}=1$	$\mathbf{x} \cdot \mathbf{x}^{6}=0$
T1	$\mathbf{x}+\mathbf{x}=\mathbf{x}$	$\mathbf{X} \cdot \mathbf{X}=\mathbf{X}$
T2	$x+1=1$	$\mathbf{x} \cdot \mathbf{0}=\mathbf{0}$
T3, involution	$\left(x^{6}\right)^{\prime}=\mathbf{x}$	
p3, commutative	$\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$	$\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
T4, associative	$x+(y+z)=(x+y)+z$	$\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})=(\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$
P4, distributive	$\mathbf{x} \cdot(\mathbf{y}+\mathbf{z})=\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \mathbf{z}$	$\mathbf{x}+\mathbf{y} \cdot \mathbf{z}=(\mathbf{x}+\mathbf{y}) \cdot(\mathbf{x}+\mathrm{z})$
T5, DeMorgan	$(x+y)^{6}=x^{\prime} \cdot y^{6}$	$(x \cdot y)^{6}=x^{\prime}+y^{6}$
T6, absorption	$\mathbf{x}+\mathbf{x} \cdot \mathbf{y}=\mathbf{x}$	$\mathbf{x} \cdot(x+y)=\mathbf{x}$

Computing

Basic Theorems (1/5)

- Theorem 1 (Idempotency)
- (a) $x+x=x$, (b) $x \cdot x=x$

$$
\begin{array}{rlr}
& \text { Statement } & \text { Justification } \\
x+x & =(x+x) \cdot 1 & \text { postulate } 2(\mathrm{~b}) \\
& =(x+x)\left(x+x^{\prime}\right) & 5(\mathrm{a}) \\
& =x+x x^{\prime} & 4(\mathrm{~b}) \\
& =x+0 & 5(\mathrm{~b}) \\
& =x & 2(\mathrm{a})
\end{array}
$$

$$
\begin{array}{rlr}
& \text { Statement } & \text { Justification } \\
x \cdot x & =x x+0 & \text { postulate 2(a) } \\
& =x x+x x^{\prime} & 5(\mathrm{~b}) \\
& =x\left(x+x^{\prime}\right) & 4(\mathrm{a}) \\
& =x \cdot 1 & 5(\mathrm{a}) \\
& =x & 2(\mathrm{~b})
\end{array}
$$

Basic Theorems (2/5)

- Theorem 2

$$
(\mathrm{a}) x+1=1,(\mathrm{~b}) x \cdot 0=0
$$

Statement
$x+1=1 \cdot(x+1)$

$$
=\left(x+x^{\prime}\right)(x+1)
$$

$$
=x+x^{\prime} \cdot 1
$$

$$
=x+x^{\prime}
$$

$$
=1
$$

- (b) can be proved by duality

Basic Theorems (3/5)

- Theorem 3 (Involution)

$$
\left(x^{\prime}\right)^{\prime}=x
$$

- P5 defines the complement of x, and the complement of x^{\prime} is both x and $\left(\mathrm{x}^{\prime}\right)^{\prime}$
- Theorem 4 (Associativity)

$$
\text { (a) } x+(y+z)=(x+y)+z, \text { (b) } x(y z)=(x y) z
$$

- Can be proved by truth table

Basic Theorems (4/5)

- Theorem 5 (DeMorgan's Theorem)

$$
\text { - (a) }(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}, \text { (b) }(x y)^{\prime}=x^{\prime}+y^{\prime}
$$

- Duality principle

\mathbf{x}	\mathbf{y}	$\mathbf{x}+\mathbf{y}$	$(\mathrm{x}+\mathrm{y})^{\prime}$	\mathbf{x}^{\prime}	\mathbf{y}^{\prime}	$\mathbf{x}^{\prime} \mathbf{y}^{\prime}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Basic Theorems (5/5)

- Theorem 6 (Absorption)

$$
-(\mathbf{a}) x+x y=x, \text { (b) } x(x+y)=x
$$

$$
\begin{array}{rlr}
& \text { Statement } & \text { Justification } \\
x+x y & =x \cdot 1+x y & \text { postulate } 2(\mathrm{~b}) \\
& =x(1+y) & 4(\mathrm{a}) \\
& =x(y+1) & 3(\mathrm{a}) \\
& =x \cdot 1 & 2(\mathrm{a}) \\
& =x & 2(\mathrm{~b})
\end{array}
$$

Operator Priority

- Operator precedence
- Parentheses
- NOT
- AND
-OR
- Examples
$-x y^{\prime}+z$
$-(x y+z)^{\prime}$
\qquad

\qquad

．

＿

\square
\square
\square
\qquad

？

\square

T

\square
\square
\square
\square
\qquad
\qquad
\qquad
－

[^0]\qquad

Boolean Functions

- A Boolean function is an algebraic expression formed with
- Binary variables
- Logic operators AND, OR
- Unary NOT
- Parentheses
- An equal sign
- Examples
$-F_{1}=x+y^{\prime} z$
$-F_{2}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$

Boolean Functions

- Can be represented by a truth table, with 2^{n} rows in the table (n : \# of variable in the function)
- There are infinitely many algebraic expressions that specify a given Boolean function. It's important to find the simplest one. (cost)
- Any Boolean function can be transformed in a straightforward manner from an algebraic expression into a logic diagram of only AND, OR, and NOT gates.

Gate Implementation

- Logic diagrams

$$
F_{1}=x+y^{\prime} z
$$

Boolean Functions

- A literal is a variable or its complement in a Boolean expression
$-F_{2}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$
- 8 literals,
-1 OR term (sum term) and 3 AND terms (product terms).
- literal: a input to a gate, term: implementation with a gate
- The complement of any function F is F^{\prime}, which can be obtained by DeMorgan's Theorem.
- Take the dual of F, and then complement each literal in F.
$-\mathrm{F}_{2}{ }^{\prime}=\left(\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{xy} \mathrm{y}^{\prime}\right)^{\prime}=\left(\mathrm{x}+\mathrm{y}+\mathrm{z}^{\prime}\right)\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}^{\prime}\right)\left(\mathrm{x}^{\prime}+\mathrm{y}\right)$

Algebraic Manipulation (1/2)

- Minimize the number of literals and terms for a simpler circuits (less expensive)
- Algebraic manipulation can minimize literals and terms. However, no specific rules to guarantee the optimal results.
- CAD tools for logic minimization are commonly used today.

Algebraic Manipulation (2/2)

- Some useful rules

$$
\begin{aligned}
& -x\left(x^{\prime}+y\right)=x y \\
& -x+x^{\prime} y=x+y
\end{aligned}
$$

$$
-x y+y z+x^{\prime} z=x y+x^{\prime} z \text { (the Consensus Theorem I) }
$$

$$
-(x+y)(y+z)\left(x^{\prime}+z\right)=(x+y)\left(x^{\prime}+z\right) \text { (the Consensus }
$$ Theorem II, duality from Consensus Theorem I)

\square

Nomputing
Nomputing

\square

Minterms and Maxterms

- Minterm $\left(\mathrm{m}_{\mathrm{i}}\right)$ (or standard product term)
- An AND (product) term consists of all literals (each appears exactly once) in their normal form or in their complement form, but not in both
- eg. two binary variable x and y, the minterms are $x y, x y^{\prime}, x^{\prime} y, x^{\prime} y^{\prime}$
$-n$ variable can be combined to form 2^{n} minterms
- Maxterms (\mathbf{M}_{i}) (or standard sum term)
- An OR (sum) term consists of all literals (each appears exactly once) in their normal form or in their complement form, but not in both
- eg. two binary variable x and y, the maxterms are $x+y, x+y^{\prime}, x^{\prime}+y, x^{\prime}+y^{\prime}$
- Each maxterm is the complement of its corresponding minterm and vice versa. $\left(M_{i}=m_{i}^{\prime}\right)$

Refiable
Computing

Minterms and Maxterms

- Canonical forms
- sum-of-minterms (som)
- product-of-maxterms (pom)

	$x y z$	Minterms	Notation	Maxterms	Notation
0	000	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}	$x+y+z$	M_{0}
1	001	$x^{\prime} y^{\prime} z$	m_{1}	$x+y+z^{\prime}$	M_{1}
2	010	$x^{\prime} y z^{\prime}$	m_{2}	$x+y^{\prime}+z$	M_{2}
3	011	$x^{\prime} y z$	m_{3}	$x+y^{\prime}+z^{\prime}$	M_{3}
4	100	$x y y^{\prime} z^{\prime}$	m_{4}	$x^{\prime}+y+z$	M_{4}
5	101	$x^{\prime} z$	m_{5}	$x^{\prime}+y+z^{\prime}$	M_{5}
6	110	$x y z^{\prime}$	m_{6}	$x^{\prime}+y^{\prime}+z$	M_{6}
7	111	$x y z$	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

Example

- A Boolean function can be expressed by
- a truth table
- sum-of-minterms

$$
\begin{aligned}
& \bullet f_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z \\
&=m_{1}+m_{4}+m_{7}=\sum(1,4,7) \\
& \quad f_{2}=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z \\
&=m_{3}+m_{5}+m_{6}+m_{7}=\sum(3,5,6,7) \\
& \text { - product-of-maxterms }
\end{aligned}
$$

$$
\begin{aligned}
f_{1} & =(x+y+z)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y^{\prime}+z\right) \\
& =M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}=\Pi(0,2,3,5,6) \\
\text { - } f_{2} & =(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right) \\
& =M_{0} \cdot M_{1} \cdot M_{2} \cdot M_{4}=\Pi(0,1,2,4)
\end{aligned}
$$

Canonical Forms

- Any function can be represented by either of the 2 canonical forms
- To convert from one canonical from to another, interchange \sum and Π, and list the numbers that were excluded from the original form.
$-f_{1}=\sum(1,4,7)$ is the sum of 1-minterms for f_{1}.
$-f_{1}^{\prime}=\sum(0,2,3,5,6)$ is the sum of 0 -minterms for f_{1}.
- How to convert $\mathrm{f}=\mathrm{x}+\mathrm{yz}$ into canonical form?
- by truth table
- by expanding the missing variables in each term, using $1=x+x^{\prime}, 0=x x^{\prime}$

Standard Forms

- Canonical forms are seldom used.
- Standard forms
- sum-of-products (sop)
- Product terms (implicants) are the AND terms, which can have fewer literals than the minterms.
- product-of-sums (pos)
- Sum terms are the OR terms, which can have fewer literals than maxterms.
- Standard forms are not unique!

Standard Forms

- Standard form examples
$-f_{1}=x y+x y^{\prime} z+x^{\prime} y z$ (sop form)
$-\mathrm{f}_{1}{ }^{\prime}=\left(\mathrm{x}^{\prime}+\mathrm{y}^{\prime}\right)\left(\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}^{\prime}\right)\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}^{\prime}\right)$ (pos form)
- Nonstandard forms can have fewer literals than standard forms

$$
\begin{aligned}
& -x y+x y^{\prime} z+x y^{\prime} w=x\left(y+y^{\prime} z+y^{\prime} w\right)=x\left(y+y^{\prime}(z+w)\right) \\
& -x y+y z+z x=x y+(x+y) z=x(y+z)+y z=x z+y(x+z)
\end{aligned}
$$

Lomputing

（smutif Computing
（smutif Computing
（smutif Computing

品

\qquad

\qquad
\qquad


```
Na,
```

```
Na,
```茥．号


咅
（ather Gate

\footnotetext{
\(\qquad\)
}
（ather Gate
\(\square\)

Computing

\section*{Other Logic Operations}
- For n binary variables
\(-2^{\mathrm{n}}\) rows in the truth table
\(-2^{2^{n}}\) functions
- 16 different Boolean functions if \(\mathrm{n}=2\)
- All the new symbols except for the XOR are not in common use by digital designers

Truth Tables for the 16 Functions of Two Binary Variables
\begin{tabular}{cc|cccccccccccccccc}
\(\boldsymbol{x}\) & \(\boldsymbol{y}\) & \(\boldsymbol{F}_{\mathbf{0}}\) & \(\boldsymbol{F}_{\mathbf{1}}\) & \(\boldsymbol{F}_{\mathbf{2}}\) & \(\boldsymbol{F}_{\mathbf{3}}\) & \(\boldsymbol{F}_{\mathbf{4}}\) & \(\boldsymbol{F}_{\mathbf{5}}\) & \(\boldsymbol{F}_{\mathbf{6}}\) & \(\boldsymbol{F}_{\mathbf{7}}\) & \(\boldsymbol{F}_{\mathbf{8}}\) & \(\boldsymbol{F}_{\mathbf{9}}\) & \(\boldsymbol{F}_{\mathbf{1 0}}\) & \(\boldsymbol{F}_{\mathbf{1 1}}\) & \(\boldsymbol{F}_{\mathbf{1 2}}\) & \(\boldsymbol{F}_{\mathbf{1 3}}\) & \(\boldsymbol{F}_{\mathbf{1 4}}\) & \(\boldsymbol{F}_{\mathbf{1 5}}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{tabular} OfriWo Tariabies
\begin{tabular}{llll}
\hline Boolean Functions & \begin{tabular}{c}
Operator \\
Symbol
\end{tabular} & Name & Comments \\
\hline\(F_{0}=0\) & \(x \cdot y\) & Null & Binary constant 0 \\
\(F_{1}=x y\) & \(x / y\) & AND & \(x\) and \(y\) \\
\(F_{2}=x y^{\prime}\) & & Inhibition & \(x\), but not \(y\) \\
\(F_{3}=x\) & \(y / x\) & Transfer & \(x\) \\
\(F_{4}=x^{\prime} y\) & & Inhibition & \(y\), but not \(x\) \\
\(F_{5}=y\) & \(x \oplus y\) & Transfer & \(y\) \\
\(F_{6}=x y^{\prime}+x^{\prime} y\) & \(x \downarrow y\) & Exclusive-OR & \(x\) or \(y\), but not both \\
\(F_{7}=x+y\) & \((x \oplus y)^{\prime}\) & OR & \(x\) or \(y\) \\
\(F_{8}=(x+y)^{\prime}\) & \(y^{\prime}\) & Equivalence & Not-OR \\
\(F_{9}=x y+x^{\prime} y^{\prime}\) & \(x \subset y\) & Complement & Not \(y\) \\
\(F_{10}=y^{\prime}\) & \(x^{\prime}\) & Implication & If \(y\), then \(x\) \\
\(F_{11}=x+y^{\prime}\) & \(x \supset y\) & Complement & Not \(x\) \\
\(F_{12}=x^{\prime}\) & \(x \uparrow y\) & Implication & If \(x\), then \(y\) \\
\(F_{13}=x^{\prime}+y\) & & NAND & Not-AND \\
\(F_{14}=(x y)^{\prime}\) & & Identity & Binary constant 1 \\
\(F_{15}=1\) & & &
\end{tabular}

\section*{Digital Logic Gates}
- Consider 16 functions
- Two functions generate constants
- Null/ Zero, Identity / One
- Four one-variable functions
- Complement (inverter), Transfer (buffer)
- 10 functions that define 8 specific binary functions
- AND, Inhibition, XOR, OR, NOR, Equivalence (XOR), Implication, NAND
- Inhibition and Implication are neither commutative nor associative
- NAND and NOR are commutative but not associative

Primitive Digital Logic Gates

La aboratory for

\section*{Complex Digital Logic Gates}
\begin{tabular}{ll}
Name & \begin{tabular}{l}
Distinctive-Shape \\
Graphics Symbol
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
Algebraic & Truth \\
Equation & Table
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Exclusive-OR } \\
& \text { (XOR) }
\end{aligned}
\]} & \multirow[b]{2}{*}{P-} & \multirow[b]{2}{*}{\[
\begin{aligned}
\mathrm{F} & =X \overline{\mathrm{Y}}+\overline{\mathrm{X}} \mathrm{Y} \\
& =\mathrm{X} \oplus \mathrm{Y}
\end{aligned}
\]} & X Y & F \\
\hline & & & \[
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}
\] & |l|l \\
\hline \multirow[b]{2}{*}{Exclusive-NOR (XNOR)} & \multirow[b]{2}{*}{\[
x->0-
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
F= & \underline{X Y+\bar{X} \bar{Y}} \\
& =X \oplus Y
\end{aligned}
\]} & X Y & F \\
\hline & & & \[
\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}
\] & |l|l \\
\hline AND-OR-INVERT (AOI) & & \(\mathrm{F}=\overline{\mathrm{WX}+\mathrm{YZ}}\) & & \\
\hline \[
\begin{aligned}
& \text { OR-AND -INVERT } \\
& \text { (OAI) }
\end{aligned}
\] & & \(\mathrm{F}=(\overline{\mathrm{W}+\mathrm{X}})(\mathrm{Y}+\mathrm{Z})\) & & \\
\hline \[
\begin{aligned}
& \text { AND-OR } \\
& (\mathrm{AO})
\end{aligned}
\] & & \(\mathrm{F}=\mathrm{WX}+\mathrm{YZ}\) & & \\
\hline \[
\begin{aligned}
& \text { OR-AND } \\
& \text { (OA) }
\end{aligned}
\] & & \(\mathrm{F}=(\mathrm{W}+\mathrm{X})(\mathrm{Y}+\mathrm{Z})\) & & \\
\hline
\end{tabular}

\section*{Eight Basic Digital Logic Gates}
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Graphic symbol & Function & No. transistors & Gate delay (ns) \\
\hline & - & & cost & performance \\
\hline Inverter & & \(F=x^{\prime}\) & 2 & 1 \\
\hline Driver & & \(F=x\) & 4 & 2 \\
\hline AND & & \(F=x y\) & 6 & 2.4 \\
\hline OR & \(y-5\) & \(F=x+y\) & 6 & 2.4 \\
\hline NAND & & \(F=(x y)^{\prime}\) & 4 & 1.4 \\
\hline NOR & \(y-1\) & \(F=(x+y)^{\prime}\) & 4 & 1.4 \\
\hline XOR & & \(F=x \oplus y\) & 14 & 4.2 \\
\hline XNOR & \[
y-h
\] & \(F=x \odot y\) & 12 & 3.2 \\
\hline
\end{tabular}

\section*{Exclusive-OR (XOR) Function}
- XOR \(x \oplus y=x y^{\prime}+x^{\prime} y\)
- XNOR \((x \oplus y)^{\prime}=x y+x^{\prime} y^{\prime}\)
- Identity properties
- \(x \oplus 0=x ; x \oplus 1=x^{\prime}\)
- \(x \oplus x=0 ; x \oplus x^{\prime}=1\)
- \(x \oplus y^{\prime}=(x \oplus y)^{\prime} ; x^{\prime} \oplus y=(x \oplus y)^{\prime}\)
- Commutative and associative
- \(A \oplus B=B \oplus A\)
\(-(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C\)

\section*{XOR Implementation}
- \(\left(x^{\prime}+y^{\prime}\right) x+\left(x^{\prime}+y^{\prime}\right) y=x y^{\prime}+x^{\prime} y=x \oplus y\)

(a) With AND-OR-NOT gates

(b) With NAND gates

\section*{Odd and Even Function}
\[
\begin{aligned}
A \oplus B \oplus C & =\left(A B^{\prime}+A^{\prime} B\right) C^{\prime}+\left(A B+A^{\prime} B^{\prime}\right) C \\
& =A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C+A^{\prime} B^{\prime} C \\
& =\sum(1,2,4,7)
\end{aligned}
\]

(a) 3-input odd function

(b) 3-input even function

\section*{Parity Generation and Checking}
- Parity generation
- \(P=x \oplus y \oplus z\)
- Parity check
- \(C=x \oplus y \oplus z \oplus P\)
- \(\mathrm{C}=1\) : an odd number of data bit error
- C=0: correct or and even \# of data bit error

(a) 3-bit even parity generator
(a) 4-bit even parity checker

\section*{High-Impedance Outputs}
- Three-state buffer
- Three state: 1, 0, Hi-Z
- Output: Hi-Z, Z, z (behaves as an open circuit, floating)
- Two useful properties
- Hi-Z outputs can be connected together if no two or more gates drive the line at the same time to opposite 1 and 0 values.
- Bidirectional input/output

(a) Logic symbol
\begin{tabular}{c|c|c}
\hline EN & IN & OUT \\
\hline 0 & X & \(\mathrm{Hi}-\mathrm{Z}\) \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}
(b) Truth table```

[^0]: ．

