Matrix
Linear operators can be represented by matrices.

$$
A|x\rangle=|y\rangle \rightarrow \sum_{j} A_{i j} x_{j}=y_{i}
$$

where the matrix presentation of A is

$$
A_{i j}=\left\langle\hat{e}_{i}\right| A\left|\hat{e}_{j}\right\rangle
$$

Note that the vectors can be presented as bras \& kets.
$|x\rangle=\sum_{i} x_{i}\left|\hat{e}_{i}\right\rangle \varangle$ ket column vector $\langle x|=\sum_{i}\left\langle\hat{e}_{i}\right| x_{i}^{*} \leftarrow$ bra row vector

The inner product is formed by bra \& ket?

matrix algebra "̈
The matrix algebra can be derived from the properties of linear operators.

$$
\begin{aligned}
(A+B)_{i j} & =A_{i j}+B_{i j} \\
(\lambda A)_{i j} & =\lambda A_{i j} \\
(A B)_{i j} & =\sum_{k} A_{i k} B_{k j}
\end{aligned}
$$

example: rotations in 3D

Rotate along the z axis by angle θ :

$$
R_{z}(\theta) \vec{V}=\vec{v}^{\prime}
$$

The components satisfy the linear relations:

$$
\begin{aligned}
& v_{x}^{\prime}=v_{x} \cos \theta-v_{y} \sin \theta \quad v_{x}, v_{y} \\
& v_{y}^{\prime}=v_{x} \sin \theta+v_{y} \cos \theta \text { mix up \# } \\
& v_{z}^{\prime}=v_{z}
\end{aligned}
$$

One can represent $R_{z}(\theta)$ in matrix form,

$$
\left(\begin{array}{l}
V_{x}^{\prime} \\
V_{y}^{\prime} \\
V_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)
$$

Let us construct the matrix by rotating the basis vectors $\hat{i}, \hat{j}, \hat{k}$

(1) Apply $R_{z}(\theta)$ on \hat{i} :

$$
\hat{i}^{\prime}=\cos \theta \hat{i}+\sin \theta \hat{j}
$$

$$
\left(\begin{array}{l}
i_{x}^{\prime} \\
i_{y}^{\prime} \\
i_{z}^{\prime}
\end{array}\right]=\left(\begin{array}{ll}
\cos \theta \\
\sin \theta \\
0 & 0
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

(2) Apply $R_{z}(\theta)$ on \hat{j} : $\hat{j}^{\prime}=-\sin \theta \hat{i}+\cos \theta \hat{j}$

$$
\left(\begin{array}{l}
\dot{\partial}_{x}^{\prime} \\
\dot{\partial}_{y}^{\prime} \\
\dot{\partial}_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

(3) Apply $R_{z}(\theta)$ on \hat{K} :

$$
\hat{k}^{\prime}=\hat{k}
$$

$$
\left(\begin{array}{l}
k_{x}^{\prime} \\
k_{y}^{\prime} \\
k_{z}^{\prime}
\end{array}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Commutator $[A, B] \equiv A B-B A$
Now that we learn how to construct $R_{z}(\theta)$

$$
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

One can also write down $R_{x}(\theta), R_{y}(\theta)$:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
\end{aligned}
$$

For simplicity, set all rotation angles $\theta=\frac{\pi}{2}$ in R_{x}, R_{y}, R_{z} operators is

$$
R_{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad R_{y}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad R_{z}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Let's work out the commutator $\left[R_{x}, R_{y}\right]=R_{x} R_{y}-R_{y} R_{x}$

$$
\begin{aligned}
& R_{x} R_{y}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]_{\Gamma} \overbrace{\varepsilon}^{(\prime \prime} \\
& R_{y} R_{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]^{L}
\end{aligned}
$$

It's clear that $R_{x} R_{y} \neq R_{y} R_{x}$ so $\left[R_{x}, R_{y}\right] \neq 0$. One can check that this is a generic feature of rotations in 3D?

Transpose of a Matrix
By interchanging the rows and columns of A, its transpose A^{\top} is defined as

$$
\left(A^{\top}\right)_{i j}=A_{j i}
$$

example transpose of rotation matrices ت̈̈

$$
\begin{aligned}
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{z}^{\top}(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Let's muliply them together ii

$$
\begin{aligned}
R_{z}^{\top}(\theta) R_{z}(\theta) & =\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { kronecker delta }
\end{aligned}
$$

Orthogonal Matrix
It is quite interesting that $R_{z}^{\top} R_{z}=\mathbb{1}$. For matrices with the property, they are called orthogonal matrices?

The name is puzzling, isn't it? As explained before, the matrix $R_{z}(\theta)$ can be viewed as 3 rotated basis vectors.

$$
\begin{aligned}
& \left\langle\hat{e}_{i} \mid \hat{e}_{j}\right\rangle=\delta_{i j} \rightarrow\left\langle\hat{e}_{i}^{\prime} \mid \hat{e}_{j}^{\prime}\right\rangle=\delta_{\dot{j}} \\
& {\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]} \\
&
\end{aligned}
$$

It just means that $R_{z}^{\top} \cdot R_{z}=11$.

Hermitian Conjugate
Generalize the idea of "transpose" to the complex matrices \rightarrow Hermitian conjugate!

$$
\left(A^{+}\right)_{i j}=A_{j i}^{*}
$$

If the matrix is real, Hermitian conjugate is the same as transpose if
example $(A B)^{+}=B^{+} A^{+}$

$$
\begin{aligned}
{\left[(A B)^{+}\right]_{i j} } & =(A B)_{j i}^{*}=\sum_{k} A_{j k}^{*} B_{k i}^{*} \\
& =\sum_{k}\left(A^{+}\right)_{k j}\left(B^{+}\right)_{i k} \quad \text { It's ok to } \\
& =\sum_{k}\left(B^{+}\right)_{i k}\left(A^{+}\right)_{k j} \quad \text { order the } \\
& =\left(B^{+} A^{+}\right)_{i j}
\end{aligned}
$$

It shall be clear that $(A B)^{\top}=B^{\top} A^{\top}$ also holds for the transpose "̈

