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Outline

•Digital Systems
•Digital Signals
•Data Representation

– Number Systems
•Arithmetic Addition and Subtraction

– Codes
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System

•A group of interacting, interrelated, or 
interdependent elements forming a complex 
whole
– The American Heritage Dictionary

3
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Digital Systems
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A Digital Computer

5

Synchronous or 
Asynchronous?!

Inputs: 
keyboard, 
mouse, wireless, 
microphone!

Outputs: LCD 
screen, 
wireless, 
speakers!

Memory!

Control!
unit!

Datapath!

Input/Output!

CPU!

von Neumann architecture
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Digital Logic Functions

•Information
– represented as digital signals

•Logic function
– computed by digital logic circuits

•Digital logic circuits
– Combinational logics

•output depends only on the current inputs 
– Sequential logics

•output depends not only on the current inputs, but also in 
the internal states

6



Hsi-Pin Ma

Digital Signals
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Analog vs. Digital Quantities

8

analog quantity

Sampled-value 
representation 
(quantization)

analog vs. digital
continuous vs. discrete
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Digital Image
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512x512 64x64
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Encoding of Binary Signals for 
2.5 V LVCMOS Logic

10

Parameter Value Description

Vmin -0.3 V absolute minimum voltage below which damage occurs

V0 0.0 V nominal voltage representing logic “0”

VOL 0.2 V maximum output voltage representing logic “0”

VIL 0.7 V maximum voltage considered to be a logic “0” by a module input

VIH 1.7 V minimum voltage considered to be a logic “1” by a module input

VOH 2.1 V minimum output voltage representing logic “1”

V1 2.5 V nominal voltage representing logic “1”

Vmax 2.8 V absolute maximum voltage above which damage occurs

0 1?

Voltage
Damage Damage

Vmin V0 VIL VIH V1 Vmax

-0.3V 0.0V 0.7V 1.7V 2.5V 2.8V

2.5V LVCMOS Logic
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Noise Margins
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Indeterminate 
Region

Logical High
Input Range

Logical Low
Input Range

Logical High
Output Range

Logical Low
Output Range

Indeterminate 
Region

NMH

NML

VOH

VOL

VIH

VIL

GND

VDD

4: DC and Transient Response Slide 29CMOS VLSI Design

Noise Margins

 How much noise can a gate input see before it does 

not recognize the input?

Indeterminate

Region

NM
L

NM
H

Input CharacteristicsOutput Characteristics

V
OH

V
DD

V
OL

GND

V
IH

V
IL

Logical High

Input Range

Logical Low

Input Range

Logical High

Output Range

Logical Low

Output Range

Input Characteristics Output Characteristics

I/P O/P I/P O/P
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Effects of Noise on 
Analog and Digital Signals

12

noise added to input < Noise Margin

Noise added to input Error at output

Correct value at output

V
Input +

ε

Noise

V+ε f f(V+ε) Output

V1Input +

ε

Noise

V1+ε f
f(V1) Output

Analog system

Digital system

Digital Signals Tolerate Noise
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Restoration of Digital Signals with Buffers
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Noise

+

ε1
Va+ ε1

Noise

+

ε2
Va+ε1 +ε2Va

Noise

+

ε3
Va+ε1 +ε2 +ε3

Noise

+

ε
1

Va+ε1

Noise

+

ε
2

Va+ ε2Va Va

Noise

+

ε
3

Va+ε3Va Va

Noise Accumulation

Signal Restoration



Hsi-Pin Ma

Binary Digits and Logic Levels

•Bit: binary digit
–1: HIGH (TRUE)
–0: LOW (FALSE)

•Codes: group of bits (combinations of 
1s and 0s)
–Used to represent numbers, letters, 

symbols, instructions, and anything 
else required in a given application.

•Logic levels

14

VH(max)

VL(min)

VH(min)

VL(max)

HIGH
(binary 1)

LOW
(binary 0)

Unacceptable
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Digital Waveforms (1/2)

15

Ideal pulses

Nonideal pulses
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Digital Waveforms (2/2)
•Periodic vs. nonperiodic waveforms

– frequency (f) vs. period (T)  (f=1/T)
– Duty cycle = (tw/T) x 100%

•clock
– All waveforms are                            

synchronized with a                                       
basic timing                                            
waveform (clock).

•Timing diagram
– A graph showing the actual                           

time relationship of two or                           
more waveforms and how                             
each waveform changes in                          
relation to others.

16
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Data Representation

17
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Data Representation (Data Types)

•Digital data can be categorized into
– Numbers: used in arithmetic computation
– Letters of the alphabet: used in data processing
– Discrete symbols: used for variety of purposes

•All above are represented in binary-coded form
•Conversions between these data types and the 

binary code will be necessary 

18
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Number Systems

19
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•Let r be the radix (or base), then the (n+m)-digit 
number

– has the value

Positional Number Systems

20

D = dn�1dn�2· · ·d1d0.d�1d�2· · ·d�m

D =
n�1�

i=�m

di·ri

D = dn�1r
n�1 + dn�2r

n�2 + · · · + d1r + d0 + d�1r
�1 + d�2r

�2 + · · · + d�mr�m

Least-significant Digit (LSD)Most-significant Digit (MSD)

radix point

0�d<r
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Positional Number Systems: Example

– Base (radix) r = 10
– Coefficients D=(d3,d2,d1,d0) = (7,3,9,2)

21

(7392)10 = 7x103 + 3x102 + 9x101 + 2x100
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•Let r=2, then the (n+m)-bit number

– has the value

Binary Number System

22

B = bn�1bn�2···b1b0.b�1b�2···b�m

B =
n�1�

i=�m

bi·2i

B = bn�12n�1 + bn�22n�2 + ··· + b12 + b0 + b�12�1 + b�22�2 + ··· + b�m2�m

Least-significant Bit (LSB)Most-significant Bit 
(MSB)

1010.1012 = 1·23 + 0·22 + 1·21 + 0·20 + 1·2�1 + 0·2�2 + 1·2�3 = 10.62510
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Binary Special Unit
•byte: 8 bits
•word: processor architecture dependent (2, 4, 8 

bytes or even more)
•210: (1,024) Kilo, K
•220: (1,048,576) Mega, M
•230: (1,073,741,824) Giga, G
•240: (1,099,511,627,776) Tera, T
•m, μ, n, f, ...

23

Symbol Prefix SI Meaning
m milli 10-3=1000-1

μ micro 10-6=1000-2

n nano 10-9=1000-3

p pico 10-12=1000-4

f femto 10-15=1000-5

a atto 10-18=1000-6

z zepto 10-21=1000-7

Symbol Prefix SI Meaning Binary Meaning
K kilo 103=10001 210=10241

M mega 106=10002 220=10242

G giga 109=10003 230=10243

T tera 1012=10004 240=10244

P peta 1015=10005 250=10245

E exa 1018=10006 260=10246

Z zetta 1021=10007 270=10247
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•The octal (base-8) and hexadecimal (base-16) 
numbers are shorter forms for representing 
binary numbers.
– powers of two bases
– conversion from binary to octal                       

(hexadecimal) is straightforward                                         
-- by 3-bit (4-bit) grouping

– conversion from octal                                             
(hexadecimal) to binary is just                                           
the reverse of the above.

Octal and Hexadecimal Numbers

24

2. Data Representations 2-3

✯ The bit is the most-significant bit (MSB); and is the least-significant

bit (LSB).

Exercise 1

Are you familiar with byte, word, , , , , , , etc.?

Octal and Hexadecimal Numbers

✯ The octal (base-8) and hexadecimal (base-16) numbers are shorter forms for

representing binary numbers.

✯ Their bases are powers of two.

✯ The conversion from binary to octal (hexadecimal) is straightforward—by

3-bit (4-bit) grouping.

✯ The conversion from octal (hexadecimal) to binary is just the reverse of the

above.

TABLE 1-2
Numbers with Different Bases

Decimal

(base 10)

Binary

(base 2)

Octal

(base 8)

Hexadecimal

(base 16)

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Table 1-2  Numbers with Different Bases

Figure 1: Important number systems [Mano & Kime].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003
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Number Ranges

•The range of numbers that can be represented is 
based on the number of bits available in the 
hardware structures that store and process 
information.
– 16-bit unsigned integers: 0 ~ 216-1 (0 ~ 65535)
– 16-bit unsigned fractions: 0 ~ (216-1)/216 (0 ~ 

0.9999847412)

25
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Radix-r to Decimal Conversion

26

D = dn�1r
n�1 + dn�2r

n�2 + · · · + d1r + d0 + d�1r
�1 + d�2r

�2 + · · · + d�mr�m

Least-significant Digit (LSD)Most-significant Digit (MSD)

12.58 = 1·81 + 2·80 + 5·8�1 = 10.62510

1010.1012 = 1·23 + 0·22 + 1·21 + 0·20 + 1·2�1 + 0·2�2 + 1·2�3 = 10.62510

A.A16 = 10·160 + 10·16�1 = 10.62510

22.224 = 2·41 + 2·40 + 2·4�1 + 2·4�2 = 10.62510
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Decimal to Radix-r Conversion
•Integer part: Successive divisions by r and observe the remainders

•Fraction: Successive multiplications by r and observe the carries

27

Ar = D10

n�1�

i=�m

ai·ri =
q�1�

j=�p

dj ·10j 0�ai<r 0�di<10

D10 = D110 + D210

q�1�

j=�p

dj ·10j =
q�1�

j=0

dj ·10j +
�1�

j=�p

dj ·10j

D1 D2

D2·r = a�1.D2⇥
D2⇥·r = a�2.D2⇥⇥

...
D2(m�1)·r = a�m.D2(m)

D1 = D1⇥·r + a0

D1⇥ = D1⇥⇥·r + a1

...
D1(n�2) = D1(n�1)·r + an�2

D1(n�1) = an�1

Integer part Fractional part
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Arithmetic Addition and Subtraction

28
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Addition & Subtraction of Binary Number

29

2. Data Representations 2-6

Fraction part:

Therefore, .

Addition of Binary Numbers

                                  512   256   128    64    32    16    8     4      2      1

x                                 1       1       1      1      0      1     1      0      1      1

y                                                            1      1     1     1      0      1      1

Carries                        1       1       1       1      1     1     0      1      1

x+y                      1     0       0       0       1      0     1     0     1       1      0

s
1

s
0

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

Figure 2: Binary addition example [Gajski].

Subtraction of Binary Numbers

123689
d d

7
d d

5
d

4
d d d d

0
d

                                           512   256   128   64    32     16    8     4      2      1

x                                         1       1       1       1      0       1     1      0      1      1

y                                                                     1      1      1     1      0      1      1

Borrow                                0       0        1      1      0      0      0     0      0      

x+y                                      1       1        0      1      1      0      0     0      0     0

Figure 3: Binary subtraction example [Gajski].

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003
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d d

7
d d

5
d

4
d d d d

0
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c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003

Addition

Subtraction
x-y
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Sign-Magnitude Representation
•D=<s,m>

– s: sign, + (0) or - (1)
– For an n-bit integer, m is an integer 

ranging from 0 to 2n-1-1

•Assume we want to add/
subtract D1 with D2
– D1=<s1,m1>
– D2=<s2,m2>

– 0111111 = +63, 1111111 = -63
30

2. Data Representations 2-7

Sign-Magnitude Representation

A sign-magnitude number can be represented as , where and

are the sign and magnitude of , respectively. Assume we want to add/subtract

with , generating the result .

m  = m  − m
s   = s

m  = m  − m
s   = s

m  = m
no

yes

Done

  Start
addition

no

no

yes

     Start
subtraction

m  > m1 2

1 2

yes
1 2s  = s

m  = m  + m
s   = s 1

1 2

r

r

1

1 2

r

r

12

r

r

s  = s 22

m  = 0
s   = 0

r

r

2

Figure 4: Procedure for addition/subtraction of sign-magnitude numbers [Gajski].

☞ The sign ( ) is either (0) or (1).

☞ For an -bit integer, the magnitude ( ) is an integer ranging from 0 to

.

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003

D = smn�2mn�3...m1m0

= ±(mn�2·2n�2 + mn�3·2n�3 + ... + m1·21 + m0·20)

Not efficient !!!
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Complements
•Complements are used for simplifying the 

subtraction operation for easy manipulation of 
certain logical rules and events
– Trade comparisons of sign and magnitude with 

complementation
– Complementation can be performed very efficiently for 

binary numbers

•Two types for radix-r system
– Radix complement (r’s-complement)
– Digit complement (diminished radix complement and 

(r-1)’s-complement)

31
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•Radix complement
– The r’s-complement of an n-digit number D is defined as 0 if D=0, and else

– 10’s-complement of 546700=1000000-546700=453300
– 10’s-complement of 012398=1000000-012398=987602
– 2’s-complement of 1011000=10000000-1011000=0101000
– 2’s-complement of 0101101=10000000-0101101=1010011

•Digit complement
– The (r-1)’s-complement of an n-digit number D

– 9’s-complement of 546700=999999-546700=453299
– 9’s-complement of 012398=999999-012398=987601
– 1’s-complement of 1011000=1111111-1011000=0100111
– 1’s-complement of 0101101=1111111-0101101=1010010

Two Types of Complements

32

D̄ = D� + 1 = (rn)�D

D� = (rn � 1)�D
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10’s Complement Example
•Definition of sign

– Positive number: MSD with 0
– Negative number: MSD with 9
– MSD with other numbers => illegal

•9286-1801 (both unsigned decimal)
– 10’s complement of 1801 : 10000-1801=8199
– 09286+98199=107485 (remove end carry) => 07485

•Still need minus operation in complement!!
•How to avoid??

33
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2’s Complement Example

•Sign definition
– Positive number: MSB with 0
– Negative number : MSB with 1
– Leading bit with negative weight (provide half+/half-)

•1111-1010 (both unsigned binary)
– 2’s complement of 1010: 100000-01010=10110
– 01111+10110=100101 (leading 1 issue)

•Use 1’s complement + 1 to remove the extra 
‘minus’

34
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2’s-Complement Representation

•Signed vs. Unsigned (n-bit binary number)

•Example
– 01112: 7 for unsigned and 2’s complement number
– 11112: 15 for unsigned number, -1 for 2’s complement 

number (-1*8+1*4+1*2+1*1=-1)

35

2’s-complement binary representation

B = bn�1(�2n�1) + bn�22n�2 + ··· + b12 + b0

Unsigned binary representation

B = bn�12n�1 + bn�22n�2 + ··· + b12 + b0
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•Range of an n-bit number in 2’s-complement 
representation is [-2n-1, 2n-1-1]

•The 2’s-complement representation is by far the 
most popular.

Representation of Signed Binary Numbers

36
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Subtraction with Complements

•Replace subtraction with addition
•Mr-Nr

– M+(rn-N) = M-N + rn

– If M>=N, the end carry rn is discarded, and the result is 
M-N

– If M<N, there is no end carry, and the sum equals rn - (N-
M). Take its r’s-complement we obtain N-M, i.e., -(M-N)

37
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2’s-Complement Subtraction

•Let the 1’s-complement form of an n-bit number 
B be denoted as B’, then
– B + B’=2n - 1; B’ + 1=2n - B
–  - B = B’+ 1 = 2’s-complement of B

•A-B=A+(2’s-complement of B)

38
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2’s-Complement Addition
•Adding two positive numbers generates correct results if 

there is no overflow
– 0010+0100=0110 (2+4=6)

•Adding two positive numbers generates incorrect results if 
there is overflow

– 0110+0101=1011 (6+5=-5)

•Adding two negative numbers generates correct results if 
there is no underflow

– 1110+1100=1010 ((-2)+(-4)=(-6))

•Adding two negative numbers generates incorrect result if 
there is underflow

– 1100+1011=0111((-4)+(-5)=7)

•Sign extension to avoid overflow or underflow
39
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Bit Insertion for Addition

•When doing A+B (a3a2a1a0+b3b2b1b0) 
– If A and B are unsigned numbers, add two bits to the 

beginning, then do summation.
•One bit to convert unsigned number to signed number, 

and the other bit for sign extension
•00a3a2a1a0+00b3b2b1b0

– If A and B are signed numbers, only add one bit for sign 
extension to avoid overflow.

•a3a3a2a1a0+b3b3b2b1b0

40
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Radix-r Addition/Subtraction

41

2. Data Representations 2-11

Done

  Start

addition

     Start

subtraction

22
B  = B   + 1

B  = B   + B
r 1 2

Figure 5: Addition/subtraction procedure for radix- numbers [Gajski].

✯ Adding a positive number and a negative number always generates correct

result. Why?

Exercise 3

(1) Does the end carry always mean overflow or underflow?

(2) How do you detect overflow/underflow?

(3) How do you perform binary multiplication and division?

*Floating-Point Numbers

✯ Fixed-point number: the radix point has a fixed position.

✯ Floating-point number: the radix point does not have a fixed position.

☞ Do you think an integer has to be represented as a fixed-pont number? or vice

versa? Why?

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003



Hsi-Pin Ma

Codes

42
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Decimal Codes
•An n-bit binary code is a group of n bits that 

assume up to 2n distinct combinations of 1s and 
0s, with each combination representing one 
element of the set being coded.
– Each element must be assigned a unique binary bit 

combination to avoid ambiguity
– Example

•2-bit binary code: 00, 01, 10, 11
•3-bit binary code: 000, 001, 010, ..., 111
•n-bit code: 0 ~ 2n-1

– May have unassigned bit combinations
43
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Binary-Coded Decimal (BCD)

•Represent the decimal 
system using binary 
number
– 4 bits to represent 0-9 in the 

decimal system
– A-F are discarded
– (185)10= (0001 1000 0101)BCD

•seven-segment display

44

Decimal 
symbol

BCD digit

0
1
2
3
4
5
6
7
8
9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

a nibble
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Binary Codes for Decimal Numbers

45
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Binary Codes for Decimal Numbers

•Weighted codes
– Each position is assigned a weighting factor to calculate 

the value of the number
– BCD (8421), 2421, 84-2-1 codes

•Self-complementing codes
– 9’s complement of a decimal number is obtained directly 

by changing 1 to 0 or 0 to 1 in the code
– 2421, excess-3 codes

46
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Number of Bits Required to  
Represent a Binary Code

•Given M elements to be represented by a binary 
code, the minimum number of bits, n, needed 
satisfies the following relationships

–

47

2(n�1) < M2n n = dlog2 Me
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Warning: Conversion vs. Coding

•Do NOT mix up conversion of a decimal 
number to a binary number with coding a 
decimal number with a BINARY CODE
– 1310 = 11012 (Conversion)
– 13 <=> 0001 0011 (BCD Coding)

48
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Alphanumeric Codes

•Represent numerals and special characters with 
binary codes in many other applications.

•Alphanumeric character set for English
– Ten decimal digits
– 26 letters of the alphabet
– Several (more than three) special characters

49
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ASCII Character Code
•American Standard Code for Information Interchange

– The standard binary code for the alphanumeric characters
– ASCII code is not enough for some languages, and 2-byte code is 

necessary, such as Chinese Big5 or Unicode

50
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Parity Bit
•Error detection

– Redundancy, in the form of extra bits, can be incorporated 
into binary code words to detect and correct errors

– Parity is an extra bit appended on to the codeword to 
make the number of 1s odd or even. Parity can detect all 
single-bit errors and some multiple-bit errors. 

•A code word has even parity if the number of 1s in the code 
word is even.

•A code word has odd parity if the number of 1s in the code 
word is odd.

51

With Even Parity With Odd Parity

1000001 01000001 11000001

1010100 11010100 01010100
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Gray Codes

•A binary code in which 
adjacent code words 
differ in only one bit 
position

52

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

T 1-6

TABLE 1-6
Gray Code

Binary 
Code

Bit
Changes

Gray
Code

Bit
Changes

000
001
010
011
100
101
110
111
000

1
2
1
3
1
2
1
3

000
001
011
010
110
111
101
100
000

1
1
1
1
1
1
1
1

© 2008 Pearson Education, Inc.
M. Morris Mano & Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

1-5

B0

111

110

000

001

010

011100

101

B1

B2

(a) Binary Code for Positions 0 through 7

G0
G1

G2

111

101

100 000

001

011

010110
(b) Gray Code for Positions 0 through 7
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Gray Codes

53

2. Data Representations 2-19

Homework #1 (due Thursday, September 25)

1. Problem 1-3, p. 24.

2. Problem 1-6, p. 24.

3. Problem 1-8, p. 24.

4. Problem 1-12, p. 25.

5. Problem 1-13, p. 25.

6. Problem 1-19, p. 25.

7. Problem 1-22, p. 25.

8. Problem 1-24, p. 25.

9. (a) How do you determine the range of a floating-point number system?

(b) Has the range of a floating-point number system anything to do with the precision of the

numbers?

10. The Gray code (GC) is a binary code in which adjacent code words differ in only one bit

position. The GC’s for 1, 2, 3 and 4 bits are shown below.

1-bit GC 2-bit GC 3-bit GC 4-bit GC

0 00 000 0000

1 01 001 0001

11 011 0011

10 010 0010

110 0110

111 0111

101 0101

100 0100

1100

1101

1111

1110

1010

1011

1001

1000

(a) Write an algorithm (pseudo code) which generates the -bit GC.

(b) Show the result for .

c Cheng-Wen Wu, Lab for Reliable Computing (LaRC), EE, NTHU 2003
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Generation of Gray Codes
•Code number should be even (M=2k)

– For the first half M/2 codes
•Let MSB=0
•Replace each of the remaining bits with the even parity of the bit 

of the number and the bit to its left

– For the rest half codes
•Take the sequence of numbers formed for the first half and copy it 

in reverse order but with MSB=1

54

gi = di+1�di, i = 0, 1, ..., n� 2

D =
n�1X

i=0

di·2i G = gn�1gn�2gn�3...g1g0

number of code words


