Solution to Midterm Examination No. 1

1. (a) False.

If the truth values of p, q, r, and s are $0,0,1$, and 0 , respectively, then the truth value of $(p \Rightarrow q) \Rightarrow(r \Rightarrow s)$ is 0 and that of $(p \Rightarrow r) \Rightarrow(q \Rightarrow s)$ is 1 . Therefore, $(p \Rightarrow q) \Rightarrow(r \Rightarrow s)$ and $(p \Rightarrow r) \Rightarrow(q \Rightarrow s)$ are not logically equivalent.
(b) True.

$$
\begin{aligned}
\bar{A} \cup \bar{B} \cup(A \cap B \cap \bar{C}) & =\overline{(A \cap B)} \cup(A \cap B \cap \bar{C}) \\
& =(\overline{(A \cap B)} \cup(A \cap B)) \cap(\overline{(A \cap B)} \cup \bar{C}) \\
& =\overline{((A \cap B)} \cup \bar{C}) \\
& =\bar{A} \cup \bar{B} \cup \bar{C} .
\end{aligned}
$$

(C) True.

Consider partitioning the set $\{1,2, \ldots, 100\}$ into 10 subsets: $\{1\},\{2,3,4\},\{5,6, \ldots$, $9\},\{10,11, \ldots, 16\},\{17,18, \ldots, 25\},\{26,27, \ldots, 36\},\{37,38, \ldots, 49\},\{50,51, \ldots, 64\}$, $\{65,66, \ldots, 81\},\{82,83, \ldots, 100\}$. For any two distinct integers x and y in the same subset, we have $0<|\sqrt{x}-\sqrt{y}|<1$. If 11 integers are selected from the set $\{1,2, \ldots, 100\}$, by the pigeonhole principle, at least two, say x and y, must be in the same subset and thus satisfy $0<|\sqrt{x}-\sqrt{y}|<1$.
2. (a) Let $l: B \rightarrow A$ with

$$
l(u)=3, l(v)=1, l(w)=2, l(x)=4, l(y)=1, l(z)=1 .
$$

Then for all $a \in A,(l \circ f)(a)=a$ and hence l is a left inverse of f.
(b) Let l be a left inverse of f. Then we must have

$$
l(u)=3, l(w)=2, l(x)=4, l(z)=1
$$

and $l(v)$ and $l(y)$ can be any arbitrary element in A. So there are $4 \cdot 4=16$ possible different left inverses of f.
(c) Since $v \in B$ is not in the range of $f, f(A)$, there does not exist any element $a \in A$ such that $f(a)=v$. Hence for any function $r: B \rightarrow A,(f \circ r)(v)=f(r(v)) \neq v$. Therefore, f does not have a right inverse.
3. First guess for all $n \in \mathcal{N}$,

$$
\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}
$$

We then prove this identity by mathematical induction.

Induction basis: For $n=1$, we have

$$
\sum_{i=1}^{1} i^{3}=1=\left(\sum_{i=1}^{1} i\right)^{2}
$$

Induction step: Assume that this is true for $n=k$, i.e.,

$$
\sum_{i=1}^{k} i^{3}=\left(\sum_{i=1}^{k} i\right)^{2}
$$

Then, for $n=k+1$, recalling that $\sum_{i=1}^{k} i=k(k+1) / 2$, we have

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{3} & =\sum_{i=1}^{k} i^{3}+(k+1)^{3} \\
& =\left(\sum_{i=1}^{k} i\right)^{2}+(k+1)^{3} \\
& =\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+\frac{4(k+1)^{3}}{4} \\
& =\frac{\left[k^{2}+4(k+1)\right](k+1)^{2}}{4} \\
& =\frac{(k+2)^{2}(k+1)^{2}}{4} \\
& =\left[\frac{(k+1)(k+2)}{2}\right]^{2} \\
& =\left(\sum_{i=1}^{k+1} i\right)^{2}
\end{aligned}
$$

Therefore, by mathematical induction, for all $n \in \mathcal{N}$,

$$
\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}
$$

4. (a) The Hasse diagram for a total order on A must be in the form as shown in Fig. 1. Hence there are $5!=120$ total orders.
(b) For the symmetric condition of an equivalence relation, $(x, y) \in R \Rightarrow(y, x) \in$ R. Yet for the antisymmetric condition of a partial order, $(x, y) \in R$ and $(y, x) \in R \Rightarrow x=y$. Hence for both an equivalence relation and a partial order, we cannot have $(x, y) \in R$ if $x \neq y$. Therefore, the only possibility for R is $\{(a, a),(b, b),(c, c),(d, d),(e, e)\}$.

Figure 1: Hasse diagram for a total order.
(c) The corresponding equivalence classes are $\{a\},\{b\},\{c\},\{d\}$, and $\{e\}$.
5. (a) The corresponding zero-one matrix \boldsymbol{M} is

$$
\boldsymbol{M}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(b) d, e, f.
(c) None.
(d) a.
(e) a, b.
(f) f.
6. (a) Note that there should be at least 12 different sets of three jokes. Let n be the number of jokes. We have $\binom{n}{3} \geq 12$ and hence $n \geq 6$. So Professor Chang knows at least 6 jokes.
(b) Since

$$
18000=2^{4} \cdot 3^{2} \cdot 5^{3}
$$

the number of (positive) divisors of 18000 is $(4+1) \cdot(2+1) \cdot(3+1)=60$.
7. (a) By Binomial Theorem, we have

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}
$$

Then

$$
(1+x)^{n}(1+x)^{n}=\left[\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right]\left[\binom{n}{0}+\binom{n}{1} x+\cdots+\binom{n}{n} x^{n}\right] .
$$

On the left-hand side, the coefficient of x^{n+1} in $(1+x)^{2 n}$ is $\binom{2 n}{n+1}$. On the righthand side, the coefficient of x^{n+1} is

$$
\binom{n}{1}\binom{n}{n}+\binom{n}{2}\binom{n}{n-1}+\cdots+\binom{n}{n}\binom{n}{1}=\sum_{k=1}^{n}\binom{n}{k}\binom{n}{n+1-k}=\sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1} .
$$

Therefore,

$$
\sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1}=\binom{2 n}{n+1}
$$

(b) Consider that there are n electrical engineering students and n computer science students. We want to select a team of $n+1$ members. There are $\binom{2 n}{n+1}$ ways to select $n+1$ members from the $2 n$ people, which is the result on the righthand side of the identity. Another way is to select k members from the electrical engineering students to join the team first and then select $k-1$ computer science students that do not join the team (with the rest computer science students joining the team), for $1 \leq k \leq n$. Given k, there are $\binom{n}{k}$ ways to select the electrical engineering students and $\binom{n}{k-1}$ ways for the computer science students. Hence the total number of ways is $\sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1}$, which is exactly the result on the left-hand side of the identity.
8. (a) $c_{3}=3$.
(b) Note that $\left|S_{n}\right|=n$!. By the principle of inclusion and exclusion, we have

$$
\begin{aligned}
c_{n} & =\left|\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n-1}}\right| \\
& =\left|S_{n}\right|-\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right| \\
& =n!-\alpha_{1}+\alpha_{2}+\cdots+(-1)^{n-1} \alpha_{n-1}
\end{aligned}
$$

where $\alpha_{1}=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n-1}\right|, \alpha_{2}=\left|A_{1} \cap A_{2}\right|+\left|A_{1} \cap A_{3}\right|+\cdots+\left|A_{n-2} \cap A_{n-1}\right|$, $\ldots, \alpha_{n-1}=\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right|$.
It is clear that $\left|A_{i}\right|=(n-2+1)!=(n-1)$! as we can consider $i(i+1)$ as one object in the permutation. For $\left|A_{i} \cap A_{i+1}\right|$, we can consider $i(i+1)(i+2)$ as one object in the permutation and thus $\left|A_{i} \cap A_{i+1}\right|=(n-3+1)!=(n-2)$!. For $\left|A_{i} \cap A_{j}\right|$, where $i<j$ and $j \neq i+1$, we can consider $i(i+1)$ and $j(j+1)$ as two objects in the permutation, and thus $\left|A_{i} \cap A_{j}\right|=(n-4+2)!=(n-2)!$. Hence $\left|A_{i} \cap A_{j}\right|$ is always equal to $(n-2)$!, for $1 \leq i<j \leq n-1$.
Similarly, we obtain $\left|A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right|=(n-3)$!, for $1 \leq i_{1}<i_{2}<i_{3} \leq n-1$. In general, we have

$$
\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{r}}\right|=(n-r)!\text {, for } 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n-1,1 \leq r \leq n-1 .
$$

Therefore,

$$
\begin{aligned}
c_{n} & =n!-\sum_{r=1}^{n-1}(-1)^{r-1}\binom{n-1}{r}(n-r)! \\
& =\sum_{r=0}^{n-1}(-1)^{r}\binom{n-1}{r}(n-r)!.
\end{aligned}
$$

