

Boolean Algebra and Logic Gates

Hsi-Pin Ma 馬席彬

<u>https://eeclass.nthu.edu.tw/course/3452</u> Department of Electrical Engineering National Tsing Hua University

Outline

- Algebraic Properties
- Boolean Algebra
- Two-valued Boolean Algebra
- Basic Theorems and Properties of Boolean Algebra
- Boolean Functions
- Normal and Standard Forms
- Other Logic Operations

Algebraic Properties

Basic Definition

- A *set* is a collection of objects with a common property.
- A *binary operator* on a set *S* is a rule that assigns to, each pair of elements in *S*, another unique element in *S*.
- The *axioms* (*postulates*) of an algebra are the basic assumptions from which all theorems of the algebra can be proved.
- It is assumed that there is an *equivalent relation* (=), which satisfies that *principle of substitution*.

-It is *reflexive, symmetric,* and *transitive*.

Most Common Axioms Used to Formulate an Algebra Structure (1/2)

Closure

- A set *S* is closed with respective to a binary operator * if and only if $\forall x, y \in S, (x * y) \in S$

Associativity

– A binary operator * on *S* is associative if and only if $\forall x, y, z \in S, (x * y) * z = x * (y * z)$

Commutativity

– A binary operator * defined on *S* is commutative if and only if $\forall x, y \in S, x * y = y * x$

Most Common Axioms Used to Formulate an Algebra Structure (2/2)

Identity element

- A set *S* has an identity element with respective to * if and only if $\exists e \in S$ such that $\forall x \in S, e * x = x * e = x$

Inverse element

– A set *S* having the identity element e with respect to * has an inverse if and only if $\forall x \in S, \exists y \in S$ such that x * y = e

Distributivity

- If * and • are binary operators on *S*, * is distributive over • if and only if $\forall x, y, z \in S, x * (y \cdot z) = (x * y) \cdot (x * z)$

Example: A Field

- A field is a set of elements, together with two binary operators.
- The set of real numbers together with the binary operators + and •, forms the field of real numbers.
 - '+' defines addition.
 - The additive identity is 0.
 - The additive inverse defines the subtraction.
 - The binary operator defines multiplication.
 - The multiplicative identity is 1.
 - -For $a \neq 0$, 1/a (the multiplicative inverse of a) defines devision.
 - The only distributive law applicable is that of •over +

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Boolean Algebra

Axiomatic Definition

Boolean algebra

 An algebraic system of logic introduced by George Boole in 1854

Switching algebra

 A 2-valued Boolean algebra introduced by Claude Shannon in 1938

Huntington postulates

- A formal definition of Boolean Algebra in 1904
- Defined on a set *B* with binary operators + and •, and the equivalence relation =.

Huntington Postulates (1/2)

• Defined by a set *B* with binary operators + and •

- Closure with respect to + and (P1)
 - $x, y \in B \Rightarrow x + y \in B, x \cdot y \in B$

- An identity element with respect to + and • (P2)

•
$$0 + x = x + 0 = x, 1 \cdot x = x \cdot 1 = x$$

-Commutative with respective to + and • (P3)

•
$$x + y = y + x, x \cdot y = y \cdot x$$

Huntington Postulates (2/2)

– Distributive over + and • (P4)

•
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

•
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

 $-\forall x \in B, \exists x' \in B \text{ (called the$ *complement* $of x) such that <math>x + x' = 1, x \cdot x' = 0$ (P5)

- There are *at least* 2 distinct elements in *B* (P6)

• There exist at least two $x, y \in B$, such that $x \neq y$

Notes (1/2)

- The axioms are *independent*, none can be proved from others.
- Associativity is not included, since it can be derived (both + and •) from the given axioms.
- In ordinary algebra, + is not distributive over •.
- No *additive* or *multiplicative* inverses; no subtraction or division operations.
- Complement is *not available* in ordinary algebra.
- *B* is as yet undefined. It it to be defined as the set {0,1} (*two-valued Boolean Algebra*). In ordinary algebra, the set *S* can contain an infinite set of elements.

Notes (2/2)

Boolean algebra

- -Set *B* of at least 2 elements (not *variables*)
- -Rules of operation for the 2 binary operators (+ and •)
- Huntington postulates satisfied by the elements of B and the operators.
- Two-valued Boolean algebra (switching algebra)
 - $-B \equiv \{0,1\}$
 - The binary operators are defined as the logical AND () and OR (+).
 For convenience, a unary operation NOT (complement) is also included for basic operations.
 - The Huntington postulates are still valid.

• Unless otherwise noted, we will use the term *Boolean algebra* for the *2-valued Boolean algebra*.

Two-valued Boolean Algebra

Two-valued Boolean Algebra

- $B \equiv \{0, 1\}$ is the set.
- The binary operator for + and •, and the unary operator *complement*.

input	output	input	output	input	output
xy	$x \cdot y$	xy	x+y	$\boldsymbol{\chi}$	<i>x</i> '
00	0	00	0	0	1
01	0	01	1	1	0
10	0	10	1		
11	1	11	1		

Huntington Postulates Test (1/3)

• Closure

 $-\{0,1\}$ of the operator results still in *B*.

Identity elements

- -0+0=0, 0+1=1+0=1 (0: identity of +)
- $-1 \cdot 1 = 1, 1 \cdot 0 = 0 \cdot 1 = 0$ (1: identity of •)

Commutative

– Obviously from the table

Huntington Postulates Test (2/3)

Distributive

-Holds for \bullet over +

x	у	z	y + z	$x \cdot (y + z)$	<i>x</i> ∙ <i>y</i>	χ·Ζ	$(x\cdot y) + (x\cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

- Can be shown to hold for + over \bullet .

Huntington Postulates Test (3/3)

Complement

- -x + x' = 1 since 0 + 0' = 0 + 1 = 1 and 1 + 1' = 1 + 0 = 1
- $-x \cdot x' = 0$ since $0 \cdot 0' = 0 \cdot 1 = 0$ and $1 \cdot 1' = 1 \cdot 0 = 0$
- The two-valued Boolean algebra has two distinct elements, 0 and 1, with $0 \neq 1$.

Basic Theorems and Properties of Boolean Algebra

Duality

- Every algebraic expression deducible from the postulates of Boolean algebra <u>remains valid</u> if the *operators* and *identity elements* are *interchanged*.
 - -Binary operators: AND <=> OR
 - Identity elements: 1 <=> 0

Postulates and Theorems of Boolean Algebra

(a)

(b)

P2	$\mathbf{x} + 0 = \mathbf{x}$	$\mathbf{x} \cdot 1 = \mathbf{x}$
p5	$\mathbf{x} + \mathbf{x}^* = 1$	$\mathbf{x} \cdot \mathbf{x}^{\prime} = 0$
T1	$\mathbf{x} + \mathbf{x} = \mathbf{x}$	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
T2	x + 1 = 1	$\mathbf{x} \cdot 0 = 0$
T3, involution	$(\mathbf{x}^{\prime})^{\prime} = \mathbf{x}$	
p3, commutative	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
T4, associative	$\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$	$\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$
P4, distributive	$\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$	$x+y \cdot z=(x+y) \cdot (x+z)$
T5, DeMorgan	$(x+y)^{\circ} = x^{\circ} \cdot y^{\circ}$	$(\mathbf{x} \cdot \mathbf{y}) = \mathbf{x} + \mathbf{y}$
T6, absorption	$\mathbf{x} + \mathbf{x} \cdot \mathbf{y} = \mathbf{x}$	$\mathbf{x} \cdot (\mathbf{x} + \mathbf{y}) = \mathbf{x}$

Basic Theorems (1/5) Theorem 1 (Idempotency)

(a)x + x = x, (b) $x \cdot x = x$

StatementJustificationx + x $= (x + x) \cdot 1$ postulate 2(b)= (x + x)(x + x')5(a)= x + xx'4(b)= x + 05(b)= x2(a)

Basic Theorems (2/5)

• Theorem 2

(a)
$$x + 1 = 1$$
, (b) $x \cdot 0 = 0$

StatementJustificationx + 1 $= 1 \cdot (x + 1)$ postulate 2(b)= (x + x')(x + 1)5(a) $= x + x' \cdot 1$ 4(b)= x + x'2(b)= 15(a)

– (b) can be proved by duality

Basic Theorems (3/5)

• Theorem 3 (Involution)

$$(x')' = x$$

P5 defines the complement of x, and the complement of x' is both x and (x')'

• Theorem 4 (Associativity)

(a) x + (y + z) = (x + y) + z, (b) x(yz) = (xy)z

– Can be proved by truth table

Basic Theorems (4/5)

• Theorem 5 (DeMorgan's Theorem)

- (a)
$$(x+y)' = x' \cdot y'$$
, (b) $(xy)' = x' + y'$

Duality principle

X	y	x+y	(x+y)'	x ′	y ′	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Basic Theorems (5/5)

• Theorem 6 (Absorption)

- (a)
$$x + xy = x$$
, (b) $x(x + y) = x$

Operator Priority

Operator precedence

- Parentheses
- -NOT
- -AND
- -OR
- Examples

$$-xy'+z$$

 $-(xy+z)'$

• A Boolean function is an algebraic expression formed with $x + y + z = F_1$

- -Binary variables
- -Logic operators AND, OR
- -Unary NOT
- -Parentheses
- -An equal sign
- Examples
 - $-F_1 = x + y'z$
 - $-F_2 = x'y'z + x'yz + xy'$

X	У	Ζ	\mathbf{F}_1	F_2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

- Can be represented by a truth table, with 2ⁿ rows in the table (n: # of variable in the function)
- There are infinitely many algebraic expressions that specify a given Boolean function. It's important to find the *simplest* one. (cost)
- Any Boolean function can be transformed in a straightforward manner from an algebraic expression into a *logic diagram* of only AND, OR, and NOT gates.

Laboratory for

Reliable Computing

- A *literal* is a *variable* or its complement in a Boolean expression
 - $-F_2 = x'y'z + x'yz + xy'$
 - •8 literals,
 - •1 OR term (sum term) and 3 AND terms (product terms).
 - literal: a input to a gate, term: implementation with a gate
- The complement of any function *F* is *F*', which can be obtained by DeMorgan's Theorem.
 - Take the dual of *F*, and then complement each literal in *F*.
 - $-F_2' = (x'y'z + x'yz + xy')' = (x+y+z')(x+y'+z')(x'+y)$

Algebraic Manipulation (1/2)

- Minimize the number of literals and terms for a simpler circuits (less expensive)
- Algebraic manipulation can minimize literals and terms. However, no specific rules to guarantee the optimal results.
- CAD tools for logic minimization are commonly used today.

Algebraic Manipulation (2/2)

Some useful rules

- -x(x'+y) = xy
- -x + x'y = x + y
- xy + yz + x'z = xy + x'z (the Consensus Theorem I)
- (x + y)(y + z)(x' + z) = (x + y)(x' + z) (the Consensus Theorem II, duality from Consensus Theorem I)

Canonical and Standard Forms

Minterms and Maxterms

• Minterm (m_i) (or *standard product term*)

- An AND (product) term consists of all literals (each appears exactly once) in their normal form or in their complement form, but not in both
 - eg. two binary variable x and y, the minterms are xy, xy', x'y, x'y'
- -n variable can be combined to form 2^n minterms

• Maxterms (M_i) (or *standard sum term*)

 An OR (sum) term consists of all literals (each appears exactly once) in their normal form or in their complement form, but not in both

•eg. two binary variable x and y, the maxterms are x+y, x+y', x'+y, x'+y'

• Each maxterm is the complement of its corresponding minterm and vice versa. $(M_i = m_i')$

Minterms and Maxterms Canonical forms

- sum-of-minterms (som)
- -product-of-maxterms (pom)

		хуz	Minterms	Notation	Maxterms	Notation
	0	000	x'y'z'	m_0	x+y+z	M_0
	1	001	x'y'z	\mathbf{m}_1	x+y+z'	M_1
	2	010	x'yz'	m_2	x+y'+z	M_2
	3	011	x'yz	m_3	x+y'+z'	M_3
	4	$1 \ 0 \ 0$	xy'z'	m_4	x'+y+z	M_4
	5	$1 \ 0 \ 1$	xy'z	m_5	x'+y+z'	M_5
	6	110	xyz'	m_6	x'+y'+z	M_6
Hsi-Pin	7 Ma	111	xyz	m_7	x'+y'+z'	M_7

•
$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

= $M_0 \cdot M_1 \cdot M_2 \cdot M_4 = \Pi(0, 1, 2, 4)$

Canonical Forms

Any function can be represented by either of the 2 canonical forms

- To convert from one canonical from to another, interchange \sum and Π , and list the numbers that were excluded from the original form.
- $-f_1 = \sum (1, 4, 7)$ is the sum of 1-minterms for f_1 .
- $-f'_1 = \sum (0, 2, 3, 5, 6)$ is the sum of 0-minterms for f_1 .

• How to convert f=x+yz into canonical form?

- -by truth table
- by expanding the missing variables in each term, using
 1=x+x', 0=xx'

Standard Forms

Canonical forms are seldom used.

Standard forms

- -sum-of-products (sop)
 - Product terms (implicants) are the AND terms, which can have fewer literals than the minterms.
- -product-of-sums (pos)
 - •Sum terms are the OR terms, which can have fewer literals than maxterms.
- Standard forms are not unique!

Standard Forms

Standard form examples

- $-f_1=xy+xy'z+x'yz$ (sop form)
- $-f_1' = (x'+y')(x'+y+z')(x+y'+z')$ (pos form)
- Nonstandard forms can have fewer literals than standard forms
 - -xy+xy'z+xy'w=x(y+y'z+y'w)=x(y+y'(z+w))
 - -xy+yz+zx=xy+(x+y)z=x(y+z)+yz=xz+y(x+z)

Other Gate Types

Other Logic Operations

For n binary variables

- -2^n rows in the truth table
- -2^{2ⁿ} functions
- –16 different Boolean functions if n=2
- All the new symbols except for the XOR are not in common use by digital designers

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F 5	F 6	F ₇	F 8	F9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Truth Tables for the 16 Functions of Two Binary Variables

Refine Prophene Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	<i>x</i> , but not <i>y</i>
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	<i>y</i> , but not <i>x</i>
$F_5 = y$		Transfer	у
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	<i>x</i> or <i>y</i> , but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	у′	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If <i>y</i> , then <i>x</i>
$F_{12} = x'$	<i>x'</i>	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x \supset y$	Implication	If <i>x</i> , then <i>y</i>
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Digital Logic Gates

Consider 16 functions

- Two functions generate constants
 - •Null/Zero, Identity/One
- -Four one-variable functions
 - Complement (inverter), Transfer (buffer)
- 10 functions that define 8 specific binary functions
 - AND, Inhibition, XOR, OR, NOR, Equivalence (XOR), Implication, NAND
 - Inhibition and Implication are neither commutative nor associative
 - •NAND and NOR are commutative but not associative

Laboratory for Reliable Computing

Primitive Digital Logic Gates

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	X Y F	F = XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	Y F	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1
NOT (inverter)	X F	$F = \overline{X}$	X F 0 1 1 0
Buffer	X	$\mathbf{F} = \mathbf{X}$	X F 0 0 1 1
3-State Buffer	X F E		E X F 0 0 Hi-Z 0 1 Hi-Z 1 0 0 1 1 1
NAND	X Y	$\mathbf{F} = \overline{\mathbf{X} \cdot \mathbf{Y}}$	X Y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	X Y	$F = \overline{X + Y}$	XYF 0011 010 100 1100

Complex Digital Logic Gates

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
Exclusive-OR (XOR)	$X \longrightarrow F$	$F = X\overline{Y} + \overline{X}Y$ $= X \oplus Y$	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	X Y	$F = XY + \overline{X}\overline{Y}$ $= \overline{X \oplus Y}$	X Y F 0 0 1 0 1 0 1 0 1 1 1
AND-OR-INVERT (AOI)	W X Y Z	$F = \overline{WX + YZ}$	
OR-AND -INVERT (OAI)	W X Y Z	$F = (\overline{W + X})(Y + Z)$	
AND-OR (AO)		F = WX + YZ	
OR-AND (OA)	W X Y Z	F = (W + X)(Y + Z)	

Eight Basic Digital Logic Gates

typical CMOS implementation

Name	Graphic symbol	Function	No. transistors	Gate delay (ns)
Turner of a m	x>F		cost	performance
Inverter		$F = x^{r}$	2	1
Driver		F = x	4	2
AND	y = D - F	F = xy	6	2.4
	X-D F	$\mathbf{r} = \omega g$		2.1
OR	y'	F = x + y	6	2.4
NAND	$x \to F$	F = (xy)'	4	1.4
	X-Do-F			
NOR	y	F = (x + y)'	4	1.4
XOR		$F = x \oplus y$	14	4.2
	X-H	$- \cdots $		
XNOR	y_H_	$F = x \odot y$	12	3.2
D: 44				[Gajski]

Exclusive-OR (XOR) Function

• XOR
$$x \oplus y = xy' + x'y$$

• **XNOR**
$$(x \oplus y)' = xy + x'y'$$

Identity properties

$$- x \oplus 0 = x; x \oplus 1 = x'$$

$$-x \oplus x = 0; x \oplus x' = 1$$

$$-x \oplus y' = (x \oplus y)'; x' \oplus y = (x \oplus y)'$$

Commutative and associative

$$-A \oplus B = B \oplus A$$

 $-(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

XOR Implementation

(a) With AND-OR-NOT gates

(b) With NAND gates

Odd and Even Function

$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$ = AB'C' + A'BC' + ABC + A'B'C= $\sum (1, 2, 4, 7)$

(a) 3-input odd function

(b) 3-input even function

Parity Generation and Checking

- Parity generation
 - $-P = x \oplus y \oplus z$
- Parity check
 - $C = x \oplus y \oplus z \oplus P$
 - C=1: an odd number of data bit error
 - C=0: correct or and even # of data bit error

(a) 4-bit even parity checker

High-Impedance Outputs

Three-state buffer

- Three state: 1, 0, Hi-Z
- -Output: Hi-Z, Z, z (behaves as an open circuit, floating)

Two useful properties

- Hi-Z outputs can be connected together if no two or more gates drive the line at the same time to opposite 1 and 0 values.
- -Bidirectional input/output

(a) Logic symbol

 $S_{1} S_{0}$

Decoder 3 2 1

 D_0

 D_l

 D_2 -

Bus