Midterm Examination No. 2

7:00pm to $10: 00 \mathrm{pm}$, May 14, 2021

Problems for Solution:

1. (10%) Solve the recurrence relation

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=2^{n}+n+3, \quad n \geq 2
$$

with $a_{0}=1$ and $a_{1}=4$.
2. (a) (5%) Show that $A(x)=x(1+x) /(1-x)^{3}$ is the generating function for the sequence $a_{n}=n^{2}, n \geq 0$.
(b) (5\%) Define

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n}, \quad \text { for } n \geq 0 .
$$

Show that the generating function $S(x)$ for s_{n} is given by

$$
S(x)=\frac{A(x)}{1-x}
$$

where $A(x)$ is the generating function for $a_{n}(n \geq 0)$.
(c) (10%) Let

$$
s_{n}=\sum_{i=0}^{n} i^{2}, \text { for } n \geq 0
$$

First use the results in (a) and (b) to find the generating function $S(x)$ for s_{n}. Then find a formula for s_{n}.
3. (15%) Consider the following system of homogeneous recurrence relations:

$$
\begin{aligned}
a_{n} & =2 a_{n-1}+6 b_{n-1}-3 c_{n-1} \\
b_{n} & =4 b_{n-1}-c_{n-1} \\
c_{n} & =2 c_{n-1}
\end{aligned}
$$

for $n \geq 1$, with $a_{0}=0, b_{0}=0$, and $c_{0}=1$.
(a) (5%) Find the generating function $A(x)$ for a_{n}.
(b) (5%) Find the homogeneous recurrence relation that a_{n} satisfies (with appropriate initial conditions).
(c) (5%) Solve for a_{n}.
4. (10%) Let $a_{0}=1$ and a_{n} be the number of unordered selections in which n letters are selected from the alphabet $\{\alpha, \beta, \gamma\}$, repetitions allowed, with the constraint that the letter α must be selected an even number of times.
(a) (2%) Find a_{1} and a_{2}.
(b) (4%) Find the generating function $A(x)$ for a_{n}.
(c) (4%) From (b) find an explicit expression for a_{n}.
5. (15%) In this problem we consider partitions of a nonnegative integer n.
(a) (5%) Find the generating function for $p(n \mid$ only even parts can occur more than once).
(b) $\mathbf{(5 \%)}$) Find the generating function for $p(n \mid$ each part is a multiple of 3$)$.
(c) (5%) Show that the number of partitions of n in which each part is 1 or 2 is equal to the number of partitions of $n+3$ which have exactly two distinct parts.
6. (10%) In each of the following pseudocode program segments, the complexity function $f(n)$ is defined to be the number of times the statement sum $:=s u m+1$ is executed. Determine which one has the best (least) big- O form for $f(n)$. (Note that $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.)
(a) begin
sum $:=0$
for $i=1$ to n do for $j=1$ to n do sum $:=$ sum +1
end
(b) begin
sum $:=0$
$i:=n$
while $i>0$ do
begin
sum $:=$ sum +1
$i:=\lfloor i / 2\rfloor$
end
end
(c) begin

$$
\begin{aligned}
& \text { sum }:=0 \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { begin } \\
& j:=n \\
& \quad \text { while } j>0 \text { do } \\
& \quad \text { begin } \\
& \quad \text { sum }:=\text { sum }+1
\end{aligned}
$$

```
        j:= \j/2\rfloor
        end
        end
end
```

7. (a) (5\%) Consider an undirected graph with vertex set $\{a, b, c, d, e, f, g, h, i, j\}$ and adjacency matrix

$$
\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where the rows (from top to bottom) and the columns (for left to right) are indexed in the order $a, b, c, d, e, f, g, h, i, j$. Find the number of components of this graph.
(b) (6\%) Determine whether the following pair of graphs is isomorphic. Exhibit an isomorphism or provide an argument that none exists.

(c) (9%) Is it possible that the following lists are the degrees of all the vertices of a simple graph with 5 vertices? If so, draw a corresponding graph. Otherwise, explain why it is not possible.
i. $3,3,3,3,4$.
ii. $2,2,2,2,3$.
iii. $0,1,2,3,4$.

