

¥ ·

bracket

(inner product)

Linear operators can be represented by matrices.

1,

where the matrix presentation of A is

 $A_{ij} = \langle \hat{e}_i | A | \hat{e}_j \rangle$

Note that the vectors can be presented as bras & kets.

- $\langle x | = \sum_{i} \langle \hat{e}_{i} | x_{i}^{*} + bra row vector$

The inner product is formed by brasket?

- $\langle x|y \rangle = \sum_{i} x_{i}^{*} y_{i}^{-1}$ It's complex is braket
 - It's also easy to see that

matrix algebra 👻

The matrix algebra can be derived from the

2.

properties of linear operators.

0

 $V_{z}' = V_{z}$

X

One can represent Rz(0) in matrix form,

Let us construct the matrix by rotating the basis vectors $\hat{i}, \hat{j}, \hat{k}$

3,

Y

Commutator $[A, B] \equiv AB - BA$

Now that we learn how to construct R2(0)

5.

One can also write down R_x(0), R_y(0):

For simplicity, set all rotation angles O= # in

Let's work out the commutator [Rx, Ry] = RxRy - RyRx

6

 $R_{X}R_{Y} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

It's clear that RxRy = RyRx so [Rx, Ry]=0.

One can check that this is a generic feature of

rotations in 3D ?

Transpose of a Matrix

By interchanging the rows and columns of A,

its transpose AT is defined as

Sij

7.

Hermitian Conjugate

Generalize the idea of "transpose" to the

9.

complex matrices - Hemitian conjugate?

If the matrix is real, Hermitian Conjugate

 $(A^{+})_{ij} = A^{*}_{ji}$

is the same as transpose is

$example \qquad (AB)^{\dagger} = B^{\dagger}A^{\dagger}$

 $\left[\left(AB\right)^{\dagger}\right]_{ij} = \left(AB\right)^{\ast}_{ji} = \sum_{K} A^{\ast}_{jK} B^{\ast}_{ki}$

It shall be clear that $(AB)^T = BA^T$ also holds

for the transpose "