Complex Series
The sum of the first N terms of a series is

$$
S_{N}=z_{1}+z_{2}+\cdots+z_{N}=\sum_{n=1}^{N} z_{n}
$$

Here z_{n} can be real, imaginary and complex.
example Maclaurin expansion of e^{z}

$$
\begin{aligned}
S(z) & =1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \quad \text { infinite series }
\end{aligned}
$$

Later, we will learn Taylor series and you will know that $S(z)=e^{z}$

In the following, we will introduce
(1) arithmetic series
(2) geometric series
(3) Taylor series - very important ©
arithmetic series $\quad a_{n}=a_{0}+n d$

$$
\begin{aligned}
S_{N} & =a_{0}+\left(a_{0}+d\right)+\left(a_{0}+2 d\right)+\cdots+\left[a_{0}+(N-1) d\right] \\
& =\sum_{n=0}^{N-1}\left(a_{0}+n d\right) \\
& =a_{0} \sum_{n=0}^{N-1} 1+d \sum_{n=0}^{N-1} n \quad \text { © } \\
& =a_{0} N+d \cdot \frac{1}{2} N(N-1) \quad \text { a piece of cake }
\end{aligned}
$$

geometric series

$$
a_{n}=a_{0} r^{n}
$$

$$
\begin{aligned}
S_{N} & =a_{0}+a_{0} r+a_{0} r^{2}+\cdots+a_{0} r^{N-1} \\
& =\sum_{n=0}^{N-1} a_{0} r^{n}
\end{aligned}
$$

There are many ways to carry out the sum.

$$
\begin{aligned}
& r^{N}-1=(r-1)\left(r^{N-1}+r^{N-2}+\cdots+r+1\right) \\
& \rightarrow \sum_{n=0}^{N-1} r^{n}=\frac{r^{N}-1}{r-1}=\frac{1-r^{N}}{1-r}
\end{aligned}
$$

Thus, the sum of a geometric series is

$$
\begin{aligned}
S_{N} & =\sum_{n=0}^{N-1} a_{0} r^{n}=a_{0} \sum_{n=0}^{N-1} r^{n} \\
& =a_{0} \frac{1-r^{N}}{1-r}=a_{0} \frac{r^{N}-1}{r-1}
\end{aligned}
$$

So, the formula seems to carry singularity (a) $r=1$. Is this singularity of s_{N} real? Nope, it is not real $\ddot{\sigma}$ example $s=1+\frac{2}{2}+\frac{3}{2^{2}}+\frac{4}{2^{3}}+\cdots$.

Introduce the function $f(x)=1+2 x+3 x^{2}+\cdots$ It is clear that $S=f\left(\frac{1}{2}\right)$.

Now, we need to carry out the sum for $f(x)$.

$$
\begin{aligned}
F(x) & =\int_{0}^{x} f\left(x^{\prime}\right) d x^{\prime}=x+x^{2}+x^{3}+\cdots \\
& =x\left(1+x+x^{2}+\cdots\right)=\frac{x}{1-x}
\end{aligned}
$$

Making use of the relation $f(x)=F^{\prime}(x)$,

$$
\begin{aligned}
f(x) & =\frac{d F}{d x}=\frac{d}{d x}\left[\frac{x}{1-x}\right] \\
& =\frac{d}{d x}\left[-1+\frac{1}{1-x}\right] \\
& =\frac{1}{(1-x)^{2}} \quad \rightarrow S=f\left(\frac{1}{2}\right)=4
\end{aligned}
$$

example $\quad S(\theta)=1+\cos \theta+\frac{\cos 2 \theta}{2!}+\cdots$
Making use of the complex algebra ï

$$
S(\theta)=\operatorname{Re}\left\{1+e^{i \theta}+\frac{1}{2!} e^{i 2 \theta}+\frac{1}{3!} e^{i 3 \theta}+\cdots\right\}
$$

Replacing the phase by the complex number, $e^{i \theta}=z$, the infinite sum becomes

$$
\begin{aligned}
S(\theta) & =\operatorname{Re}\left\{1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots\right\} \\
& =\operatorname{Re}\left\{e^{z}\right\}=\operatorname{Re}\left\{e^{\cos \theta+i \sin \theta}\right\} \\
& =e^{\cos \theta} \cos (\sin \theta)-\text { pretty } \operatorname{coop}!
\end{aligned}
$$

Taylor Series
Given a function $f(x)$ as shown on the right. Is it possible to express it
 in terms of power series?

$$
f(x) \stackrel{?}{=} a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Skipping the math rigors, one can try to compute the coefficients $a_{n} \ddot{\sigma}$
(1) just plug $x=0$ into $f(x)$

$$
f(0)=a_{0} \quad \text { simple } \ldots
$$

(2) take a derivative, then plug in $x=0$

$$
f^{\prime}(0)=a_{1} \text { yes! }
$$

(3) take two derivatives, then plug in $x=0$

$$
f^{\prime \prime}(0)=2 a_{2} \rightarrow a_{2}=\frac{f^{\prime \prime}(0)}{2!}
$$

Keep taking higher-order derivatives,

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Collecting all results together, the in $f(x)$ can be expressed as a power series.

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
\end{aligned}
$$

This result is remarkable ~ the local properties of the fin $\left[f(0), f^{\prime}(0), f^{\prime \prime}(0) \cdots\right.$ all around $\left.x=0\right]$ dictates its global profile :
example $\quad f(x)=e^{x}$

$$
\begin{aligned}
& f^{\prime}(x)=e^{x}, \quad f^{\prime \prime}(x)=e^{x}, \cdots, f^{(n)}(x)=e^{x}, \cdots \\
& \rightarrow f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=1 \\
& \text { thus, } e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots
\end{aligned}
$$

One can apply the same trick to expand $f(x)$ at an arbitrary point $x=x_{0}$

$$
f(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

It is straightforward to show that $a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

One can expand $f(x)$ © its equilibrium pt $\left[f^{\prime}\left(x_{0}\right)=0\right]$
According to Taylor series

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \\
& \\
& \approx f\left(x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}
\end{aligned}
$$

quadratic potential ت̈

Analytic Continuation
All the series properties can be generalized to complex numbers on the complex plane.
For instance, consider the infinite sum $f(z)$

$$
f(z)=1+z+z^{2}+\cdots
$$

It can be shown that $f(z)$ is convergent for $|z|<1$.

So, does it make any sense when $z=-2$?

$$
f(-2)=1-2+4-8+\cdots
$$

If I tell you that $1-2+4-8+\cdots=\frac{1}{3}$, maybe you will just drop the $e^{\circ p}$ applied math course 000
simple harmonic oscillator
The mass is worn out
 a bit

$$
m=m_{0}-\Delta m
$$

How is the period modified?
Assuming the mass difference is small

$$
g=\frac{\Delta m}{m_{0}}=1-\frac{m}{m_{0}} \ll 1
$$

The equation of motion is

$$
(m-\Delta m) \ddot{x}+k x=0
$$

Making everything dimensionless 光

$$
\omega_{0}^{2}=\frac{k}{m_{0}} \quad \text { so set } \omega_{0} t \rightarrow t
$$

and introduce $\alpha=\frac{\omega^{2}}{\omega_{0}^{2}}$
The EOM becomes dimensionless

$$
\ddot{x}+x-g \ddot{x}=0
$$

perturbation?

The solution $x(t)$ can be expanded,

$$
x(t)=x_{0}(t)+g x_{1}(t)+g^{2} x_{2}(t)+\cdots
$$

The zero-th order solution $x_{0}(t)$ takes the form

$$
x_{0}(t)=\cos (\sqrt{\alpha} t) \quad \alpha=1+c q+c_{2} g^{2}+\cdots
$$

Let's compute the coefficient in?
(1)

$$
\begin{aligned}
(1-g) \ddot{x}^{\prime \prime}= & -\alpha(1-g) \cos (\sqrt{\alpha} t) \\
& +(1-g)\left(g \ddot{x}_{1}+g^{2} \ddot{x}_{2}+\cdots\right) \\
= & -\cos (\sqrt{\alpha} t) \\
& +g\left\{(1-q) \cos (\sqrt{\alpha} t)+\ddot{x}_{1}\right\} \\
& +g^{2}\left\{\left(q-c_{2}\right) \cos (\sqrt{\alpha} t)+\left(\ddot{x}_{2}-\ddot{x}_{1}\right)\right\} \\
& +\infty 00
\end{aligned}
$$

(2)

$$
x(t)=\cos (\sqrt{\alpha} t)+g x_{1}+g^{2} x_{2}+\cdots
$$

Now, write down EOM order by order if
zeroth order:

$$
-\cos (\sqrt{\alpha} t)+\cos (\sqrt{\alpha} t)=0
$$

$1^{\text {st }}$ order:

$$
\begin{gathered}
\ddot{x}_{1}+x_{1}+(1-q) \cos (\sqrt{\alpha} t)=0 \\
\rightarrow \quad x_{1}(t)=A \cos (t+\phi)+B \cos (\sqrt{\alpha} t)
\end{gathered}
$$

unknown constants
substitute back into EOM.

$$
\begin{gathered}
(1-\alpha) B \cos (\sqrt{\alpha} t)+(1-q) \cos (\sqrt{\alpha} t)=0 \\
(1-\alpha) B+(1-q)=0 \\
\theta(g) \quad \theta(1)
\end{gathered}
$$

Thus, $C=1$ and $B=0$
Because $x_{1}(0)=0$ and $\dot{x}_{1}(0)=0$,

$$
A=0 \text { and } \phi=0 \rightarrow x_{1}(t)=0
$$

One can work out the calculations to all orders.

$$
\alpha=\frac{\omega^{2}}{\omega_{0}^{2}}=1+g+g^{2}+\cdots=\sum_{n=0}^{\infty} g^{n}-\frac{1}{1-g}
$$

By analytic continuation on the complex plane,

$$
\alpha(z)=\beta(z)=\gamma(z)=\frac{1}{1-z}
$$

thus,

$$
\begin{aligned}
\alpha(z=-2) & =1-2+4-8+\cdots \\
& =\frac{1}{1-(-2)}=\frac{1}{3}
\end{aligned}
$$

Does this make sense? $m=m_{0}-\Delta m=(1-g) m_{0}$
For $g=-2, \quad m=(1+2) m_{0}=3 m_{0}$

$$
\frac{\omega^{2}}{\omega_{0}^{2}}=\frac{\mathrm{k} / m}{\mathrm{k} / m_{0}}=\frac{m_{0}}{m}=\frac{1}{3} \text { YES } \underset{0}{0}
$$

