

Complex Fourier Series

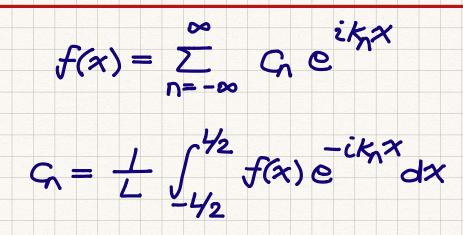
We can also choose the complex basis e

 $- k_n = \frac{2n\pi}{L}$ $e^{ik_nx} = \cos(k_nx) + i\sin(k_nx)$

 $= \cos\left(\frac{2\pi\pi x}{L}\right) + i\sin\left(\frac{2\pi\pi x}{L}\right)$

5

The periodic fin f(x) = f(x+L) can be expressed as the complex Fourier series,



1 relations between (an, bn) & Cr.

 $C_{n} = \frac{1}{2} (a_{n} - ib_{n})$ $n = 0, 1, 2, \cdots$ $C_{-n} = \frac{1}{2} (a_{n} + ib_{n})$

If f(x) is real, an, by are read.

 $C_{-n} = C_{n}^{*}$

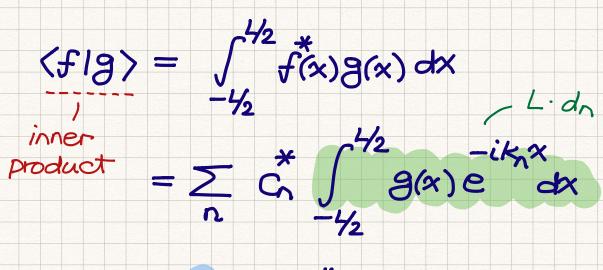
Banseval's Theorem

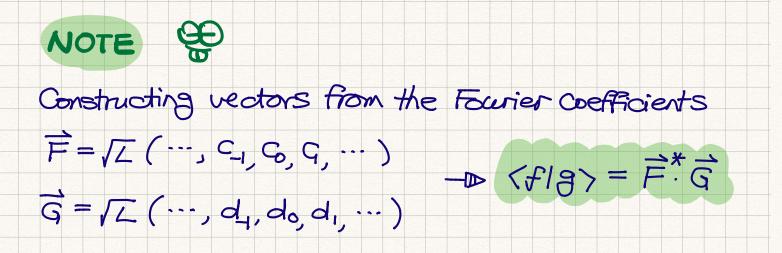
Consider two periodic fis f(x) and g(x) with the same period L. One can express their

6

"imer product" by summation of the

Fourier coefficients "





Setting f=g, the above relation becomes

7.

 $\frac{1}{2}\int_{-\frac{4}{2}}^{\frac{4}{2}} \frac{1}{4} = \sum_{n} |G_n|^2 \qquad \frac{1}{2} \frac{1}$

overage: $\langle \cdot \rangle = \frac{1}{L} \int_{-\frac{1}{2}}^{\frac{1}{2}} \cdot dx$

The spatial average of 1f1² can be written as

summation of all Fourier-mode contributions.

