

Digital Systems and Information

Hsi-Pin Ma 馬席彬

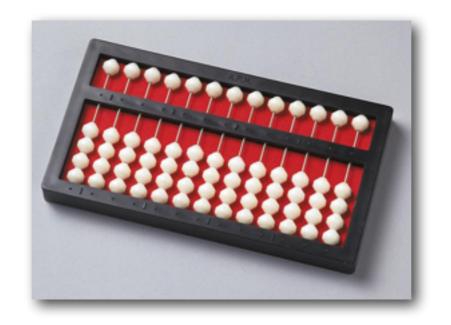
<u>https://eeclass.nthu.edu.tw/course/3452</u> Department of Electrical Engineering National Tsing Hua University

Outline

- Digital Systems
- Digital Signals
- Data Representation
 - Number Systems
 - Arithmetic Addition and Subtraction
 - Codes

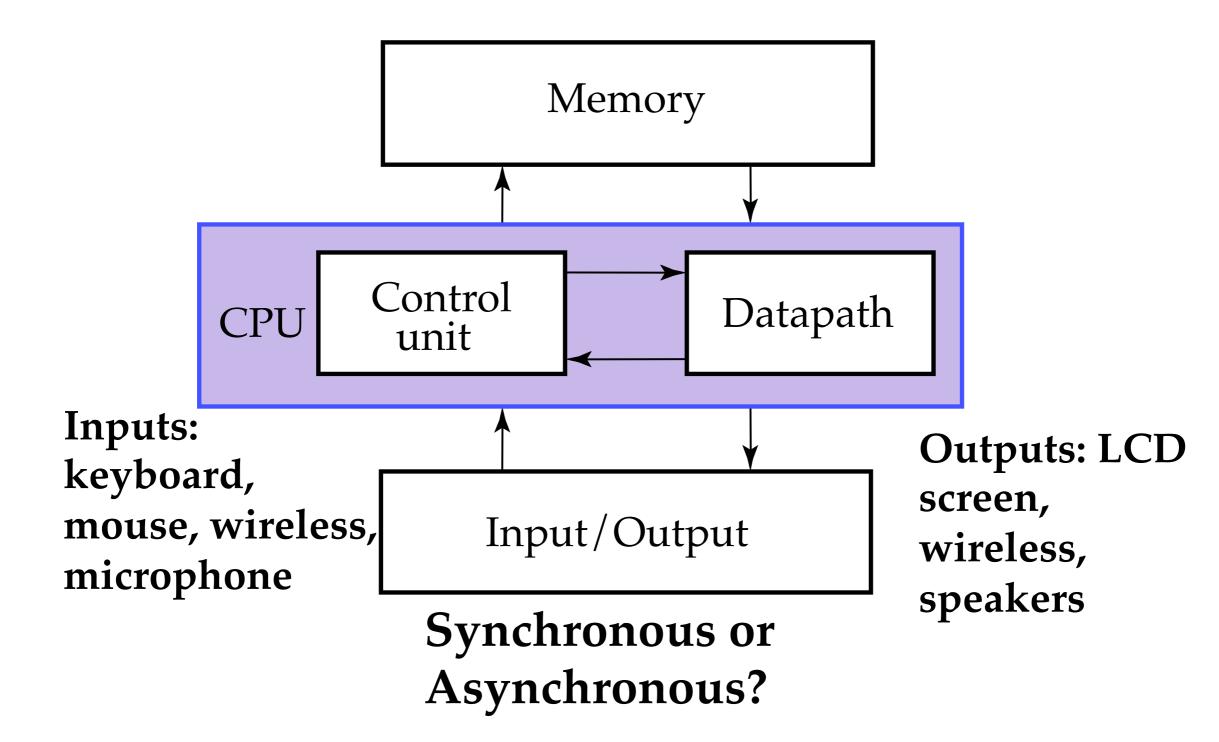
System

- A group of interacting, interrelated, or interdependent elements forming a complex whole
 - The American Heritage Dictionary



Digital Systems

A Digital Computer



von Neumann architecture

Digital Logic Functions

Information

- represented as digital signals

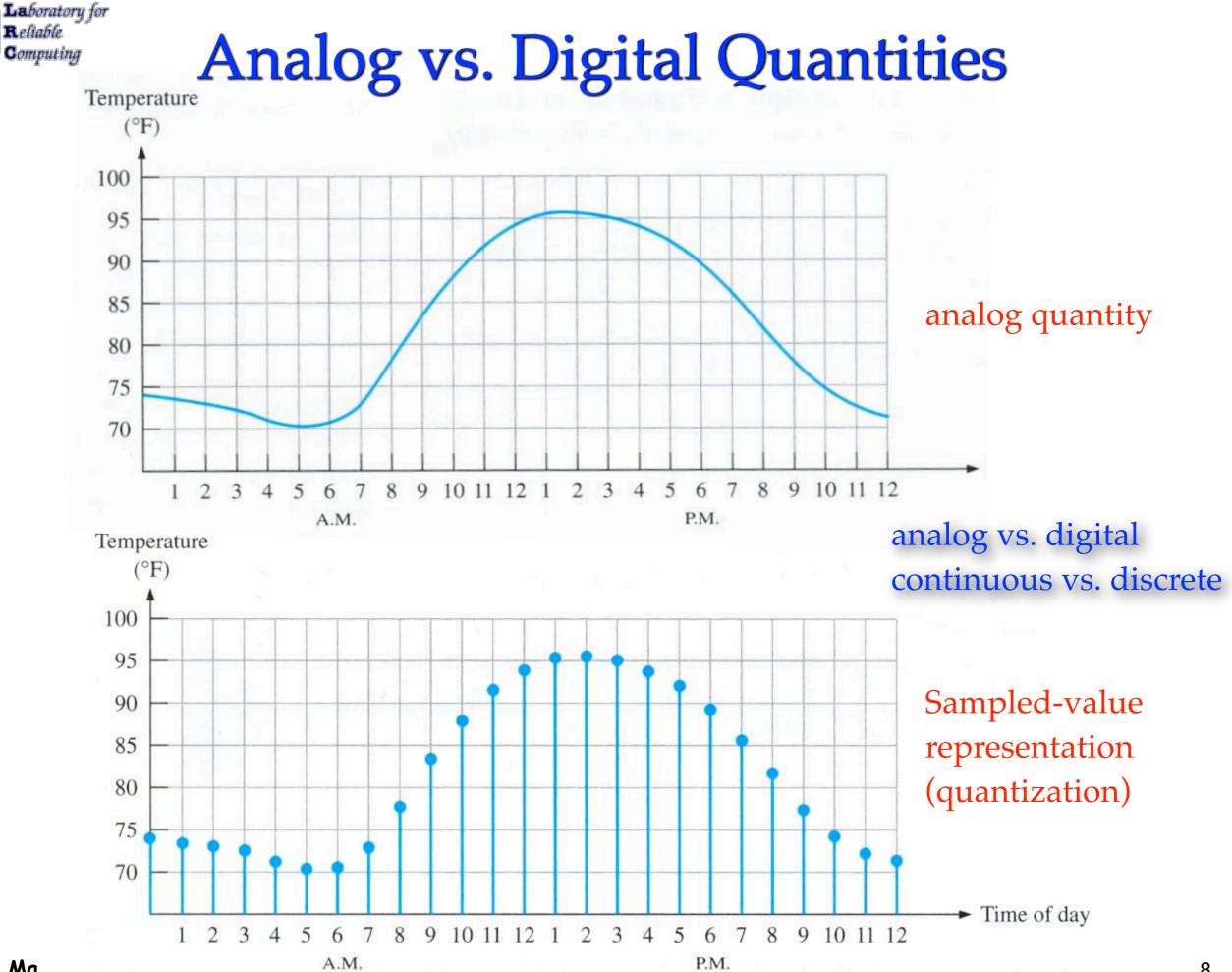
Logic function

- computed by digital logic circuits

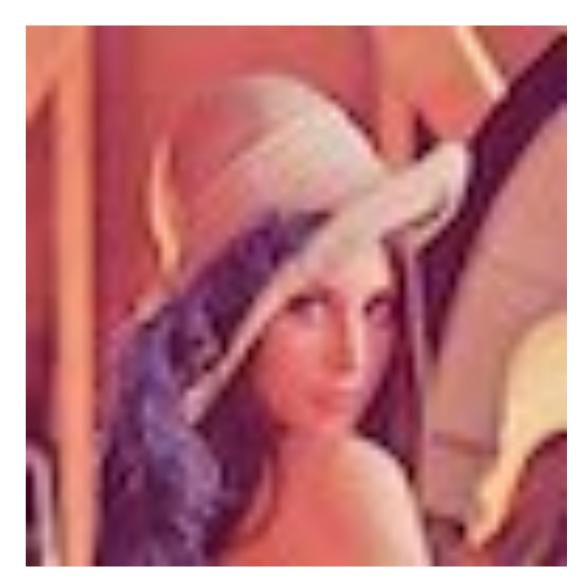
Digital logic circuits

- Combinational logics
 - output depends only on the current inputs
- -Sequential logics
 - •output depends not only on the current inputs, but also in the internal states

Digital Signals



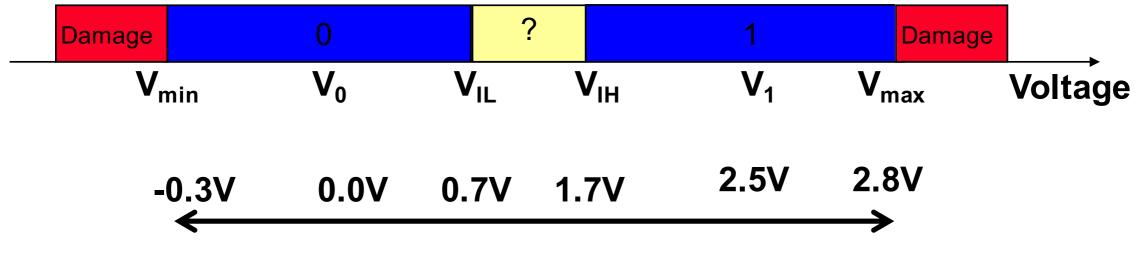
Digital Image



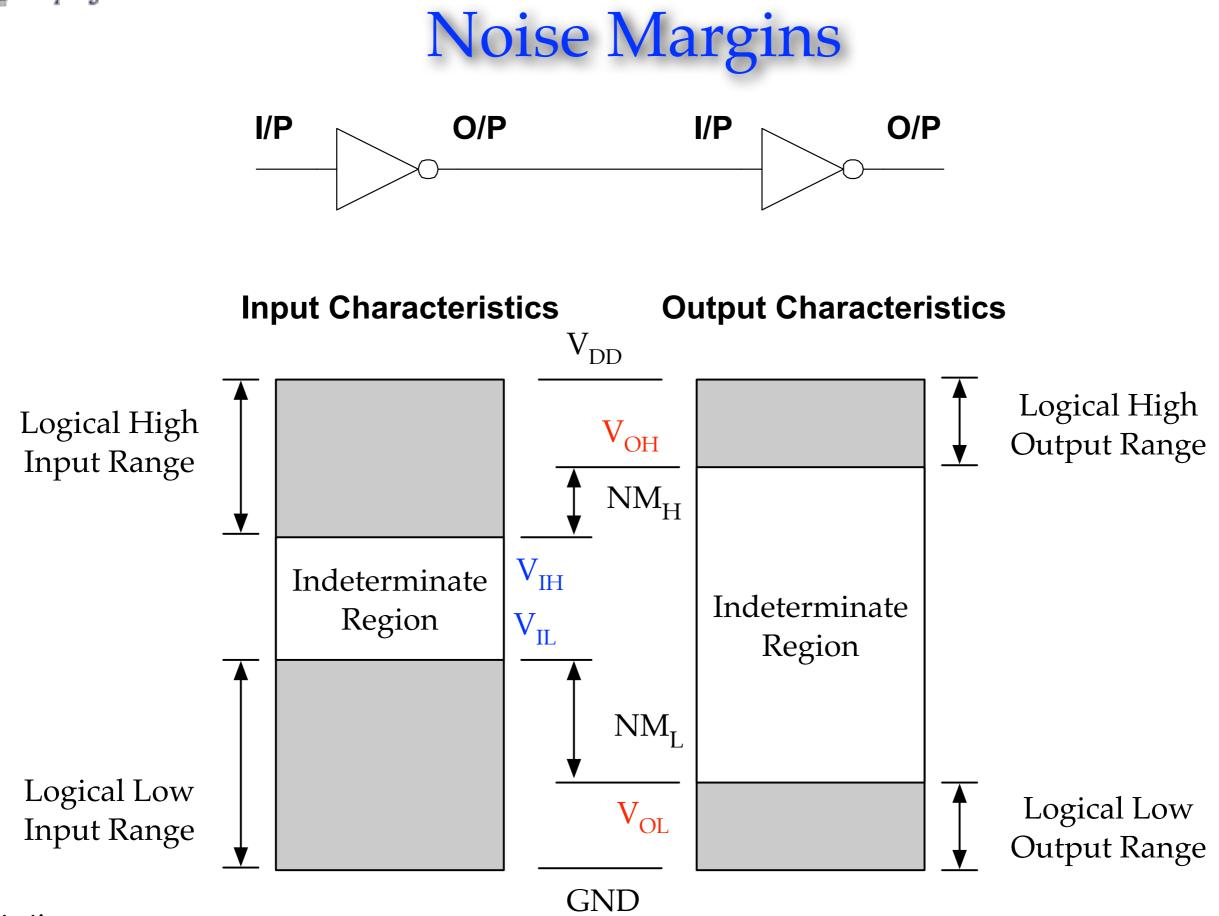
64x64

Encoding of Binary Signals for 2.5 V LVCMOS Logic

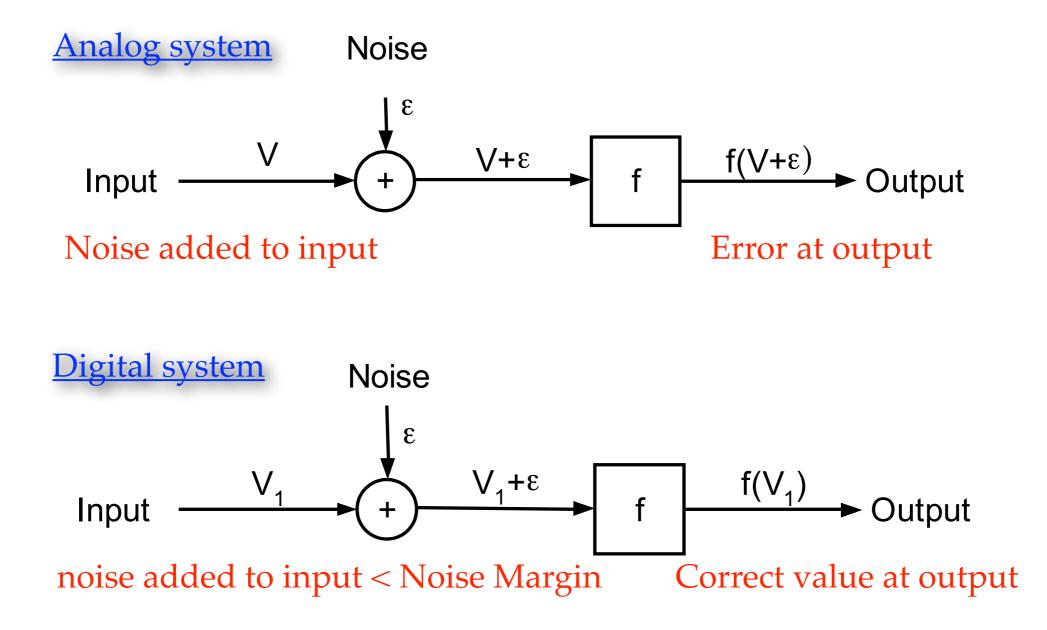
Parameter	Value	Description
V _{min}	-0.3 V	absolute minimum voltage below which damage occurs
V ₀	0.0 V	nominal voltage representing logic "0"
Vol	0.2 V	maximum output voltage representing logic "0"
VIL	0.7 V	maximum voltage considered to be a logic "0" by a module input
VIH	1.7 V	minimum voltage considered to be a logic "1" by a module input
V _{OH}	2.1 V	minimum output voltage representing logic "1"
V ₁	2.5 V	nominal voltage representing logic "1"
V _{max}	2.8 V	absolute maximum voltage above which damage occurs



2.5V LVCMOS Logic



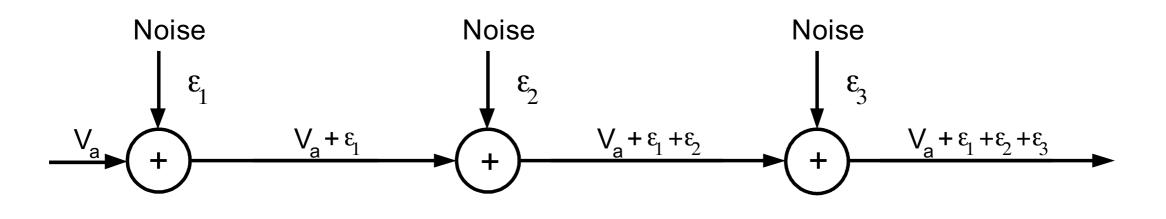
Effects of Noise on Analog and Digital Signals



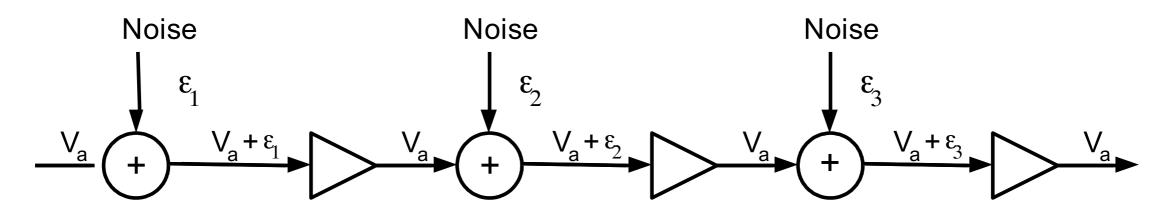
Digital Signals Tolerate Noise

Restoration of Digital Signals with Buffers

Noise Accumulation



Signal Restoration



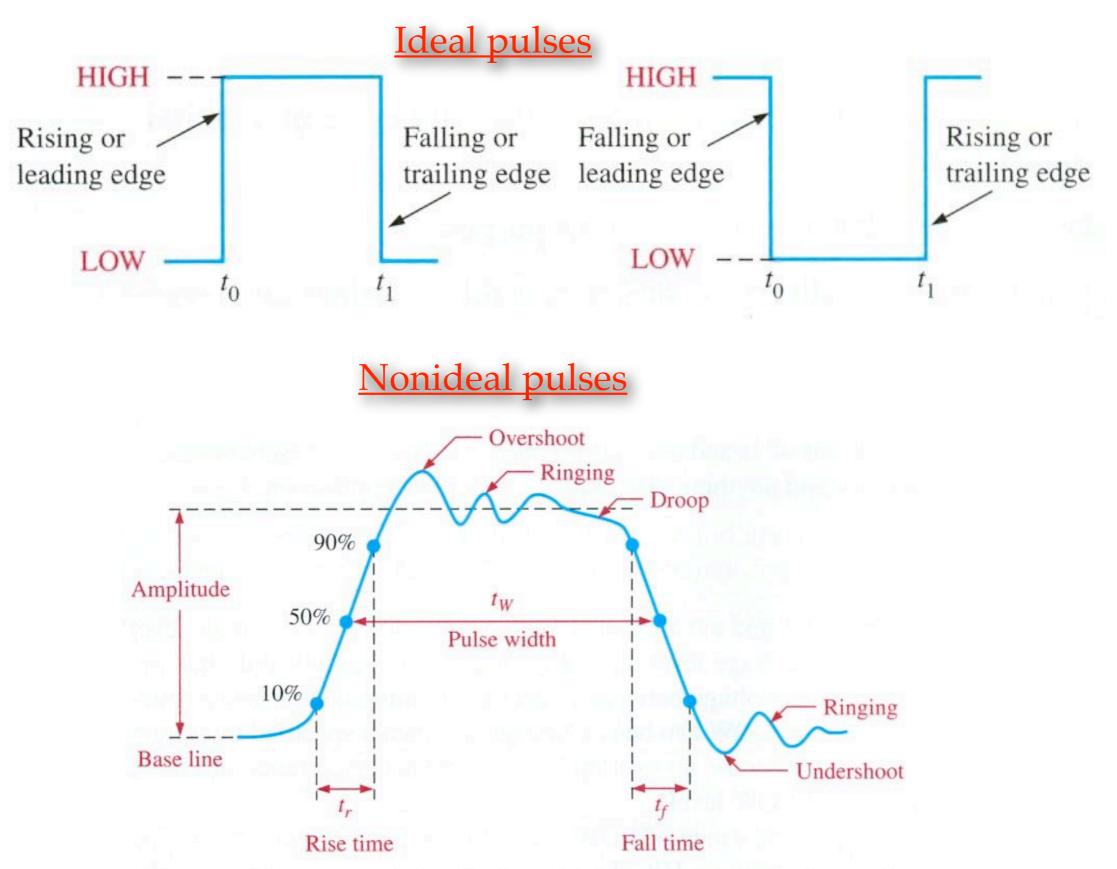
Binary Digits and Logic Levels

- Bit: *bi*nary digi*t*
 - -1: HIGH (TRUE)
 - -0: LOW (FALSE)
- Codes: group of bits (combinations of 1s and 0s)
 - -Used to represent numbers, letters, symbols, instructions, and anything else required in a given application.

VH(max)HIGH
(binary 1)VH(min)UnacceptableVL(max)LOW
(binary 0)

Logic levels

Digital Waveforms (1/2)



Laboratory for

Reliable Computing

Digital Waveforms (2/2)

Periodic vs. nonperiodic waveforms

A

waveform A

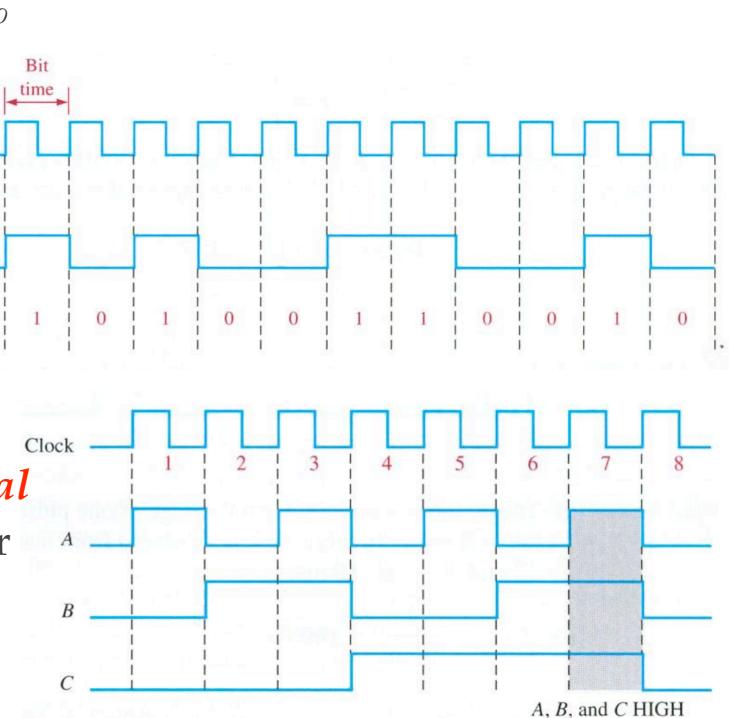
- -frequency (f) vs. period (T) (f=1/T)
- -Duty cycle = (t_w/T) x 100%

clock

Clock – All waveforms are synchronized with a basic timing Bit sequence represented by waveform (*clock*).

Timing diagram

– A graph showing the *actual time relationship* of two or more waveforms and how each waveform *changes in relation* to others.



Data Representation

Data Representation (Data Types)

Digital data can be categorized into

- **Numbers**: used in arithmetic computation
- Letters of the alphabet: used in data processing
- **Discrete symbols**: used for variety of purposes
- All above are represented in binary-coded form
- Conversions between these data types and the binary code will be necessary

Number Systems

Positional Number Systems

• Let *r* be the radix (or base), then the (*n*+*m*)-digit number

$$D = d_{n-1}d_{n-2}\cdots d_1 d_{\text{od}-1}d_{-2}\cdots d_{-m} \qquad 0 \le d < r$$
radix point

-has the value

$$D = d_{n-1}r^{n-1} + d_{n-2}r^{n-2} + \dots + d_1r + d_0 + d_{-1}r^{-1} + d_{-2}r^{-2} + \dots + d_{-m}r^{-m}$$

Most-significant Digit (MSD)

Least-significant Digit (LSD)

$$D = \sum_{i=-m}^{n-1} d_i \cdot r^i$$

Hsi-Pin Ma

Positional Number Systems: Example

$$(7392)_{10} = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

- -Base (radix) r = 10
- Coefficients $D=(d_3, d_2, d_1, d_0) = (7, 3, 9, 2)$

Binary Number System

• Let *r*=2, then the (*n*+*m*)-bit number

$$B = b_{n-1}b_{n-2}\cdots b_1b_0.b_{-1}b_{-2}\cdots b_{-m}$$

$$B = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12 + b_0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots + b_{-m}2^{-m}$$
Most-significant Bit
(MSB)
$$B = \sum_{i=-m}^{n-1} b_i \cdot 2^i$$
Least-significant Bit (LSB)

 $1010.101_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 10.625_{10}$

Binary Special Unit

- byte: 8 bits
- word: processor architecture dependent (2, 4, 8 bytes or even more)
- 2¹⁰: (1,024) Kilo, K
- 2²⁰: (1,048,576) Mega, M
- 2³⁰: (1,073,741,824) Giga, G

Symbol	Prefix	SI Meaning
m	milli	10-3=1000-1
μ	micro	10-6=1000-2
n	nano	10-9=1000-3
р	pico	10-12=1000-4
f	femto	10-15=1000-5
а	atto	10-18=1000-6
Z	zepto	10-21=1000-7

- 2⁴⁰: (1,099,511,627,776) Tera, T
- m, µ, n, f, ...

Symbol	Prefix	SI Meaning	Binary Meaning
K	kilo	$10^3 = 1000^1$	$2^{10} = 1024^{1}$
М	mega	106=10002	$2^{20} = 1024^{2}$
G	giga	109=10003	2 ³⁰ =1024 ³
Т	tera	$10^{12} = 1000^4$	$2^{40} = 1024^4$
Р	peta	$10^{15} = 1000^{5}$	$2^{50} = 1024^{5}$
Е	exa	$10^{18} = 1000^{6}$	$2^{60} = 1024^{6}$
Z	zetta	1021=10007	270=10247

Octal and Hexadecimal Numbers

- The octal (base-8) and hexadecimal (base-16) numbers are shorter forms for representing binary numbers.
 - powers of two bases
 conversion from binary to octal (hexadecimal) is straightforward
 by 3-bit (4-bit) grouping
 conversion from octal (hexadecimal) to binary is just the reverse of the above.

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecima (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number Ranges

- The range of numbers that can be represented is based on the *number of bits* available in the hardware structures that store and process information.
 - -16-bit unsigned integers: 0 ~ 2¹⁶-1 (0 ~ 65535)
 - -16-bit unsigned fractions: 0 ~ (2¹⁶-1)/2¹⁶ (0 ~ 0.9999847412)

Radix-*r* to Decimal Conversion

$$D = d_{n-1}r^{n-1} + d_{n-2}r^{n-2} + \dots + d_1r + d_0 + d_{-1}r^{-1} + d_{-2}r^{-2} + \dots + d_{-m}r^{-m}$$
Most-significant Digit (MSD)

Least-significant Digit (LSD)

$$1010.101_{2} = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3} = 10.625_{10}$$

$$22.22_{4} = 2 \cdot 4^{1} + 2 \cdot 4^{0} + 2 \cdot 4^{-1} + 2 \cdot 4^{-2} = 10.625_{10}$$

$$12.5_{8} = 1 \cdot 8^{1} + 2 \cdot 8^{0} + 5 \cdot 8^{-1} = 10.625_{10}$$

$$A.A_{16} = 10 \cdot 16^{0} + 10 \cdot 16^{-1} = 10.625_{10}$$

Decimal to Radix-r Conversion

- Integer part: Successive divisions by *r* and observe the remainders
- Fraction: Successive multiplications by *r* and observe the carries

$$A_{r} = D_{10} \sum_{i=-m}^{n-1} a_{i} \cdot r^{i} = \sum_{j=-p}^{q-1} d_{j} \cdot 10^{j} \qquad 0 \le a_{i} < r \qquad 0 \le d_{i} < 10$$
$$D_{10} = D_{10} + D_{210} \qquad \sum_{j=-p}^{q-1} d_{j} \cdot 10^{j} = \sum_{j=0}^{q-1} d_{j} \cdot 10^{j} + \sum_{j=-p}^{-1} d_{j} \cdot 10^{j}$$

$$\begin{array}{rcl} & \text{Integer part} & & \text{Fractional part} \\ D1 & = D1' \cdot r + a_0 & D2 \cdot r & = a_{-1} \cdot D2' \\ D1' & = D1'' \cdot r + a_1 & D2' \cdot r & = a_{-2} \cdot D2'' \\ & & & & & \\ D1^{(n-2)} & = D1^{(n-1)} \cdot r + a_{n-2} & D2^{(m-1)} \cdot r & = a_{-m} \cdot D2^{(m)} \\ D1^{(n-1)} & = a_{n-1} \end{array}$$

Arithmetic Addition and Subtraction

			512	256	128	64	32	16	8	4	2	1
	X		1	1	1	1	0	1	1	0	1	1
	У					1	1	1	1	0	1	1
Addition	Carries		1	1	1	1	1	1	0	1	1	
	x+y	1	0	0	0	1	0	1	0	1	1 I 1 I	0
		^s 10	^s 9	^s 8	^s 7 ^s	⁵ 6	^s 5	^s 4	^s 3	^s 2	s ₁	s ₀
			51	2 25	6 128	8 64	32	16	8	4	2	1
	X		1	1	1	1	0	1	1	0	1	1
	У					1	1	1	1	0	1	11
<u>Subtraction</u>	Borrow		0	0	1	1	0	0	0	0	¦0	
	х-у		1	1	0	1	1	0	0	0	0	0
			<i>d</i> ₉	d ₈	<i>d</i> ₇	<i>d</i> ₆	<i>d</i> ₅	d_4	d_3	d_2	d ₁	
Hsi-Pin Ma												

Hsi-Pin Ma

Laboratory for

Reliable

NTHU EE

Sign-Magnitude Representation

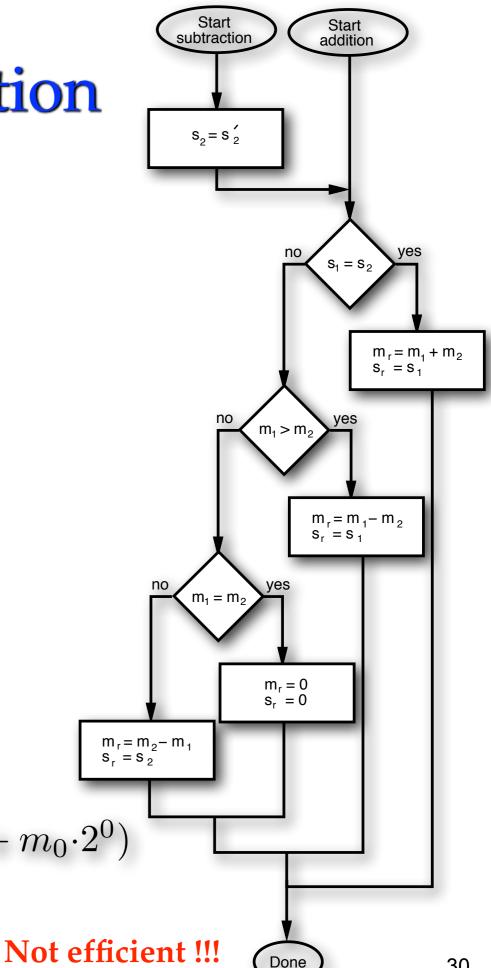
• $D = \langle s, m \rangle$

- -s: sign, +(0) or -(1)
- For an *n*-bit integer, *m* is an integer ranging from 0 to 2ⁿ⁻¹-1
- Assume we want to add/ subtract D1 with D2
 - $-D1 = < s_1, m_1 >$
 - $-D2 = < s_2, m_2 >$

$$D = sm_{n-2}m_{n-3}...m_1m_0$$

= $\pm (m_{n-2}\cdot 2^{n-2} + m_{n-3}\cdot 2^{n-3} + ... + m_1\cdot 2^1 + m_0\cdot 2^0$

-01111111 = +63, 11111111 = -63



Complements

- Complements are used for simplifying the subtraction operation for easy manipulation of certain logical rules and events
 - Trade comparisons of sign and magnitude with complementation
 - Complementation can be performed very efficiently for binary numbers

• Two types for radix-*r* system

- Radix complement (r's-complement)
- Digit complement (diminished radix complement and (*r*-1)'s-complement)

Two Types of Complements

Radix complement

– The r's-complement of an n-digit number D is defined as 0 if D=0, and else

$$\bar{D} = D' + 1 = (r^n) - D$$

- -10's-complement of 546700=1000000-546700=453300
- -10's-complement of 012398=1000000-012398=987602
- -2's-complement of 1011000=1000000-1011000=0101000
- -2's-complement of 0101101=1000000-0101101=1010011

Digit complement

– The (*r*-1)'s-complement of an n-digit number D

 $D' = (r^n - 1) - D$

- -9's-complement of 546700=999999-546700=453299
- -9's-complement of 012398=999999-012398=987601
- -1's-complement of 1011000=1111111-1011000=0100111

- 1's-complement of 0101101=111111-0101101=1010010

10's Complement Example

Definition of sign

- Positive number: MSD with 0
- Negative number: MSD with 9
- –MSD with other numbers => illegal

9286-1801 (both unsigned decimal)

- -10's complement of 1801 : 10000-1801=8199
- -**0**9286+**9**8199=107485 (remove end carry) => **0**7485

Still need minus operation in complement!! How to avoid??

2's Complement Example

Sign definition

- Positive number: MSB with 0
- Negative number : MSB with 1
- Leading bit with negative weight (provide half+/half-)

1111-1010 (both unsigned binary)

- -2's complement of 1010: 100000-01010=10110
- -**0**1111+**1**0110=1**0**0101 (leading 1 issue)

• Use 1's complement + 1 to remove the extra 'minus'

2's-Complement Representation

• Signed vs. Unsigned (*n*-bit binary number) Unsigned binary representation

 $B = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12 + b_0$

<u>2's-complement binary representation</u>

$$B = b_{n-1}(-2^{n-1}) + b_{n-2}2^{n-2} + \dots + b_12 + b_0$$

• Example

- -0111₂: 7 for unsigned and 2's complement number
- 1111₂: 15 for unsigned number, -1 for 2's complement number (-1*8+1*4+1*2+1*1=-1)

Refiatory for Compute Representation of Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

 Range of an n-bit number in 2's-complement representation is [-2ⁿ⁻¹, 2ⁿ⁻¹-1]

• The **2's-complement representation** is by far the most popular.

Subtraction with Complements

- Replace subtraction with addition
- M_r - N_r
 - $-M+(r^n-N) = M-N + r^n$
 - -If M>=N, the *end carry* rⁿ is discarded, and the result is M-N
 - If M<N, there is no end carry, and the sum equals rⁿ (N-M). Take its r's-complement we obtain N-M, i.e., -(M-N)

2's-Complement Subtraction

- Let the 1's-complement form of an n-bit number B be denoted as B', then
 - $-B + B' = 2^{n} 1; B' + 1 = 2^{n} B$
 - - B = B' + 1 = 2's-complement of B
- A-B=A+(2's-complement of B)

2's-Complement Addition

Adding two positive numbers generates correct results if there is no *overflow*

-0010+0100=0110 (2+4=6)

 Adding two positive numbers generates incorrect results if there is overflow

-0110+0101=1011 (6+5=-5)

 Adding two negative numbers generates correct results if there is no *underflow*

-1110+1100=1010 ((-2)+(-4)=(-6))

Adding two negative numbers generates incorrect result if there is underflow

-1100+1011=0111((-4)+(-5)=7)

Sign extension to avoid overflow or underflow

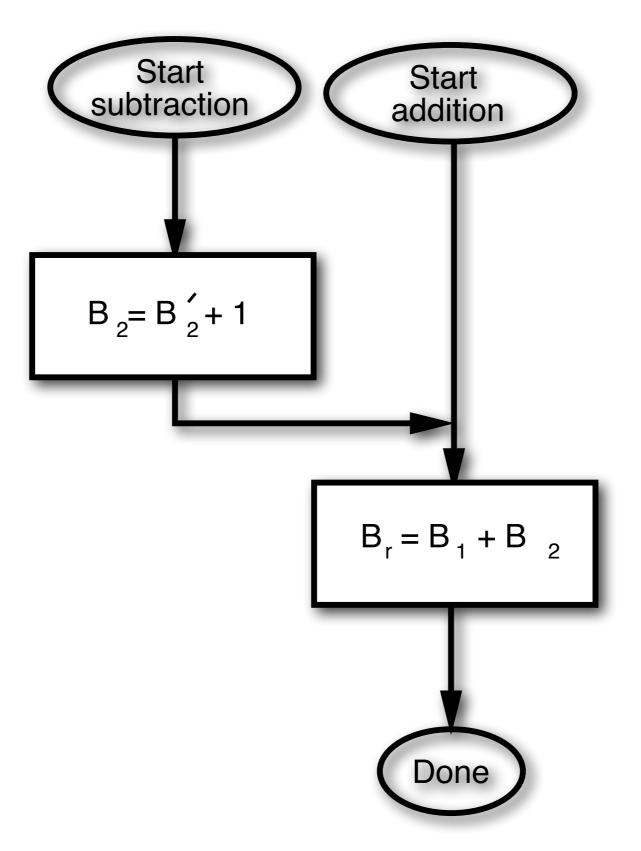
Bit Insertion for Addition

• When doing $A+B (a_3a_2a_1a_0+b_3b_2b_1b_0)$

- If A and B are unsigned numbers, add two bits to the beginning, then do summation.
 - •One bit to convert unsigned number to signed number, and the other bit for sign extension
 - $00a_3a_2a_1a_0 + 00b_3b_2b_1b_0$
- If A and B are signed numbers, only add one bit for sign extension to avoid overflow.

 $\bullet a_3 a_3 a_2 a_1 a_0 + b_3 b_3 b_2 b_1 b_0$

Radix-r Addition/Subtraction



Codes

Decimal Codes

- An *n*-bit binary code is a group of *n* bits that assume up to 2ⁿ distinct combinations of 1s and 0s, with each combination representing one element of the set being coded.
 - Each element must be assigned a **unique** binary bit combination to **avoid ambiguity**
 - -Example
 - •2-bit binary code: 00, 01, 10, 11
 - 3-bit binary code: 000, 001, 010, ..., 111
 - *n*-bit code: $0 \sim 2^{n-1}$
 - May have unassigned bit combinations

Binary-Coded Decimal (BCD)

- Represent the decimal system using binary number
 - -4 bits to represent 0-9 in the decimal system
 - A-F are discarded
 - $-(185)_{10}=(0001\ 1000\ 0101)_{BCD}$
- seven-segment display

Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

a nibble

Binary Codes for Decimal Numbers

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
	1011	0110	0001	0010
Unused	1100	0111	0010	0011
bit	1101	1000	1101	1100
combi- nations	1110	1001	1110	1101
nations	1111	1010	1111	1110

Binary Codes for Decimal Numbers

Weighted codes

- Each position is assigned a weighting factor to calculate the value of the number
- –BCD (8421), 2421, 84-2-1 codes

Self-complementing codes

- -9's complement of a decimal number is obtained directly by changing 1 to 0 or 0 to 1 in the code
- -2421, excess-3 codes

Number of Bits Required to Represent a Binary Code

- Given M elements to be represented by a binary code, the minimum number of bits, *n*, needed satisfies the following relationships
- $2^{(n-1)} < M \le 2^n \qquad n = \lceil \log_2 M \rceil$

Warning: Conversion vs. Coding

- Do NOT mix up <u>conversion</u> of a decimal number to a binary number with <u>coding</u> a decimal number with a BINARY CODE
 - $-13_{10} = 1101_2$ (Conversion)
 - -13 <=> 0001 0011 (BCD Coding)

Alphanumeric Codes

• Represent numerals and special characters with binary codes in many other applications.

Alphanumeric character set for English

- Ten decimal digits
- -26 letters of the alphabet
- Several (more than three) special characters

ASCII Character Code

American Standard Code for Information Interchange

- The standard binary code for the alphanumeric characters
- ASCII code is not enough for some languages, and 2-byte code is necessary, such as Chinese Big5 or Unicode

0 0 000 NUL (null) 32 20 040 Space 64 40 100 @ 0 96 60 140 ` 1 1 001 SOH (start of heading) 33 21 041 ! 1 65 41 101 A A 97 61 141 a	a b
1 1 001 SOH (start of heading) 33 21 041 & #33; 65 41 101 & #65; A 97 61 141 & #97	b
2 2 002 STX (start of text) 34 22 042 " "66 42 102 B B 98 62 142 b	c i
3 3 003 ETX (end of text) 35 23 043 & #35; # 67 43 103 & #67; C 99 63 143 & #99	· ·
4 4 004 EOT (end of transmission) 36 24 044 & #36; \$ 68 44 104 & #68; D 100 64 144 & #10	
5 5 005 ENQ (enquiry) 37 25 045 % % 69 45 105 E E 101 65 145	
6 6 006 ACK (acknowledge) 38 26 046 & 6 70 46 106 F F 102 66 146	
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 G 6 103 67 147	
8 8 010 BS (backspace) 40 28 050 ((72 48 110 H H 104 68 150	
9 9 011 TAB (horizontal tab) 41 29 051)) 73 49 111 I I 105 69 151	
10 A 012 LF (NL line feed, new line) 42 2A 052 * * 74 4A 112 J J 106 6A 152	
11 B 013 VT (vertical tab) 43 2B 053 & #43; + 75 4B 113 & #75; K 107 6B 153 & #10	
12 C 014 FF (NP form feed, new page) 44 2C 054 , , 76 4C 114 L L 108 6C 154	
13 D 015 CR (carriage return) 45 2D 055 & #45; - 77 4D 115 & #77; M 109 6D 155 & #10	
14 E 016 S0 (shift out) 46 2E 056 & #46; . 78 4E 116 & #78; N 110 6E 156 & #13	
15 F 017 SI (shift in) 47 2F 057 & #47; / 79 4F 117 & #79; 0 111 6F 157 & #13	
16 10 020 DLE (data link escape) 48 30 060 «#48; 0 80 50 120 «#80; P 112 70 160 «#11	
17 11 021 DC1 (device control 1) 49 31 061 & #49; 1 81 51 121 & #81; 0 113 71 161 & #11	
18 12 022 DC2 (device control 2) 50 32 062 & #50; 2 82 52 122 & #82; R 114 72 162 & #11	
19 13 023 DC3 (device control 3) 51 33 063 & #51; 3 83 53 123 & #83; 5 115 73 163 & #13	
20 14 024 DC4 (device control 4) 52 34 064 & #52; 4 84 54 124 & #84; T 116 74 164 & #11	
21 15 025 NAK (negative acknowledge) 53 35 065 & #53; 5 85 55 125 & #85; U 117 75 165 & #11	
22 16 026 SYN (synchronous idle) 54 36 066 & #54; 6 86 56 126 & #86; V 118 76 166 & #13	
23 17 027 ETB (end of trans. block) 55 37 067 & #55; 7 87 57 127 & #87; W 119 77 167 & #11	
24 18 030 CAN (cancel) 56 38 070 & #56; 8 88 58 130 & #88; X 120 78 170 & #12	
25 19 031 EM (end of medium) 57 39 071 & #57; 9 89 59 131 & #89; Y 121 79 171 & #12	
26 1A 032 SUB (substitute) 58 3A 072 & #58; 90 5A 132 & #90; Z 122 7A 172 & #12	
27 1B 033 ESC (escape) 59 3B 073 & #59; 91 5B 133 & #91; 123 7B 173 & #12	
28 1C 034 FS (file separator) 60 3C 074 < < 92 5C 134 \ \ 124 7C 174	
29 1D 035 GS (group separator) 61 3D 075 $\&$ #61; = 93 5D 135 $\&$ #93;] 125 7D 175 $\&$ #12	
30 1E 036 RS (record separator) 62 3E 076 & #62; > 94 5E 136 & #94; ^ 126 7E 176 & #12	
31 1F 037 US (unit separator) 63 3F 077 & #63; 2 95 5F 137 & #95; 127 7F 177 & #12	

Parity Bit

Error detection

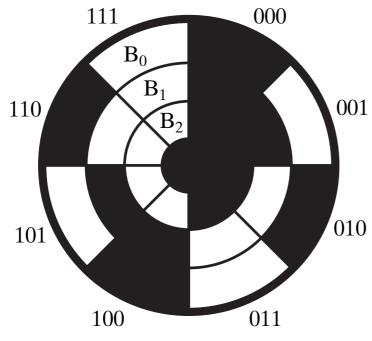
- -*Redundancy,* in the form of extra bits, can be incorporated into binary code words to detect and correct errors
- -*Parity* is an extra bit appended on to the codeword to make the number of 1s odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
 - A code word has *even parity* if the number of 1s in the code word is even.
 - A code word has *odd parity* if the number of 1s in the code word is odd.

	With Even Parity	With Odd Parity
1000001	<mark>0</mark> 1000001	<mark>1</mark> 1000001
1010100	<mark>1</mark> 1010100	<mark>0</mark> 1010100

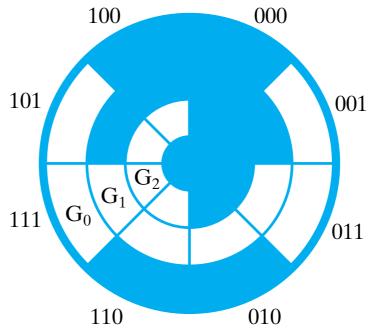
Gray Codes

 A binary code in which adjacent code words differ in only one bit position

Binary	Bit	Gray Bit	es
Code	Changes	Code Change	
000 001 010 011 100 101 110 111 000	1 2 1 3 1 2 1 2 1 3	$\begin{array}{cccc} 000 & 1 \\ 001 & 1 \\ 011 & 1 \\ 010 & 1 \\ 110 & 1 \\ 111 & 1 \\ 101 & 1 \\ 100 & 1 \\ 000 & 1 \end{array}$	



(a) Binary Code for Positions 0 through 7



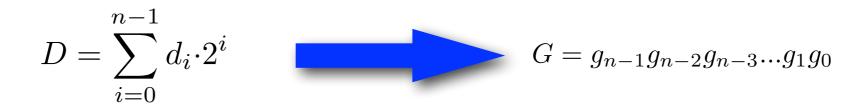
(b) Gray Code for Positions 0 through 7

Gray Codes

1-bit GC	2-bit GC	3-bit GC	4-bit GC	Gray	Decimal
0	00	000	0000	Code	Equivalent
1	01	001	0001	0000	0
	11	011	0011	0001	1
	10	010	0010	0011	2
		110	0110	0010	3
		111	0111	0110	4
		101	0101	0111	5
		100	0100	0101	6
			1100	0100	7
			1101	1100	8
			1111	1101	9
				1111	10
			1110	1110	11
			1010	1010	12
			1011	1011	13
			1001	1001	14
			1000	1000	15

Generation of Gray Codes

• Code number should be even (M=2k) number of code words



- For the first half M/2 codes
 - •Let MSB=0
 - Replace each of the remaining bits with the even parity of the bit of the number and the bit to its left $g_i = d_{i+1} \oplus d_i, i = 0, 1, ..., n-2$
- For the rest half codes
 - Take the sequence of numbers formed for the first half and copy it in reverse order but with MSB=1