Query Optimization

Shan-Hung Wu and Datalab
CS, NTHU

VanillaCore

Where Are We?

-

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse }
Algebra
Storage Interface
- ~p= . - SEgpmney
Concu rrency] Recovery Metadata Index I Record Sql/util

Log I

Buffer

AN

N

File

A

Outline

e Overview

* Cost Estimation
e Cardinality Estimation
* Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
* Basic Planner
* Pushing Select Down
* Join Ordering
* Heuristic Query Planner in VanillaCore

 Selinger-Style Query Optimizer

Outline

e OQverview

* Cost Estimation
* Cardinality Estimation
e Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
* Basic Planner
* Pushing Select Down
e Join Ordering
* Heuristic Query Planner in VanillaCore

 Selinger-Style Query Optimizer

SQL and Relational Algebra

* ASQL command can be expressed as multiple trees
in relational algebra

SELECT sname FROM student, dept
WHERE major-id = d-id AND s-id = 5 AND major-id = 4;

ProjectScan
ProjectScan J

SelectScan
SelectScan major-id=d-id

ProductScan
ProductScan

SelectScan

TableScan TableScan s-id=5 and major-id=4

student dept TableScan TableScan

student dept 5

Query Optimization

* A good scan tree can be faster than a bad one for
orders of magnitude

* Query optimizer:
1. Generate candidate plan trees

2. Estimate cost of each corresponding scan tree (not
discussed yet)

3. Pick and open the “best” one to execute query
* Goal (ideally): find the one with least cost
* Goal (in practice): avoid bad trees

Outline

e Overview

* Cost Estimation
* Cardinality Estimation
e Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
e Basic Planner
e Push Select Down
* Join Order Problem
e Heuristic Planner in VanillaCore

 Selinger-Style Query Optimizer

Metric for Cost

* Cost of a query?
* To user: query delay
* Low delay also implies better system throughput

* Typically, 1/0 delay dominates query delay

Cost Estimation

* For each plan/table p, we estimate B(p)
* #fblocks accessed by the corresponding scan

e Usually, estimating B(p) requires more
knowledge:
* R(p): #records output
* Search cost (#blocks) of index, if used
* V(p,f): #distinct values for field fin p

Estimating B(p)

TablePlan
ProjectPlan(c)
SelectPlan(c)
IndexSelectPlan(t)
ProductPlan(cl, c2)
IndexJoinPlan(c1, t2)

Actual #blocks cached by StatMgr (via periodic table scanning)
B(c)

B(c)

IndexSearchCost(R(t), R(p)) + R(p)

B(c1) + (R(c1) * B(c2))

B(c1) + (R(c1) * IndexSearchCost(R(t2), 1)) + R(p)

 B(c) is evaluated recursively down to the table

level

10

For Any p, We Need to Estimate
R(p) and Index Search Cost

* Index Search Cost:

* HashIndex.searchCost ()
* BTreeIndex.searchCost ()

 Estimating R(p) is called cardinality
estimation

Outline

e Overview

* Cost Estimation
* Cardinality Estimation
e Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
e Basic Planner
* Pushing Select Down
e Join Ordering
e Heuristic Query Planner in VanillaCore

 Selinger-Style Query Optimizer

12

Naive Approach

* Uniform assumption
* All values in field appear with the same probability

LA

01 2 3456 7 8 91011121314
* Few statistics are enough:

R(c) #records in child plan c
V(c, f) #distinct values in field fin c
Max(c, f) Max value in field fin c
Min(c, f) Min value in field fin c

p = Select(c, f=x)

* R(p)?
R(c) #records in child plan c
V(c, f) #distinct values in field fin c
Max(c, f) Max value in field fin ¢
Min(c, f) Min value in field fin c

1

* Selectivity(f=x): V) threcs
* R(p): Selectivity(f=x) * R(c) - HHH@HHH _—

p = Select(c, f>x)

* R(p)?
R(c) #records in child plan c
V(c, f) #distinct values in field fin c
Max(c, f) Max value in field fin ¢
Min(c, f) Min value in field fin c

Max(c,f)—x
Max(c,f) —Min(c,f)

* R(p): Selectivity(f>x) * R(c)

* Selectivity(f>x):

= R(p): Selectivity(f=x) R(c)

Outline

e Overview

* Cost Estimation
* Cardinality Estimation
* Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
e Basic Planner
* Pushing Select Down
e Join Ordering
e Heuristic Query Planner in VanillaCore

 Selinger-Style Query Optimizer

16

Naive Estimation is Inaccurate

* In the real world, values in a field are seldom
uniform distributed

* p = Select(c, f-14)
e Estimated R(p) — * R(c) =
* Actually, R(p) =

o0l ool

012 3456 7 8 91011121314

Histogram

e Approximates value distribution in every field
* Partitions field values into a set of buckets

f.Hrecs ,

[y
o

RNWPRAPUNONO®O

—

Sl HH o

012 3456 7 8 91011121314

f.values

* More #buckets, more accurate approximation
* Tradeoff between accurate and storage cost

18

Buckets

* Each bucket b collects statistics of a value range
* Assumes uniform distribution of records and values in b

f.Hrecs ,

[
o

RNWPRARUONOWOO

ﬂﬂﬂﬁﬂﬂHH =il

012 3456 7 8 91011121314
* R(p, f, b): #records
* \V(p, f, b): #distinct values
* Range(p, f, b): value range

> fvalues

19

Cardinality Estimation

* Not matter what p is, we have

R(p) — ZbEp.hist.buckets(f) R(p7 f? b)

for any f

* Problem: how to construct the histogram?

Range Selection (1/2)

* p =Select(c, f in Range) Given Vf,b:
* For each bucket b in f: 5?“8;3::)' f, b)
. . .. |Range(c,f,b)NRange| G
Selectivity = Range(cl D] R(c, , b)

* Range(p,f,b) = Range(c,f,b) N Range
* V(p,f,b) = V(c,f,b) * selectivity e

* R(p,f,b) =R(c,f,b) * selectivity 5“‘
. Il
e Assumptions: ey

* #Records in a bucket are uniformly distributed
e Values in a bucket are uniformly distributed

Range Selection (2/2)

* p = Select(c, fin Range) Given Vft,b:
 For each bucket b in f’ # f: Range(c, f, b)
) _ %p R(v.f,b) V(CI fl b)
e Reduction = R(O R(c, , b)

* Range(p,f’,b) = Range(c,f’,b)
* R(p,f’,b) =R(c,f’,b) * Reduction
* V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

* Assumptions:

* Values in different fields are independent with each
other

Product

e p = Product(cl, c2)

* For each (b,f) in c1:
e Range(p,f,b) = Range(cl,f,b)
* V(p,f,b) =V(cl,fb)
* R(p,f,b) =R(c1,f,b) * R(c2)

* For each (b,f) in c2:
e Range(p,f,b) = Range(c2,f,b)
* V(p,f,b) =V(c2,1b)
* R(p,f,b) =R(c2,f,b) * R(c1)

Given Vf b:

Range(cl, f, b)
V(cl, f, b)
R(c1, f, b)
Range(c2, f, b)
V(c2, f, b)
R(c2, f, b)

Join Selection (1/2)

* p = Select(c, f=g)or Joint(a, b, a.f=b.g)

* For each bucket bl infand b2 in g:
* Range(p,f,b1l) = Range(p,g,b2) = IR = Range(c,f,b1l) N Range(c,g,b2)

-
-

. _ ., _ . [IRI*V(c,f,b1) |IR|*V(c,g,b2)
V(p,f,bl) - V(p,g,b2) =minV = mm(lRange(c,f,bl)l' |Range(c,g,b2)|

Match rate with recs in b2
minV * 1 *

V(c,f,b1) V(cg,b2)

)

* R1=R(cfbl)*

minV 1 « R(c.f,bl)
V(c,g,b2) V(c,f,b1l) R(c)

e R2=R(c,g,b2) *

* R(p,f,bl) =R(p,g,b2) = min(R1, R2)

* Assumptions:
* #Records & values in bucket are uniformly distributed

* All values in the range having smaller number of values appear in the
range having larger number of values

* Values in different fields are independent with each other

Join Selection (2/2)

* p = Select(c, f=g)

* For each bucket b in f’ & {f, g}
2.p R(p.f,b)
R(c)
* R(p,f’,b) =R(c,f’,b) * Reduction
* V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

* Range(p,f’,b) = Range(c,f’,b)

e Reduction =

* Assumptions:

* Values in different fields are independent with each
other

Cost Estimation in VanillaCore

*B(p):p.blocksAccessed()

* Histogram-based cardinality estimation:
* R(p):p.histogram () .recordsOutput ()
* V(p,f): p.histogram() .distinctVaues (f)

* Each plan builds its own histogram in constructor

* Important utility methods to trace:
* SelectPlan.constantRangeHistorgram ()
* ProductPlan.productHistogram /()
* SelectPlan.joinFieldHistogram ()
* AbstractJoilntPlan.joinHistogram /()

Outline

e Overview

* Cost Estimation
* Cardinality Estimation
e Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
* Basic Planner
* Pushing Select Down
e Join Ordering
* Heuristic Query Planner in VanillaCore

 Selinger-Style Query Optimizer

27

Table Histogram at Lowest-Level

e Data structure that approximates value distribution
* Partitions field values into a set of buckets

* Each bucket b collects statistics of a value range
* Assumes uniform distribution of records and values in b

e Given a fixed #buckets, how to decide bucket
ranges?

#Buckets =5

nﬂﬂmmﬂﬂﬂ]

012 3456 7 8 91011121314

Equi-Width Histogram

 Partition strategy: all buckets have the same range

Max(p,f) —Min (p,f)+1
#Buckets

* |Range(b)| =

HﬂﬂmﬂmHHH]

012 3456 7 8 91011121314

* Problem: some buckets may be wasted

29

Equi-Depth Histogram

 Partition strategy: all buckets have the same #recs

R(p)
#Buckets

* Depth =

HHHWHHHHH]

012 3456 7 8 91011121314

* Problem: records/values in a bucket may not be
uniformly distributed

Max-Diff Histogram

* Partition strategy: split buckets at values with max.
diff in #rec (MaxDiff(F)) or area (MaxDiff(A)):

1. #Hrecs: uniform #records in each bucket

f.#irecs 1 cut

==

LTI

=

2. Area: uniform #records and values in each bucket
f.#trecs

e

|

-
(o]
c
=+

[]
3
T

1T

f.values
31

Spread

Histogram in VanillaCore

* Table histograms are statistics metadata
e org.vanilladb.core.storage.metadata.statistics

* Accessed (by TablePlan) via StatMgr.getTableStatinfo()

Histogram

Bucket

+ Histogram()

+ Histogram(fldnames : Set<String>)

~ Histogram(dists : Map<String, Collection<Bucket>>)
+ Histogram(hist : Histogram)

+ fields() : Set<String>

+ buckets(fldname : String) : Collection<Bucket>

+ addField(fldname : String)

+ addBucket(fldname : String, bkt : Bucket)

+ setBuckets(fldname : String, bkts : Collection<Bucket>)
+ recordsOutput() : double

+ distinctValues(fldname : String) : double

+ toString() : String

+ toString(int) : String

+ Bucket(valrange : ConstantRange, freq : double, distvals
: double)

+ Bucket(valrange : ConstantRange, freq : double, distvals
: double, pcts : Percentiles)

+ valueRange() : ConstantRange

+ frequency() : double

+ distinctValues() : double

+ distinctValues(range : ConstantRange) : double

+ valuePercentiles() : Percentiles

+ toString() : String

+ toString(int) : String

32

Building Histogram (1/2)

* When system starts up:
* StatMgr:

e Scans table and calls SampledHistogramBuilder.sample()
* When done, calls

SampledHistogramBuilder.newMaxDiffHistogram()
* Histogram types:

* MaxDiff(A) : when field value is numeric
* MaxDiff(F) : otherwise

Building Histogram (2/2)

e At runtime:

» StatMgr tacks #recs updated for each table
* QueryPlanner calls StatMgr.countRecordUpdates() after
executing modify/insert/delete queries

e Rebuilds histogram in background when
StatMgr.getTableStatInfo() is called

* If #frecs updated > threshold (e.g., 100)

e StatisticsRefreshTask:

e Scans table and calls SampledHistogramBuilder.sample()

* When done, calls
SampledHistogramBuilder.newMaxDiffHistogram()

Outline

* Heuristic Query Optimizer
* Basic Planner
* Pushing Select Down
* Join Ordering
* Heuristic Query Planner in VanillaCore

Query Optimization

* Query optimizer:

1. Generate candidate plan trees
2. Estimate cost of each corresponding scan tree
3. Pick and open the “best” one to execute query

ProjectScan

SelectScan

ProductScan

TableScan TableScan
student dept

ProjectScan

SelectScan
major-id=d-id

ProductScan
SelectScan
s-id=5 and major-id=4

TableScan TableScan
student dept

In Reality...

* Generating all candidate plan trees are too costly
* #itrees with n products/joins = Catalan number:

1 2n
n—+1 n

 Compromise: consider left-skew
candidate trees only

Select Plan

, Product/Join Plan
* Query planner’s goal

* Avoiding bad trees Product/Join Plan

* Not finding the best tree
Table A

37

Why Left-Skew Trees Only?

* Tend to be better than plans of other shapes

* Because many join algorithms scan right child c2
multiple times

* Normally, we don’t want c2 to be a complex
subtree

BasicQueryPlanner

public Plan createPlan(QueryData data, Transaction tx) {
// Step 1: Create a plan for each mentioned table or view
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {
String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);
if (viewdef != null)
plans.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else
plans.add(new TablePlan(tblname, tx));

} . .
// Step 2: Create the product of all table plans o PrOdUCt/JO|n Order

Plan p = plans.remove(9);

for (Plan nextplan : plans) ’
p = new ProductPlan(p, nextplan); fO”OWS What S
// Step 3: Add a selection plan for the predicate . R
p = new SelectPlan(p, data.pred()); ertten N SQL

// Step 4: Add a group-by plan if specified

if (data.groupFields() != null) {

p = new GroupByPlan(p, data.groupFields(), data.aggregationFn(), tx);

}
// Step 5: Project onto the specified fields
p = new ProjectPlan(p, data.projectFields());
// Step 6: Add a sort plan if specified
if (data.sortFields() != null)

p = new SortPlan(p, data.sortFields(), data.sortDirections(), tx);
// Step 7: Add a explain plan if the query is explain statement
if (data.isExplain())

p = new ExplainPlan(p);

return p;
} 39

Cost & Bottlenecks

SELECT
FROM
WHERE
AND
AND

*

t1, t2, t3
t1.f1 =t2.f2
t2.f3=13.f4
t1.f5 =x

Select Plan

Product/Join Plan

Product/Join Plan Table t3

Table t1 Table t2

* B(root) dominated by #recs of product/join ops
e B(Product(cl, c2)) = B(c1) + (R(c1) * B(c2))
e B(IndexJoin(cl, c2)) = B(c1) + (R(c1) * SearchCost(...)) + ...

40

Optimizations

SELECT * Select Plan
FROM t1, t2, t3
WHERE t1.f1=t2.f2 Product/Join Plan

AND t2.f3 =13.f4
AND t1.f5 = x

Product/Join Plan Table t3

Table t1 Table t2

* Goal J B(root) reduced to J R(c1)

* Heuristics:
* Pushing Select ops down
* Greedy Join ordering

41

Pushing Select Ops Down

* Execute Select ops as early as possible
* IR of each product/join op

SELECT
FROM
WHERE
AND
AND

*

t1, t2, t3
t1.f1 =t2.2
t2.f3=13.f4
t1.f5 = x

Select(t2.f3 = t3.f4)

Product Plan

Join

Select(t1.f1 = t2.f2) Table t3

. Product Plan -

Select(t1.f5 = x)

Table t1 Table t2

42

Greedy Join Ordering

* B(root) = B(p1) + (R(p1) *...) + ...
* J B(root) implies {,(p1)

* B(p1) =B(cl1) + (R(c1) *...) +...
e ¢ B(root) also implies { (c1)

root
pl

c1
e B(root) o« R(p1) + R(c1) + ...

* Greedy Join ordering: repeatedly add table to the
“trunk” that result in lowest R(trunk)

43

HeuristicPlanner in VanillaCore

public Plan createPlan(QueryData data, Transaction tx) {
// Step 1: Create a TablePlanner object for each mentioned table/view
int id = ©;
for (String tbl : data.tables()) {
String viewdef = VanillaDb.catalogMgr().getViewDef(tblL, tx);
if (viewdef != null)
views.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else {
TablePlanner tp = new TablePlanner(tbl, data.pred(), tx, id);
tablePlanners.add(tp);
}
id += 1;
!

// Step 2: Choose the lowest-size plan to begin the trunk of join
Plan trunk = getLowestSelectPlan();
// Step 3: Repeatedly add a plan to the join trunk
while (!tablePlanners.isEmpty() || !views.isEmpty()) {
Plan p = getLowestJoinPlan(trunk);
if (p !'= null)

trunk = p; Feasible Select ops applied
else
// no applicable join /
\\‘7 trunk = getLowestProductPlan(trunk);
s

~

J

// Step 4: Add a group by plan if specified

// Step 5. Project on the field names

// Step 6: Add a sort plan if specified

// Step 7: Add a explain plan if the query is explain statement

Outline

e Overview

* Cost Estimation
* Cardinality Estimation
e Histogram-based Estimation
* Types of Histograms

* Heuristic Query Optimizer
e Basic Planner
* Pushing Select Down
e Join Ordering
e Heuristic Query Planner in VanillaCore

* Selinger-Style Query Optimizer

45

Why not HeuristicPlanner?

root B(root) «< R(p1) + R(c1) + ...

Small R(trunk) first

* Assumption: J R(cl) implies J R(p1))
* May not be true: joint rate also matters

* Exhaustively searching the best join order?
» #Candidates: O(n!) for n joins (e.g., 8! = 40320)

46

Selinger-Style Optimizer

root B(root) «< R(p1) + R(c1) + ...

* Recursion:
o B*({t1, t2, t3})=
min(B*({t1, t2} bx t3), B*({t1, t3} Ix t2), B*({t2, t3} I t1))
* Sub-optimality :
o If B¥({t1, t2}) = B(t1 <1 t2) <= B(t2 <1 t1)
* Then B*({t1, t2} b< t3) = B(t1 < t2 < t3) <= B(t2 < t1 DX t3)

* We can use dynamic programming to avoid repeating
computations

47

Selinger Optimizer Example (1/3)

* Consider 3 relations to join: X, Y, Z

e Step 1: compute the B(t) of each table t
* with proper selection ops

{X} Index Select Plan 10
{Y} Table Plan 30
{z} Select Plan 20

48

Selinger Optimizer Example (2/3)

 Step 2: compute the cost of 2-way join

» Estimate all left-deep permutation using the single-
relation cost just cached

*E.g. {X,Y}=
) B({X} > Y) 159 “ Because the R(XP4Y), R(YP<X) is the same,
° B({Y} P X). 189 we can only keep one in K-set
BN N T T A T
Index Select Plan {X, Y} XY
{Y} Table Plan 30 {X, Z} Z P> X 98

{7} Select Plan 20 {Y, 7} ZY 77

49

Selinger Optimizer Example (3/3)

* Step 3: compute the cost of 3-way join

* Estimate all left-deep tree permutation using the 2-
set costs

« E.g. {X, Y, Z} =
o B({X, Y} b<1 2)=259
* B({X,\z} b< Y)=100
e B({Y, ¥} <1 X)=111

{X, Y} <Y {X,V, 7} ZD]AIXDY
{X, 2} Z b X 98

50

Complexity (Simplified)

(1)+(5) (1) -0

* E.g., when n=8:
* Exhaustively search: 8! = 40320 candidates
* Selinger-style planner: 28=256 candidates

SelingerLikeQueryPlanner in
VanillaCore

e Package: org.vanilladb.core.query.planner.opt

private Plan getAllCombination(Plan viewTrunk) {
long finalKey = 0;

// for layer = 1, use select down strategy to construct
for (TablePlanner tp: tablePlanners) {
Plan bestPlan = null;
if (viewTrunk = null) {
bestPlan = tp.makeloinPlan(viewTrunk);
if (bestPlan == null)
bestPlan = tp.makeProductPlan(viewTrunk);
}
else
bestPlan = tp.makeSelectPlan();

AccessPath ap = new AccessPath(tp, bestPlan);
lookupTbl.put(ap.getAPId(), ap);

// compute final access path id
finalKey += ap.getAPId();

52

// construct all combination layer by layer
for (int layer = 2; layer <= tablePlanners.size(); layer++) {
Set<Long> keySet = new HashSet<Long>(lookupThl.keySet());

for (TablePlanner rightOne: tablePlanners) {
for (Long key: keySet) {
AccessPath leftTrunk = lookupThl.get(key);

// cannot join with table which (layer-1) combination already included
if (leftTrunk.isUsed(rightOne.getld()))
continue;

// do join
Plan bestPlan = rightOne.makeloinPlan(leftTrunk.getPlan());
if (bestPlan == null)

bestPlan = rightOne.makeProductPlan(leftTrunk.getPlan());

AccessPath candidate = new AccessPath(leftTrunk, rightOne, bestPlan);
AccessPath ap = lookupThl.get(candidate.getAPId());

// there is no access path contains this combination
if (ap ==null) {
lookupTbl.put(candidate.getAPId(), candidate);
}
// check whether new access path is better than previous
else {
if (candidate.getCost() < ap.getCost())
lookupTbl.put(candidate.getAPId(), candidate);

}

// remove the elements belong to layer-1

// because in the next layer we only need this layer's combination

for (Long key: keySet)
lookupTbl.remove(key);

* Iterate all table planners to join with all existing

} S .
(layer-1) combination to construct this layer

return lookupTbl.get(finalKey).getPlan(); c3

public class AccessPath {
private Plan p;
private AccessPathld apld;
private long cost = 0;
private ArrayList<Integer> tblUsed = new ArrayList<Integer>();

/public cl?;i;\ic;fss%th'd{ \ e aplD is the key of the lookup
table

AccessPathld(TablePlanner tp) {
this.id = (long) Math.pow(2,tp.getld()); °

Use sum of pow(2, tp.id) to
represent the k-set in an

}

AccessPathld(AccessPath ap, TablePlanner tp) {
this.id = ap.getAPId()+(long) Math.pow(2,tp.getld()); access path

}

public long getID() {
return id;

}
\),
public AccessPath (TablePlanner newTp, Plan p) {
this.p = p;
this.tblUsed.add(newTp.getld());

this.apld = new AccessPathld(newTp);
this.cost = p.recordsOutput();

}
public AccessPath (AccessPath preAp, TablePlanner newTp, Plan p) {

this.p = p;
this.tblUsed.addAll(preAp.getTblUsed());
this.tblUsed.add(newTp.getld());

this.apld = new AccessPathld(preAp, newTp);

// approximate cost = previous cost + hew cost ° Appl’OXi mate B(I"OOt) USing
this.cost = preAp.getCost() + p.recordsOutput(); R(pl) + R(Cl)

54

Reference

* https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ws1011/db2/db2
-selectivity.pdf

* https://www.cise.ufl.edu/~adobra/approxgp/histog
rams2

* https://pdfs.semanticscholar.org/b024/0a44105fa0
a0967d96d109aac9f021902ebb.pdf

55

https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1011/db2/db2-selectivity.pdf
https://www.cise.ufl.edu/~adobra/approxqp/histograms2
https://pdfs.semanticscholar.org/b024/0a44105fa0a0967d96d109aac9f021902ebb.pdf

