Solution to Midterm Examination No. 2

1. The characteristic equation of the associated homogeneous recurrence relation is

$$
\begin{aligned}
& r^{2}-4 r+3=0 \\
\Rightarrow \quad & r=1,3
\end{aligned}
$$

Hence the general solution is

$$
a_{n}=\alpha_{1} 1^{n}+\alpha_{2} 3^{n}=\alpha_{1}+\alpha_{2} 3^{n}
$$

Let the trial sequence for a particular solution to the nonhomogeneous recurrence relation be $p_{n}=B_{2} 2^{n}+B_{1} n^{2}+B_{0} n$. Then

$$
\begin{aligned}
& {\left[B_{2} 2^{n}+B_{1} n^{2}+B_{0} n\right]-4\left[B_{2} 2^{n-1}+B_{1}(n-1)^{2}+B_{0}(n-1)\right] } \\
& +3\left[B_{2} 2^{n-2}+B_{1}(n-2)^{2}+B_{0}(n-2)\right]=2^{n}+n+3 \\
\Rightarrow & \left(1-2+\frac{3}{4}\right) B_{2} 2^{n}+\left[(8-12) B_{1}+(1-4+3) B_{0}\right] n+\left[(-4+12) B_{1}+(4-6) B_{0}\right] \\
& =2^{n}+n+3 \\
\Rightarrow & -\frac{1}{4} B_{2} 2^{n}-4 B_{1} n+\left(8 B_{1}-2 B_{0}\right)=2^{n}+n+3 \\
\Rightarrow & B_{2}=-4, B_{1}=-\frac{1}{4}, B_{0}=-\frac{5}{2}
\end{aligned}
$$

Therefore, $p_{n}=-4 \cdot 2^{n}-(1 / 4) n^{2}-(5 / 2) n$ is a particular solution to the nonhomogeneous recurrence relation. Hence the general solution to the nonhomogeneous recurrence relation is

$$
a_{n}=\alpha_{1}+\alpha_{2} 3^{n}-4 \cdot 2^{n}-\frac{1}{4} n^{2}-\frac{5}{2} n .
$$

For initial conditions,

$$
\begin{aligned}
1 & =a_{0}=\alpha_{1}+\alpha_{2}-4 \\
4 & =a_{1}=\alpha_{1}+3 \alpha_{2}-8-\frac{1}{4}-\frac{5}{2} \\
\Rightarrow \quad \alpha_{1} & =\frac{1}{8}, \alpha_{2}=\frac{39}{8}
\end{aligned}
$$

Therefore, $a_{n}=(1 / 8)+(39 / 8) \cdot 3^{n}-4 \cdot 2^{n}-(1 / 4) n^{2}-(5 / 2) n$, for $n \geq 0$.
2. (a) We have

$$
\begin{aligned}
A(x) & =\frac{x(1+x)}{(1-x)^{3}}=\left(x+x^{2}\right)(1-x)^{-3}=\left(x+x^{2}\right) \sum_{n \geq 0}\binom{-3}{n}(-x)^{n} \\
& =\left(x+x^{2}\right) \sum_{n \geq 0}\binom{n+2}{2} x^{n}
\end{aligned}
$$

Hence the coefficient of x^{n} in $A(x)$ is

$$
\begin{aligned}
a_{n} & =\binom{n-1+2}{2}+\binom{n-2+2}{2}=\binom{n+1}{2}+\binom{n}{2} \\
& =\frac{(n+1) n}{2}+\frac{n(n-1)}{2}=n^{2}, \quad \text { for } n \geq 0 .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
S(x)=\sum_{n \geq 0} s_{n} x^{n} & =\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k}\right) x^{n} \\
& =\sum_{n \geq 0} \sum_{k=0}^{n} a_{k} x^{n} \\
& =\sum_{k \geq 0} \sum_{n \geq k} a_{k} x^{n} \\
& =\sum_{k \geq 0} a_{k} x^{k} \sum_{n \geq k} x^{n-k} \\
& =\sum_{k \geq 0} a_{k} x^{k} \sum_{k^{\prime} \geq 0} x^{k^{\prime} \quad\left(\text { by letting } k^{\prime}=n-k\right)} \\
& =\frac{A(x)}{1-x} .
\end{aligned}
$$

(c) From (a), we have

$$
A(x)=\frac{x(1+x)}{(1-x)^{3}}
$$

From (b), we have

$$
S(x)=\frac{A(x)}{1-x}
$$

We then obtain

$$
S(x)=\frac{x(1+x)}{(1-x)^{4}}
$$

We have

$$
\begin{aligned}
S(x) & =\frac{x(1+x)}{(1-x)^{4}}=\left(x+x^{2}\right)(1-x)^{-4}=\left(x+x^{2}\right) \sum_{n \geq 0}\binom{-4}{n}(-x)^{n} \\
& =\left(x+x^{2}\right) \sum_{n \geq 0}\binom{n+3}{3} x^{n} .
\end{aligned}
$$

Hence the coefficient of x^{n} in $S(x)$ is

$$
\begin{aligned}
s_{n} & =\binom{n-1+3}{3}+\binom{n-2+3}{3}=\binom{n+2}{3}+\binom{n+1}{3} \\
& =\frac{(n+2)(n+1) n}{3!}+\frac{(n+1) n(n-1)}{3!}=\frac{n(n+1)(2 n+1)}{6}, \quad \text { for } n \geq 0
\end{aligned}
$$

3. (a) Let the generating functions for a_{n}, b_{n}, and c_{n} be $A(x), B(x)$, and $C(x)$, respectively. We have

$$
\begin{aligned}
& A(x)-a_{0}=2 x A(x)+6 x B(x)-3 x C(x) \\
& B(x)-b_{0}=4 x B(x)-x C(x) \\
& C(x)-c_{0}=2 x C(x)
\end{aligned}
$$

which yield

$$
\begin{aligned}
& (1-2 x) A(x)-6 x B(x)+3 x C(x)=0 \\
& (1-4 x) B(x)+x C(x)=0 \\
& (1-2 x) C(x)=1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& C(x)=\frac{1}{1-2 x} \\
& B(x)=\frac{-x}{(1-2 x)(1-4 x)}
\end{aligned}
$$

and

$$
A(x)=\frac{-3 x}{(1-2 x)(1-4 x)}
$$

(b) From (a), we have

$$
\left(1-6 x+8 x^{2}\right) A(x)=-3 x
$$

yielding

$$
\begin{gathered}
a_{0}=0 \\
a_{1}-6 a_{0}=-3 \\
a_{n}-6 a_{n-1}+8 a_{n-2}=0, \text { for } n \geq 2 .
\end{gathered}
$$

Therefore, the homogeneous recurrence relation that a_{n} satisfies is

$$
a_{n}-6 a_{n-1}+8 a_{n-2}=0, \text { for } n \geq 2
$$

with $a_{0}=0$ and $a_{1}=-3$.
(c) From (a), we have

$$
A(x)=\frac{-3 x}{(1-2 x)(1-4 x)}=\frac{3 / 2}{(1-2 x)}-\frac{3 / 2}{(1-4 x)} .
$$

Hence, for $n \geq 0$

$$
a_{n}=\frac{3}{2}\left(2^{n}-4^{n}\right)
$$

4. (a) $a_{1}=2$ and $a_{2}=4$.
(b) We have

$$
\begin{aligned}
A(x) & =\underbrace{\left(1+x^{2}+x^{4}+\ldots\right)}_{\alpha} \underbrace{\left(1+x+x^{2}+\ldots\right)}_{\beta} \underbrace{\left(1+x+x^{2}+\ldots\right)}_{\gamma} \\
& =\frac{1}{\left(1-x^{2}\right)} \frac{1}{(1-x)} \frac{1}{(1-x)}=\frac{1}{(1+x)(1-x)^{3}} .
\end{aligned}
$$

(c) We have

$$
A(x)=\frac{1}{(1+x)(1-x)^{3}}=\frac{1 / 8}{1+x}+\frac{1 / 8}{1-x}+\frac{1 / 4}{(1-x)^{2}}+\frac{1 / 2}{(1-x)^{3}}
$$

Note that

$$
\begin{aligned}
& \frac{1}{(1-x)^{2}}=(1-x)^{-2}=\sum_{n \geq 0}\binom{-2}{n} x^{n}=\sum_{n \geq 0}\binom{n+1}{1} x^{n} \\
& \frac{1}{(1-x)^{3}}=(1-x)^{-3}=\sum_{n \geq 0}\binom{-3}{n} x^{n}=\sum_{n \geq 0}\binom{n+2}{2} x^{n} .
\end{aligned}
$$

Hence, for $n \geq 0$

$$
\begin{aligned}
a_{n} & =\frac{1}{8}(-1)^{n}+\frac{1}{8}+\frac{1}{4}(n+1)+\frac{1}{2} \frac{(n+2)(n+1)}{2} \\
& =\frac{7}{8}+\frac{1}{8}(-1)^{n}+n+\frac{n^{2}}{4} .
\end{aligned}
$$

5. (a) The generating function for p ($n \mid$ only even parts can occur more than once) is given by

$$
\begin{aligned}
& (1+x)\left(1+x^{2}+x^{4}+\cdots\right)\left(1+x^{3}\right)\left(1+x^{4}+x^{8}+\cdots\right)\left(1+x^{5}\right)\left(1+x^{6}+x^{12}+\cdots\right) \cdots \\
& =\prod_{i=1}^{\infty} \frac{1+x^{2 i-1}}{1-x^{2 i}}
\end{aligned}
$$

(b) The generating function for $p(n \mid$ each part is a multiple of 3$)$ is given by

$$
\left(1+x^{3}+x^{6}+\cdots\right)\left(1+x^{6}+x^{12}+\cdots\right)\left(1+x^{9}+x^{18}+\cdots\right) \cdots=\prod_{i=1}^{\infty} \frac{1}{1-x^{3 i}}
$$

(c) Consider the two Ferrers graphs for the partition of n in which each part is 1 or 2 and the partition of $n+3$ which have exactly two distinct parts, shown in Fig. 1. After the three red dots are added/removed, one graph is the transposition of the other graph, and vice versa. Therefore, there is a one-to-one correspondence between the sets of partitions of the two kinds, so they have the same cardinality.

Figure 1: Ferrers graphs for Problem 5.(c).
6. For (a), $f_{1}(n)=n^{2}$, which is $O\left(n^{2}\right)$. For $(\mathrm{b}), f_{2}(n)=\left\lfloor\log _{2} n\right\rfloor+1$, which is $O\left(\log _{2} n\right)$. For (c), $f_{3}(n)=n\left(\left\lfloor\log _{2} n\right\rfloor+1\right)$, which is $O\left(n \log _{2} n\right)$. Therefore, the procedure in (b) has the least complexity.
7. (a) The corresponding graph is shown in Fig. 2. So it has 3 components.

Figure 2: Graph for Problem 7.(a).
(b) No, the two graphs are not isomorphic. Note that there are cycles of length 3 in the graph on the left-hand side but there are no such cycles in the graph on the right-hand side.
(c) i. The corresponding graph is shown in Fig. 3.

Figure 3: Graph for Problem 7.(c).i.
ii. No, it is not possible. The sum of the degrees must be even.
iii. No, it is not possible. Since there is a vertex with degree 4, it is adjacent to all the other vertices. Hence, there can not be a vertex with degree 0 .

