Digital Systems and Information

Hsi－Pin Ma 馬席彬

https：／／eeclass．nthu．edu．tw／course／3452
Department of Electrical Engineering
National Tsing Hua University

Outline

- Digital Systems
- Digital Signals
- Data Representation
- Number Systems
- Arithmetic Addition and Subtraction
- Codes

System

- A group of interacting, interrelated, or interdependent elements forming a complex whole
- The American Heritage Dictionary

\qquad
Hsi－Pin Ma
－
．
\qquad
（

Digitalsystens
\qquad Digitalsystens Digitalsystenns
\qquad

路
教

Digital Syste

Digital Syste

Digital Syste

\square

\square

\square

\square

\qquad

A Digital Computer

Digital Logic Functions

- Information
- represented as digital signals
- Logic function
- computed by digital logic circuits
- Digital logic circuits
- Combinational logics
- output depends only on the current inputs
- Sequential logics
- output depends not only on the current inputs, but also in the internal states

Digital Signals
\qquad
\qquad

场

－
\square

\qquad

．

，

La boratory for

Digital Image

512×512

64x64

Encoding of Binary Signals for 2.5 V LVCMOS Logic

Parameter	Value	Description
$\mathrm{V}_{\text {min }}$	-0.3 V	absolute minimum voltage below which damage occurs
V_{0}	0.0 V	nominal voltage representing logic " 0 "
V_{OL}	0.2 V	maximum output voltage representing logic " 0 "
V_{IL}	0.7 V	maximum voltage considered to be a logic " 0 " by a module input
V_{IH}	1.7 V	minimum voltage considered to be a logic "1" by a module input
V_{OH}	2.1 V	minimum output voltage representing logic " 1 "
V_{1}	2.5 V	nominal voltage representing logic "1"
$\mathrm{V}_{\max }$	2.8 V	absolute maximum voltage above which damage occurs

2.5V LVCMOS Logic

Noise Margins

Effects of Noise on Analog and Digital Signals

Analog system Noise

Noise added to input
Error at output

Digital system Noise

noise added to input < Noise Margin Correct value at output
Digital Signals Tolerate Noise

Restoration of Digital Signals with Buffers

Noise Accumulation

Signal Restoration

Binary Digits and Logic Levels

- Bit: binary digit
-1: HIGH (TRUE)
-0: LOW (FALSE)
- Codes: group of bits (combinations of 1 s and 0 s)
-Used to represent numbers, letters, symbols, instructions, and anything else required in a given application.

- Logic levels

Digital Waveforms (1/2)

Nonideal pulses

IRRC $\mathbf{~ L a}$ abratory for
 n+use Reflable
 Computing

 Digital Waveforms (2/2)

 Digital Waveforms (2/2)
 - Periodic vs. nonperiodic waveforms

- frequency (f) vs. period (T) (f=1/T)
- Duty cycle $=\left(t_{w} / T\right) \times 100 \%$
- clock
- All waveforms are synchronized with a basic timing waveform (clock).

- Timing diagram
- A graph showing the actual time relationship of two or more waveforms and how each waveform changes in relation to others.

Data Representation
 \section*{}
 \section*{}
－

\square
 Laboratory for
Refiable
Computing

Data Representation (Data Types)

- Digital data can be categorized into
- Numbers: used in arithmetic computation
- Letters of the alphabet: used in data processing
- Discrete symbols: used for variety of purposes
- All above are represented in binary-coded form
- Conversions between these data types and the binary code will be necessary

11

Number Systems

咅

号
咅．
\square
\square
\square T
\qquad

都

－

Positional Number Systems

- Let r be the radix (or base), then the ($n+m$)-digit number

$$
D=d_{n-1} d_{n-2} \cdots d_{1} d_{0} \cdot d_{-1} d_{-2} \cdots d_{-m} \quad 0 \leq d<r
$$

- has the value
$D=d_{n-1} r^{n-1}+d_{n-2} r^{n-2}+\cdots+d_{1} r+d_{0}+d_{-1} r^{-1}+d_{-2} r^{-2}+\cdots+d_{-m} r^{-m}$
Most-significant Digit (MSD)
Least-significant Digit (LSD)

$$
D=\sum_{i=-m}^{n-1} d_{i} \cdot r^{i}
$$

Positional Number Systems: Example

$(7392)_{10}=7 \times 10^{3}+3 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$

- Base (radix) r = 10
- Coefficients $\mathrm{D}=\left(\mathrm{d}_{3}, \mathrm{~d}_{2}, \mathrm{~d}_{1}, \mathrm{~d}_{0}\right)=(7,3,9,2)$

Binary Number System

- Let $r=2$, then the $(n+m)$-bit number

$$
B=b_{n-1} b_{n-2} \cdots b_{1} b_{0} \cdot b_{-1} b_{-2} \cdots b_{-m}
$$

- has the value

$$
\begin{aligned}
& B=\overbrace{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{1} 2+b_{0}+b_{-1} 2^{-1}+b_{-2} 2^{-2}+\cdots+b_{-m} 2^{-m} \\
& \begin{array}{l}
\text { Most-significant Bit } \\
\text { (MSB) }
\end{array} \quad B=\sum_{i=-m}^{n-1} b_{i} \cdot 2^{i} \quad \text { Least-significant Bit (LSB) }
\end{aligned}
$$

$$
1010.101_{2}=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}+1 \cdot 2^{-1}+0 \cdot 2^{-2}+1 \cdot 2^{-3}=10.625_{10}
$$

- byte: 8 bits

Binary Special Unit

- word: processor architecture dependent (2,4,8 bytes or even more)
- 2^{10} : $(1,024)$ Kilo, K
- 2^{20} : $(1,048,576)$ Mega, M
- 2^{30} : $(1,073,741,824)$ Giga, G

Symbol	Prefix	SI Meaning
m	milli	$10^{-3}=1000^{-1}$
μ	micro	$10^{-6}=1000^{-2}$
n	nano	$10^{-9}=1000^{-3}$
p	pico	$10^{-12}=1000^{-4}$
f	femto	$10^{-15}=1000^{-5}$
a	atto	$10^{-18}=1000^{-6}$
z	zepto	$10^{-21}=1000^{-7}$

- 2^{40} : $(1,099,511,627,776)$ Tera, T
- m, $\mu, \mathrm{n}, \mathrm{f}, \ldots$

Symbol	Prefix	SI Meaning	Binary Meaning
K	kilo	$10^{3}=1000^{1}$	$2^{10}=10244^{1}$
M	mega	$10^{6}=1000^{2}$	$2^{20}=1024^{2}$
G	giga	$10^{9}=1000^{3}$	$2^{30}=1024^{3}$
T	tera	$10^{12}=1000^{4}$	$2^{40}=1024^{4}$
P	peta	$10^{15}=1000^{5}$	$2^{50}=1024^{5}$
E	exa	$10^{18}=1000^{6}$	$2^{60}=1024^{6}$
Z	zetta	$10^{21}=1000^{7}$	$2^{70}=1024^{7}$

Octal and Hexadecimal Numbers

- The octal (base-8) and hexadecimal (base-16) numbers are shorter forms for representing binary numbers.
- powers of two bases
- conversion from binary to octal (hexadecimal) is straightforward
-- by 3-bit (4-bit) grouping
- conversion from octal
(hexadecimal) to binary is just the reverse of the above.

Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number Ranges

- The range of numbers that can be represented is based on the number of bits available in the hardware structures that store and process information.
- 16-bit unsigned integers: $0 \sim 2^{16-1}(0 \sim 65535)$
- 16-bit unsigned fractions: $0 \sim\left(2^{16-1}\right) / 2^{16}(0 \sim$ 0.9999847412)

Radix- r to Decimal Conversion

$D=d_{n-1} r^{n-1}+d_{n-2} r^{n-2}+\cdots+d_{1} r+d_{0}+d_{-1} r^{-1}+d_{-2} r^{-2}+\cdots+d_{-m} r^{-m}$
Most-significant Digit (MSD)
Least-significant Digit (LSD)

$$
\begin{aligned}
1010.101_{2} & =1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+0 \cdot 2^{0}+1 \cdot 2^{-1}+0 \cdot 2^{-2}+1 \cdot 2^{-3}=10.625_{10} \\
22.22_{4} & =2 \cdot 4^{1}+2 \cdot 4^{0}+2 \cdot 4^{-1}+2 \cdot 4^{-2}=10.625_{10} \\
12.5_{8} & =1 \cdot 8^{1}+2 \cdot 8^{0}+5 \cdot 8^{-1}=10.625_{10} \\
A \cdot A_{16} & =10 \cdot 16^{0}+10 \cdot 16^{-1}=10.625_{10}
\end{aligned}
$$

Decimal to Radix- r Conversion

- Integer part: Successive divisions by r and observe the remainders
- Fraction: Successive multiplications by r and observe the carries

$$
\begin{aligned}
& A_{r}=D_{10} \sum_{i=-m}^{n-1} a_{i} \cdot r^{i}=\sum_{j=-p}^{q-1} d_{j} \cdot 10^{j} \quad 0 \leq a_{i}<r \quad 0 \leq d_{i}<10 \\
& D_{10}=D 1_{10}+D 2_{10} \quad \sum_{j=-p}^{q-1} d_{j} \cdot 10^{j}=\sum_{j=0}^{q-1} d_{j} \cdot 10^{j}+\sum_{j=-p}^{-1} d_{j} \cdot 10^{j} \\
& \text { Integer part } \\
& D 1=D 1^{\prime} \cdot r+a_{0} \\
& D 1^{\prime}=D 1^{\prime \prime} \cdot r+a_{1} \\
& D 1^{(n-2)} \quad=D 1^{(n-1)} \cdot r+a_{n-2} \quad D 2^{(m-1)} \cdot r \quad=a_{-m} \cdot D 2^{(m)} \\
& D 1^{(n-1)}=a_{n-1}
\end{aligned}
$$

Arithmetic Addition and Subtraction

A Ri

Arithmetic Addition and Subtraction

?in

\author{
\author{

\section*{\title{ \square

}}

 ANㅛ

 A Tithe

 A Tithe

 A Tithe

 }
}
arithmetic Addition and Subtraction

$$
\begin{aligned}
& \text { Laboratory for } \\
& \text { Reliable } \\
& \text { Computing }
\end{aligned}
$$

Adocition

Sign-Magnitude Representation

- $\mathrm{D}=<s, m>$
-s: sign, + (0) or - (1)
-For an n-bit integer, m is an integer ranging from 0 to $2^{\mathrm{n}-1}-1$
- Assume we want to add/ subtract D1 with D2

$$
\begin{aligned}
& -\mathrm{D} 1=<s_{1}, m_{1}> \\
& -\mathrm{D} 2=<s_{2}, m_{2}>
\end{aligned}
$$

$D=s m_{n-2} m_{n-3} \ldots m_{1} m_{0}$
$= \pm\left(m_{n-2} \cdot 2^{n-2}+m_{n-3} \cdot 2^{n-3}+\ldots+m_{1} \cdot 2^{1}+m_{0} \cdot 2^{0}\right)$
$-0111111=+63,1111111=-63$

Complements

- Complements are used for simplifying the subtraction operation for easy manipulation of certain logical rules and events
- Trade comparisons of sign and magnitude with complementation
- Complementation can be performed very efficiently for binary numbers
- Two types for radix-r system
- Radix complement (r 's-complement)
- Digit complement (diminished radix complement and (r-1)'s-complement)

Two Types of Complements

- Radix complement

- The r's-complement of an n-digit number D is defined as 0 if $D=0$, and else

$$
\bar{D}=D^{\prime}+1=\left(r^{n}\right)-D
$$

-10 's-complement of $546700=1000000-546700=453300$

- 10's-complement of 012398=1000000-012398=987602
-2 's-complement of $1011000=10000000-1011000=0101000$
-2 's-complement of $0101101=10000000-0101101=1010011$
- Digit complement
- The ($r-1$)'s-complement of an n-digit number D

$$
D^{\prime}=\left(r^{n}-1\right)-D
$$

-9's-complement of 546700=999999-546700=453299
-9's-complement of 012398=999999-012398=987601
-1 's-complement of $1011000=1111111-1011000=0100111$
-1 's-complement of $0101101=1111111-0101101=1010010$

10's Complement Example

- Definition of sign
- Positive number: MSD with 0
- Negative number: MSD with 9
- MSD with other numbers => illegal
-9286-1801 (both unsigned decimal)
-10's complement of 1801 : 10000-1801=8199
$-09286+98199=107485$ (remove end carry) $=>07485$
- Still need minus operation in complement!!
- How to avoid??

2's Complement Example

- Sign definition
- Positive number: MSB with 0
- Negative number : MSB with 1
- Leading bit with negative weight (provide half+ / half-)
- 1111-1010 (both unsigned binary)
-2's complement of 1010: 100000-01010=10110
$-01111+10110=100101$ (leading 1 issue)
- Use 1's complement + 1 to remove the extra 'minus'

2's-Complement Representation

- Signed vs. Unsigned (n-bit binary number)

Unsigned binary representation
$B=b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{1} 2+b_{0}$
2's-complement binary representation
$B=b_{n-1}\left(-2^{n-1}\right)+b_{n-2} 2^{n-2}+\cdots+b_{1} 2+b_{0}$

- Example
- 01112: 7 for unsigned and 2's complement number
-1111_{2} : 15 for unsigned number, -1 for 2's complement number $\left(-1 * 8+1^{*} 4+1^{*} 2+1^{*} 1=-1\right)$

Nitu EE Representation of Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	-	-

- Range of an n -bit number in $2^{\prime} \mathrm{s}$-complement representation is $\left[-2^{n-1}, 2^{\mathrm{n}-1}-1\right]$
- The 2 's-complement representation is by far the most popular.

Subtraction with Complements

- Replace subtraction with addition
- $\mathrm{M}_{\mathrm{r}}-\mathrm{N}_{\mathrm{r}}$
$-\mathrm{M}+\left(\mathrm{r}^{\mathrm{n}}-\mathrm{N}\right)=\mathrm{M}-\mathrm{N}+\mathrm{r}^{\mathrm{n}}$
- If $\mathrm{M}>=\mathrm{N}$, the end carry r^{n} is discarded, and the result is M-N
- If $\mathrm{M}<\mathrm{N}$, there is no end carry, and the sum equals r^{n} - (N$\mathrm{M})$. Take its r's-complement we obtain $\mathrm{N}-\mathrm{M}$, i.e., $-(\mathrm{M}-\mathrm{N})$

2's-Complement Subtraction

- Let the 1 's-complement form of an n-bit number B be denoted as B^{\prime}, then
$-B+B^{\prime}=2^{n}-1 ; B^{\prime}+1=2^{n}-B$
- - $B=B^{\prime}+1=2^{\prime}$ s-complement of B
- $\mathrm{A}-\mathrm{B}=\mathrm{A}+\left(2^{\prime}\right.$ s-complement of B$)$

2's-Complement Addition

- Adding two positive numbers generates correct results if there is no overflow
-0010+0100=0110 (2+4=6)
- Adding two positive numbers generates incorrect results if there is overflow

$$
-0110+0101=1011(6+5=-5)
$$

- Adding two negative numbers generates correct results if there is no underflow
$-1110+1100=1010((-2)+(-4)=(-6))$
- Adding two negative numbers generates incorrect result if there is underflow
$-1100+1011=0111((-4)+(-5)=7)$
- Sign extension to avoid overflow or underflow

Bit Insertion for Addition

- When doing $A+B\left(a_{3} a_{2} a_{1} a_{0}+b_{3} b_{2} b_{1} b_{0}\right)$
- If A and B are unsigned numbers, add two bits to the beginning, then do summation.
- One bit to convert unsigned number to signed number, and the other bit for sign extension
-00a3a2 $a_{1} a_{0}+00 b_{3} b_{2} b_{1} b_{0}$
- If A and B are signed numbers, only add one bit for sign extension to avoid overflow.
- $a_{3} a_{3} a_{2} a_{1} a_{0}+b_{3} b_{3} b_{2} b_{1} b_{0}$

Radix-r Addition/Subtraction

Hsi－Pin Ma \square Hsi－Pin Ma Hsi－Pin Ma

2

\square
\square
\square
\square \square

都
．
\qquad

$$
\begin{aligned}
& \text { Hsi-Pin Ma } \\
& \text { Hsi-Pin Ma }
\end{aligned}
$$

 \square
\square
\square
\square
\square
\square
\square
\square
\square

\square
\square
\square

[^0]\square
\qquad

Decimal Codes

- An n-bit binary code is a group of n bits that assume up to 2^{n} distinct combinations of 1 s and 0 s, with each combination representing one element of the set being coded.
- Each element must be assigned a unique binary bit combination to avoid ambiguity
- Example
-2-bit binary code: 00, 01, 10, 11
-3-bit binary code: 000, 001, 010, ..., 111
- n-bit code: $0 \sim 2^{\mathrm{n}}-1$
- May have unassigned bit combinations

Binary-Coded Decimal (BCD)

- Represent the decimal system using binary number
-4 bits to represent 0-9 in the decimal system
- A-F are discarded
$-(185)_{10}=(000110000101)_{B C D}$
- seven-segment display

Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Binary Codes for Decimal Numbers

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 ,} \mathbf{- \mathbf { 2 , } , \mathbf { 1 }}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit	1101	1000	1101	1100
combi-	1110	1001	1110	1101
nations	1111	1010	1111	1110

Binary Codes for Decimal Numbers

- Weighted codes
- Each position is assigned a weighting factor to calculate the value of the number
- BCD (8421), 2421, 84-2-1 codes
- Self-complementing codes
-9's complement of a decimal number is obtained directly by changing 1 to 0 or 0 to 1 in the code
- 2421, excess-3 codes

Number of Bits Required to Represent a Binary Code

- Given M elements to be represented by a binary code, the minimum number of bits, n, needed satisfies the following relationships

$$
-\quad 2^{(n-1)}<M \leq 2^{n} \quad n=\left\lceil\log _{2} M\right\rceil
$$

Warning: Conversion vs. Coding

- Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE
$-13_{10}=1101_{2}($ Conversion $)$
$-13<=>00010011$ (BCD Coding)

Alphanumeric Codes

- Represent numerals and special characters with binary codes in many other applications.
- Alphanumeric character set for English
- Ten decimal digits
- 26 letters of the alphabet
- Several (more than three) special characters

Laboratory for

ASCII Character Code

- American Standard Code for Information Interchange

- The standard binary code for the alphanumeric characters
- ASCII code is not enough for some languages, and 2-byte code is necessary, such as Chinese Big5 or Unicode

Dec	Hx Oct Char		Dec Hx	Oct	Html Chr	Dec	Hx Oct	Html Chr		$\mathrm{H} \times \mathrm{O}$,	
0	0000 NUL	(null)	3220	040	\&\#32; Space	64	40100	\&\#64;	96	60140	\&\#96;	
1	100150 H	(start of heading)	3321	041	\&\#33;	65	41101	\&\#65; A	97	61141	\&\#97:	a
2	2002 STX	(start of text)	3422	042	\&\#34;	66	42102	\&\#66; B	98	62142	\&\#98;	b
3	3003 ETX	(end of text)	3523	043	\&\#35; \#	67	43103	\&\#67; C	99	63143	\&\#99;	c
4	4004 E0T	(end of transmission)	3624	044	\&\#36;	68	44104	\&\#68; D	100	64144	¢\#100;	d
5	5005 ENQ	(enquiry)	3725	045	¢\#37:	69	45105	\&\#69; E	101	65145	¢\#101;	
6	6006 ACK	(acknowledge)	3826	046	\&\#38;	70	46106	\&\#70; F	102	66146	\&\#102;	f
7	7007 BEL	(bell)	3927	047	\&\#39;	71	47107	\&\#71; G	103	67147	\&\#103;	-
8	8010 BS	(backspace)	4028	050	\&\#40;	72	48110	\&\#72; H	104	68150	\&\#104;	h
9	9011 TAB	(horizontal tab)	4129	051	\&\#41;	73	49111	\&\#73;	105	69151	¢\#105;	
10	A 012 LF	(NL line feed, new line)	$42 \mathrm{2A}$	052	\&\#42;	74	4 A 112	\&\#74; J	106	6A 152	\&\#106;	j
11	B 013 VT	(vertical tab)	43 2B	053	\&\#43; +	75	4 B 113	\&\#75; K	107	6B 153	\&\#107;	
12	C 014 FF	(NP form feed, new page)	442 C	054	\&\#44;	76	4 C 114	\&\#76;	108	6C 154	\&\#108;	1
13	D 015 CR	(carriage return)	45 2D	055	\&\#45;	77	4D 115	\&\#77; M	109	6D 155	c\#109;	III
14	E 016 S0	(shift out)	46 2E	056	¢\#46;	78	4 E 116	\&\#78; N	110	6 E 156	\&\#110;	n
15	F 017 SI	(shift in)	47 2F	057	\&\#47;	79	4 F 117	\&\#79; 0	111	6 F 157	\&\#111;	0
16	10020 DLE	(data link escape)	4830	060	\&\#48;	80	50120	\&\#80; P	112	70160	\&\#112;	
17	11021 DCl	(device control 1)	4931	061	\&\#49; 1	81	51121	\&\#81;	113	71161	\&\#113;	q
18	12022 DC2	(device control 2)	$50 \quad 32$	062	\&\#50; 2	82	52122	\&\#82; R	114	72162	\&\#114;	
19	13023 DC3	(device control 3)	5133	063	\&\#51; 3	83	53123	\&\#83;	115	73163	\&\#115;	3
20	14024 DC4	(device control 4)	5234	064	\&\#52; 4	84	54124	\&\#84; T	116	74164	\&\#116;	
21	15025 NAK	(negative acknowledge)	5335	065	\&\#53; 5	85	55125	\&\#85; U	117	75165	¢\#117;	u
22	16026 SYN	(synchronous idle)	5436	066	¢\#54; 6	86	56126	\&\#86; V	118	76166	\&\#118;	
23	17027 ETB	(end of trans. block)	5537	067	\&\#55; 7	87	57127	\&\#87: 历	119	77167	\&\#119;	W
24	18030 CAN	(cancel)	5638	070	¢\#56; 8	88	58130	\&\#88; X	120	78170	\&\#120;	
25	19031 EM	(end of medium)	5739	071	\&\#57;	89	59131	\&\#89; Y	121	79171	*\#121;	Y
26	14 032 SUB	(substitute)	58 3A	072	\&\#58;	90	5A 132	\&\#90; 2	122	7A 172	\&\#122;	z
27	1B 033 ESC	(escape)	59 3B	073	\&\#59;	91	5B 133	\&\#91; [123	7B 173	\&\#123;	
28	1 C 034 FS	(file separator)	60 3C	074	\&\#60; <	92	5C 134	\&\#92;	124	7C 174	\&\#124;	
29	1D 035 GS	(group separator)	61 3D	075	\&\#61	93	5D 135	\&\#93;]	125	7D 175	¢\#125;	
30	1E 036 RS	(record separator)	62 3E	076	\&\#62; >	94	5E 136	\&\#94;	126	7E 176	\&\#126;	
31	1F 037 US	(unit separator)	63 3F	077	\&\#63;	95	5 F 137	\&\#95;	127	7F 177	\&\#127;	

Parity Bit

- Error detection
- Redundancy, in the form of extra bits, can be incorporated into binary code words to detect and correct errors
- Parity is an extra bit appended on to the codeword to make the number of 1 s odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has even parity if the number of 1 s in the code word is even.
- A code word has odd parity if the number of 1 s in the code word is odd.

With Even Parity With Odd Parity

1000001	01000001	11000001
1010100	11010100	01010100

Gray Codes

- A binary code in which adjacent code words differ in only one bit position

Binary Code	Bit Changes	Gray Code	
000		000	
001	1	001	1
010	2	011	1
011	1	010	1
100	3	110	1
101	1	111	1
110	2	101	1
111	1	100	1
000	3	000	1

(a) Binary Code for Positions 0 through 7

(b) Gray Code for Positions 0 through 7

Computing

Gray Codes

1-bit GC	2-bit GC	3-bit GC	4-bit GC
0	00	000	0000
1	01	001	0001
	11	011	0011
	10	010	0010
		110	0110
		111	0111
		101	0101
		100	0100
			1100
			1101
			1111
			1010
			1011
			1001

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Generation of Gray Codes

- Code number should be even $(M=2 k)$ number of code words

$$
D=\sum_{i=0}^{n-1} d_{i} \cdot 2^{i}
$$

$$
G=g_{n-1} g_{n-2} g_{n-3} \ldots g_{1} g_{0}
$$

- For the first half $M / 2$ codes
- Let MSB=0
- Replace each of the remaining bits with the even parity of the bit of the number and the bit to its left $\quad g_{i}=d_{i+1} \oplus d_{i}, i=0,1, \ldots, n-2$
- For the rest half codes
- Take the sequence of numbers formed for the first half and copy it in reverse order but with MSB=1

[^0]: －

