Vector Space
What is a vector, really?

While we are familiar with its presentation in Cartesian coordinates,

$$
\vec{V}=v_{x} \hat{i}+V_{y} \hat{\dot{j}}+V_{z} \hat{k}
$$

we may not know its definition properly :̈
A set of objects $\vec{a}, \vec{b}, \vec{c}$ (vectors) forms a linear vector space V when satisfying:
(1) Closed under additions ~

$$
\begin{aligned}
\vec{a}+\vec{b} & =\vec{b}+\vec{a} \\
(\vec{a}+\vec{b})+\vec{c} & =\vec{a}+(\vec{b}+\vec{c})
\end{aligned}
$$

(2) Closed under multiplication by scalars ~

$$
\begin{aligned}
\lambda(\vec{a}+\vec{b}) & =\lambda \vec{a}+\lambda \vec{b} \\
(\lambda+\mu) \vec{a} & =\lambda \vec{a}+\mu \vec{a} \\
\lambda(\mu \vec{a}) & =(\lambda \mu) \vec{a}
\end{aligned}
$$

(3) existence of null vector $\overrightarrow{0}$

$$
\vec{a}+\overrightarrow{0}=\vec{a}
$$

(4) unity scalar 1

$$
1 \times \stackrel{\rightharpoonup}{a}=\stackrel{\rightharpoonup}{a}
$$

(5) existence of negative vector $-\vec{a}$ so that $\vec{a}+(-\vec{a})=\overrightarrow{0}$.

Linear Independence ©̈
For N vectors $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{N}$, one can construct the linear combination so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{N} \vec{v}_{N}=\overrightarrow{0}
$$

If the trivial soln $G_{1}=c_{2}=\cdots=c_{N}=0$ is the ONLY sold, the set of vectors are linearly independent!
example

$$
\begin{aligned}
& \vec{v}=v_{x} \hat{i}+v_{y} \hat{\dot{j}} \\
& \rightarrow v_{x} \hat{i}+v_{y} \hat{j}-\vec{v}=0
\end{aligned}
$$

Thus, $\vec{v}, \hat{i}, \hat{j}$ are linearly dependent $\ddot{\prime}$
example $\quad \vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}$

$$
\begin{aligned}
& \text { (1) } c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \vec{V}=0 \\
& \rightarrow c_{1} \hat{i} \cdot \hat{k}+c_{2} \frac{\hat{j} \cdot \hat{k}}{{ }_{-1}^{\prime \prime}}+c_{3} \stackrel{\rightharpoonup}{v} \cdot \hat{k}=0 \\
& 0
\end{aligned}
$$

Because $V_{z} \neq 0, c_{3}=0$
(2)
$c_{1} \hat{i}+c_{2} \hat{j}=0 \quad$ applying similar trick $̈$ ت̈

$$
\begin{aligned}
& a \hat{i} \cdot \hat{i}+c_{2} \hat{j} \hat{i}=0 \quad \rightarrow \quad G=0 \\
& a \hat{y} \hat{j}+c_{2} \hat{j} \cdot \hat{j}=0 \quad \rightarrow c_{2}=0
\end{aligned}
$$

Thus, $\vec{V}, \hat{i}, \hat{j}$ are linearly independent?

The maximum number of linearly independent vectors in the vector space V is called the dimension of V.

In the above examples, the dimension of the vector space V is THREE io

Inner Product revisited \#̈
The inner product has the following properties
(1) $\langle a \mid b\rangle=\langle b \mid a\rangle^{*}$
(2) $\langle a \mid \lambda b+\mu c\rangle=\lambda\langle a \mid b\rangle+\mu\langle a \mid c\rangle$

The above properties may sound a bit abstract. Thus, we often use an orthonormal basis to represent the vectors:

$$
\left\langle\hat{e}_{i} \mid \hat{e}_{j}\right\rangle=\delta_{i j} \quad i, j=1,2, \cdots, N
$$

An vector $|a\rangle$ can now be represented by $\left|\hat{e}_{i}\right\rangle$

Kronecker delta symbol be represented by $\left|\hat{e}_{i}\right\rangle$

$$
\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

$|a\rangle=\sum_{i=1}^{N} a_{i}\left|\hat{e}_{i}\right\rangle \quad$ Because $\left|\hat{e}_{i}\right\rangle$ forms an orthonormal basis, the coefficients a_{i} can be computed easily

$$
\left\langle\hat{e}_{j} \mid a\right\rangle=\sum_{i=1}^{N} a_{i} \frac{\left\langle\hat{e}_{j} \mid \hat{e}_{i}\right\rangle}{\delta_{j i}}=a_{j}
$$

One can derive the familiar formula for the inner product as below ~

$$
\begin{aligned}
&|a\rangle=\sum_{i} a_{i}\left|\hat{e}_{i}\right\rangle \rightarrow\langle a|=\sum_{i} a_{i}^{*}\left\langle\hat{e}_{i}\right| \\
&|b\rangle=\sum_{j} b_{j}\left|\hat{e}_{j}\right\rangle \\
&|a| b\rangle=\sum_{i} \sum_{j} a_{i}^{*} b_{j}\left\langle\hat{e}_{i} \mid \hat{e}_{j}\right\rangle \\
&=\sum_{i} \sum_{j} a_{i}^{*} b_{j} \delta_{i j} \\
&=\sum_{i} a_{i}^{*} b_{i} \quad \text { the familiar formula } \\
& \text { for inner product i }
\end{aligned}
$$

Linear Operator
A linear operator M maps a vector $|x\rangle$ to another vector $|y\rangle:|y\rangle=M|x\rangle$ with the following property ~

$$
M(\lambda|a\rangle+\mu|b\rangle)=\lambda M|a\rangle+\mu M|b\rangle
$$

Again, we can represent the linear operator M is an orthonormal basis i"

$$
\begin{array}{rr}
|y\rangle=A|x\rangle & |x\rangle=\sum_{i} x_{j}\left|\hat{e}_{j}\right\rangle \\
A|x\rangle=\sum_{j} x_{j} A\left|\hat{e}_{j}\right\rangle=\sum_{j} y_{j}\left|\hat{e}_{j}\right\rangle \\
\rightarrow\left\langle\hat{e}_{j}\right\rangle \\
\rightarrow\left\langle\hat{e}_{i}\right| \sum_{j} x_{j} A\left|\hat{e}_{j}\right\rangle=\left\langle\hat{e}_{i}\right| \sum_{j} y_{j}\left|\hat{e}_{j}\right\rangle \\
\sum_{j} x_{j}\left\langle\hat{e}_{i}\right| A\left|\hat{e}_{j}\right\rangle=\sum_{j} y_{j}\left\langle\hat{e}_{\dot{j}} \mid \hat{e}_{j}\right\rangle \\
A_{i j}
\end{array}
$$

Finally, $\quad Y_{i}=\sum_{\dot{j}} A_{i \dot{j}} x_{j}$ - matrix algebra \#̈

4D spacetime
The Lorentz transformation can be represented as a 4×4 matrix

$$
\left[\begin{array}{l}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & -\gamma \frac{u}{c} & 0 & 0 \\
-\gamma \frac{u}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right]
$$

where $\gamma=\frac{1}{\sqrt{1-(\omega / c)^{2}}}$.
(1) Because $y^{\prime}=y, z^{\prime}=z$, we can focus on the 2×2 matrix.
(2) Introduce the hyperbolic parameter α

$$
\begin{aligned}
\cosh \alpha=\gamma & =\frac{1}{\sqrt{1-(u / c)^{2}}} \\
\sinh \alpha=\frac{\gamma u}{c} & =\frac{u / c}{\sqrt{1-(u / c)^{2}}} \\
\cosh ^{2} \alpha-\sinh ^{2} \alpha & =\frac{1}{1-u^{2} / c^{2}}-\frac{u^{2} / c^{2}}{1-u^{2} / c^{2}} \\
& =1 \text { yes } \ddot{ष}
\end{aligned}
$$

Lorentz transformation simplifies ~

$$
\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}
\cosh \alpha & -\sinh \alpha \\
-\sinh \alpha & \cosh \alpha
\end{array}\right)\binom{c t}{x}
$$

For an object moving at const velocity v, its trajector is $x=v t$

$$
\begin{aligned}
\binom{c t^{\prime}}{x^{\prime}} & =\left(\begin{array}{cc}
\cosh \alpha & -\sinh \alpha \\
-\sinh \alpha & \cosh \alpha
\end{array}\right)\binom{c t}{v t} \\
& =\binom{\cosh \alpha \cdot c t-\sinh \alpha \cdot v t}{-\sinh \alpha \cdot c t+\cosh \alpha \cdot v t}
\end{aligned}
$$

The velocity observed in the moving frame is

$$
\begin{aligned}
& v^{\prime}=\frac{x^{\prime}}{t^{\prime}}=\frac{\cosh \alpha \cdot v t /-\sinh \alpha \cdot c t /}{\cosh \alpha \cdot t-\sinh \alpha \cdot v t / c} \\
&=\frac{v-\tanh \alpha \cdot c}{1-\tanh \alpha \cdot v / c} \tanh \alpha=\frac{u}{c} \\
& \rightarrow v^{\prime}=\frac{v-u}{1-u v / c^{2}}
\end{aligned}
$$

velocity addition in 4D spacetime?

