
Query Optimization

Shan-Hung Wu and DataLab

CS, NTHU

1

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Where Are We?

2

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

3

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

4

SQL and Relational Algebra

• A SQL command can be expressed as multiple trees
in relational algebra

SelectScan

ProjectScan

ProductScan

TableScan
dept

TableScan
student

ProjectScan

ProductScan

TableScan
dept

TableScan
student

SelectScan
s-id=5 and major-id=4

SelectScan
major-id=d-id

SELECT sname FROM student, dept

WHERE major-id = d-id AND s-id = 5 AND major-id = 4;

5

Query Optimization

• A good scan tree can be faster than a bad one for
orders of magnitude

• Query optimizer:
1. Generate candidate plan trees

2. Estimate cost of each corresponding scan tree (not
discussed yet)

3. Pick and open the “best” one to execute query

• Goal (ideally): find the one with least cost

• Goal (in practice): avoid bad trees

6

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Push Select Down
• Join Order Problem
• Heuristic Planner in VanillaCore

• Selinger-Style Query Optimizer

7

Metric for Cost

• Cost of a query?

• To user: query delay

• Low delay also implies better system throughput

• Typically, I/O delay dominates query delay

8

Cost Estimation

• For each plan/table p, we estimate B(p)
• #blocks accessed by the corresponding scan

• Usually, estimating B(p) requires more
knowledge:
• R(p): #records output

• Search cost (#blocks) of index, if used

• V(p,f): #distinct values for field f in p

9

Estimating B(p)

p B(p)

TablePlan Actual #blocks cached by StatMgr (via periodic table scanning)

ProjectPlan(c) B(c)

SelectPlan(c) B(c)

IndexSelectPlan(t) IndexSearchCost(R(t), R(p)) + R(p)

ProductPlan(c1, c2) B(c1) + (R(c1) * B(c2))

IndexJoinPlan(c1, t2) B(c1) + (R(c1) * IndexSearchCost(R(t2), 1)) + R(p)

10

• B(c) is evaluated recursively down to the table
level

For Any p, We Need to Estimate
R(p) and Index Search Cost

• Index Search Cost:
• HashIndex.searchCost()

• BTreeIndex.searchCost()

• Estimating R(p) is called cardinality
estimation

11

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

12

Naïve Approach

• Uniform assumption
• All values in field appear with the same probability

• Few statistics are enough:

R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c

13

f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7

p = Select(c, f=x)

• R(p)?

• Selectivity(f=x):
1

𝑉 𝑐,𝑓

• R(p): Selectivity(f=x) * R(c)

14

R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c

p = Select(c, f>x)

• R(p)?

• Selectivity(f>x):
𝑀𝑎𝑥 𝑐,𝑓 −𝑥

𝑀𝑎𝑥 𝑐,𝑓 −𝑀𝑖𝑛(𝑐,𝑓)

• R(p): Selectivity(f>x) * R(c)

15

R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

16

Naïve Estimation is Inaccurate

• In the real world, values in a field are seldom
uniform distributed

• p = Select(c, f=14)

• Estimated R(p) =
1

15
* R(c) = 3

• Actually, R(p) = 9 f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

17

Histogram

• Approximates value distribution in every field

• Partitions field values into a set of buckets

• More #buckets, more accurate approximation
• Tradeoff between accurate and storage cost

18

f.#recs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

f.values

Buckets

• Each bucket b collects statistics of a value range
• Assumes uniform distribution of records and values in b

• R(p, f, b): #records

• V(p, f, b): #distinct values

• Range(p, f, b): value range

19

f.#recs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

f.values

Cardinality Estimation

• Not matter what p is, we have

for any f

• Problem: how to construct the histogram?

20

Range Selection (1/2)

• p = Select(c, f in Range)

• For each bucket b in f:

• Selectivity =
|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏 ∩𝑅𝑎𝑛𝑔𝑒|

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏 |

• Range(p,f,b) = Range(c,f,b) ∩ Range

• V(p,f,b) = V(c,f,b) * selectivity

• R(p,f,b) = R(c,f,b) * selectivity

• Assumptions:
• #Records in a bucket are uniformly distributed

• Values in a bucket are uniformly distributed

21

Range(c, f, b)
V(c, f, b)
R(c, f, b)

Given ∀f,b:

Range Selection (2/2)

• p = Select(c, f in Range)

• For each bucket b in f’ ≠ f:

• Reduction =
σ𝑏 𝑅(𝑝,𝑓,𝑏)

𝑅(𝑐)

• Range(p,f’,b) = Range(c,f’,b)

• R(p,f’,b) = R(c,f’,b) * Reduction

• V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

• Assumptions:
• Values in different fields are independent with each

other

22

Range(c, f, b)
V(c, f, b)
R(c, f, b)

Given ∀f,b:

Product

• p = Product(c1, c2)

• For each (b,f) in c1:
• Range(p,f,b) = Range(c1,f,b)

• V(p,f,b) = V(c1,f,b)

• R(p,f,b) = R(c1,f,b) * R(c2)

• For each (b,f) in c2:
• Range(p,f,b) = Range(c2,f,b)

• V(p,f,b) = V(c2,f,b)

• R(p,f,b) = R(c2,f,b) * R(c1)

23

Range(c1, f, b)
V(c1, f, b)
R(c1, f, b)
Range(c2, f, b)
V(c2, f, b)
R(c2, f, b)

Given ∀f,b:

c.f

Join Selection (1/2)
• p = Select(c, f=g)
• For each bucket b1 in f and b2 in g:

• Range(p,f,b1) = Range(p,g,b2) = IR = Range(c,f,b1) ∩ Range(c,g,b2)

• V(p,f,b1) = V(p,g,b2) = minV = min(
𝐼𝑅 ∗𝑉(𝑐,𝑓,𝑏1)

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏1 |
,

𝐼𝑅 ∗𝑉(𝑐,𝑔,𝑏2)

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑔,𝑏2 |
)

• R1 = R(c,f,b1) *
𝑚𝑖𝑛𝑉

𝑉(𝑐,𝑓,𝑏1)
*

1

𝑉(𝑐,𝑔,𝑏2)
*
𝑅(𝑐,𝑔,𝑏2)

R(𝑐)

• R2 = R(c,g,b2) *
𝑚𝑖𝑛𝑉

𝑉(𝑐,𝑔,𝑏2)
*

1

𝑉(𝑐,𝑓,𝑏1)
*
𝑅(𝑐,𝑓,𝑏1)

R(𝑐)

• R(p,f,b1) = R(p,g,b2) = min(R1, R2)

• Assumptions:
• #Records & values in bucket are uniformly distributed
• All values in the range having smaller number of values appear in the

range having larger number of values
• Values in different fields are independent with each other

24

Match rate with recs in b2

Match rate with b2

c.g

p.f
p.g

or Joint(a, b, a.f=b.g)

Join Selection (2/2)

• p = Select(c, f=g)

• For each bucket b in f’ ∉ {f, g}:

• Reduction =
σ𝑏 𝑅(𝑝,𝑓,𝑏)

𝑅(𝑐)

• R(p,f’,b) = R(c,f’,b) * Reduction

• V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

• Range(p,f’,b) = Range(c,f’,b)

• Assumptions:
• Values in different fields are independent with each

other

25

Cost Estimation in VanillaCore

• B(p): p.blocksAccessed()

• Histogram-based cardinality estimation:
• R(p): p.histogram().recordsOutput()

• V(p,f): p.histogram().distinctVaues(f)

• Each plan builds its own histogram in constructor

• Important utility methods to trace:
• SelectPlan.constantRangeHistorgram()

• ProductPlan.productHistogram()

• SelectPlan.joinFieldHistogram()

• AbstractJointPlan.joinHistogram()

26

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

27

Table Histogram at Lowest-Level

• Data structure that approximates value distribution

• Partitions field values into a set of buckets

• Each bucket b collects statistics of a value range
• Assumes uniform distribution of records and values in b

• Given a fixed #buckets, how to decide bucket
ranges?

28

f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10 #Buckets = 5

• Partition strategy: all buckets have the same range

• |Range(b)| =
𝑀𝑎𝑥 𝑝,𝑓 −𝑀𝑖𝑛 𝑝,𝑓 +1

#𝐵𝑢𝑐𝑘𝑒𝑡𝑠

• Problem: some buckets may be wasted

Equi-Width Histogram

29

f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

8
4

13

20

0

• Partition strategy: all buckets have the same #recs

• Depth =
𝑅(𝑝)

#𝐵𝑢𝑐𝑘𝑒𝑡𝑠

• Problem: records/values in a bucket may not be
uniformly distributed

Equi-Depth Histogram

30

f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

9
10

9

8
9

Max-Diff Histogram

• Partition strategy: split buckets at values with max.
diff in #rec (MaxDiff(F)) or area (MaxDiff(A)):

1. #recs: uniform #records in each bucket

2. Area: uniform #records and values in each bucket

f.#recs

31

f.values

f.#recs

Spread f.values

cut

cut

Histogram in VanillaCore

• Table histograms are statistics metadata
• org.vanilladb.core.storage.metadata.statistics

• Accessed (by TablePlan) via StatMgr.getTableStatInfo()

32

Building Histogram (1/2)

• When system starts up:

• StatMgr:
• Scans table and calls SampledHistogramBuilder.sample()

• When done, calls
SampledHistogramBuilder.newMaxDiffHistogram()

• Histogram types:
• MaxDiff(A) : when field value is numeric

• MaxDiff(F) : otherwise

33

Building Histogram (2/2)

• At runtime:

• StatMgr tacks #recs updated for each table
• QueryPlanner calls StatMgr.countRecordUpdates() after

executing modify/insert/delete queries

• Rebuilds histogram in background when
StatMgr.getTableStatInfo() is called
• If #recs updated > threshold (e.g., 100)

• StatisticsRefreshTask:
• Scans table and calls SampledHistogramBuilder.sample()
• When done, calls

SampledHistogramBuilder.newMaxDiffHistogram()

34

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

35

Query Optimization

• Query optimizer:
1. Generate candidate plan trees

2. Estimate cost of each corresponding scan tree

3. Pick and open the “best” one to execute query

36

SelectScan

ProjectScan

ProductScan

TableScan
dept

TableScan
student

ProjectScan

ProductScan

TableScan
dept

TableScan
student

SelectScan
s-id=5 and major-id=4

SelectScan
major-id=d-id

In Reality…

• Generating all candidate plan trees are too costly
• #trees with n products/joins = Catalan number:

• Compromise: consider left-skew
candidate trees only

• Query planner’s goal
• Avoiding bad trees

• Not finding the best tree

37

Select Plan

Product/Join Plan

Table CProduct/Join Plan

Table BTable A

Why Left-Skew Trees Only?

• Tend to be better than plans of other shapes

• Because many join algorithms scan right child c2
multiple times

• Normally, we don’t want c2 to be a complex
subtree

38

BasicQueryPlanner
public Plan createPlan(QueryData data, Transaction tx) {

// Step 1: Create a plan for each mentioned table or view
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);
if (viewdef != null)

plans.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else

plans.add(new TablePlan(tblname, tx));
}
// Step 2: Create the product of all table plans
Plan p = plans.remove(0);
for (Plan nextplan : plans)

p = new ProductPlan(p, nextplan);
// Step 3: Add a selection plan for the predicate

p = new SelectPlan(p, data.pred());
// Step 4: Add a group-by plan if specified

if (data.groupFields() != null) {
p = new GroupByPlan(p, data.groupFields(), data.aggregationFn(), tx);

}
// Step 5: Project onto the specified fields
p = new ProjectPlan(p, data.projectFields());
// Step 6: Add a sort plan if specified
if (data.sortFields() != null)

p = new SortPlan(p, data.sortFields(), data.sortDirections(), tx);
// Step 7: Add a explain plan if the query is explain statement
if (data.isExplain())

p = new ExplainPlan(p);
return p;

} 39

• Product/join order
follows what’s
written in SQL

Cost & Bottlenecks

• B(root) dominated by #recs of product/join ops
• B(Product(c1, c2)) = B(c1) + (R(c1) * B(c2))

• B(IndexJoin(c1, c2)) = B(c1) + (R(c1) * SearchCost(…)) + …

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2
AND t2.f3 = t3.f4
AND t1.f5 = x

40

Select Plan

Product/Join Plan

Table t3Product/Join Plan

Table t2Table t1

Optimizations

• Goal ↓B(root) reduced to ↓R(c1)

• Heuristics:
• Pushing Select ops down

• Greedy Join ordering

41

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2
AND t2.f3 = t3.f4
AND t1.f5 = x

Select Plan

Product/Join Plan

Table t3Product/Join Plan

Table t2Table t1

Pushing Select Ops Down

• Execute Select ops as early as possible

• ↓R of each product/join op

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2
AND t2.f3 = t3.f4
AND t1.f5 = x

Table t3

Product Plan

Select(t2.f3 = t3.f4)

Product Plan

Select(t1.f5 = x)

Select(t1.f1 = t2.f2)

Table t1 Table t2

42

Join

Greedy Join Ordering

• B(root) = B(p1) + (R(p1) * …) + …
• ↓ B(root) implies ↓(p1)

• B(p1) = B(c1) + (R(c1) * …) + …
• ↓ B(root) also implies ↓(c1)

• …

• B(root) ∝ R(p1) + R(c1) + …

• Greedy Join ordering: repeatedly add table to the
“trunk” that result in lowest R(trunk)

43

Join

t1 t2

t3

Join

Join

t4

root
p1

c1

HeuristicPlanner in VanillaCore
public Plan createPlan(QueryData data, Transaction tx) {

// Step 1: Create a TablePlanner object for each mentioned table/view
int id = 0;
for (String tbl : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tbl, tx);
if (viewdef != null)

views.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else {

TablePlanner tp = new TablePlanner(tbl, data.pred(), tx, id);
tablePlanners.add(tp);

}
id += 1;

}
// Step 2: Choose the lowest-size plan to begin the trunk of join
Plan trunk = getLowestSelectPlan();
// Step 3: Repeatedly add a plan to the join trunk
while (!tablePlanners.isEmpty() || !views.isEmpty()) {

Plan p = getLowestJoinPlan(trunk);
if (p != null)

trunk = p;
else

// no applicable join
trunk = getLowestProductPlan(trunk);

}
// Step 4: Add a group by plan if specified
// Step 5. Project on the field names
// Step 6: Add a sort plan if specified
// Step 7: Add a explain plan if the query is explain statement

}

Feasible Select ops applied

44

Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

45

Why not HeuristicPlanner?

• Assumption: ↓R(c1) implies ↓R(p1))

• May not be true: joint rate also matters

• Exhaustively searching the best join order?
• #Candidates: O(n!) for n joins (e.g., 8! = 40320)

46

Join

t1 t2

t3

Join

Join

t4

root
p1

c1
Small R(trunk) first

B(root) ∝ R(p1) + R(c1) + …

Selinger-Style Optimizer

• Recursion:
• B*({t1, t2, t3})=

min(B*({t1, t2} ⨝ t3), B*({t1, t3} ⨝ t2), B*({t2, t3} ⨝ t1))

• Sub-optimality :
• If B*({t1, t2}) = B(t1 ⨝ t2) <= B(t2 ⨝ t1)
• Then B*({t1, t2} ⨝ t3) = B(t1 ⨝ t2 ⨝ t3) <= B(t2 ⨝ t1 ⨝ t3)

• We can use dynamic programming to avoid repeating
computations

47

Join

t1 t2

t3

Join

Join

t4

root
p1

c1

B(root) ∝ R(p1) + R(c1) + …

• Consider 3 relations to join: X, Y, Z

• Step 1: compute the B(t) of each table t
• with proper selection ops

1-Set Best Plan R

{X} Index Select Plan 10

{Y} Table Plan 30

{Z} Select Plan 20

Selinger Optimizer Example (1/3)

48

• Step 2: compute the cost of 2-way join
• Estimate all left-deep permutation using the single-

relation cost just cached

• E.g. {X, Y} =
• B({X} ⨝ Y): 159

• B({Y} ⨝ X): 189

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

Selinger Optimizer Example (2/3)

1-Set Best Plan Cost

{X} Index Select Plan 10

{Y} Table Plan 30

{Z} Select Plan 20

Because the R(X⨝Y), R(Y⨝X) is the same,
we can only keep one in K-set

49

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

{X, Z} Z ⨝ X 98

{Y, Z} Z ⨝ Y 77

• Step 3: compute the cost of 3-way join
• Estimate all left-deep tree permutation using the 2-

set costs

• E.g. {X, Y, Z} =
• B({X, Y} ⨝ Z)=259

• B({X, Z} ⨝ Y)=100

• B({Y, Z} ⨝ X)=111

Selinger Optimizer Example (3/3)

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

{X, Z} Z ⨝ X 98

{Y, Z} Z ⨝ Y 77
50

3-Set Best Plan Cost

{X, Y, Z} Z ⨝ X ⨝ Y 100

Complexity (Simplified)

• E.g., when n=8:

• Exhaustively search: 8! = 40320 candidates

• Selinger-style planner: 28=256 candidates

51

SelingerLikeQueryPlanner in
VanillaCore

• Package: org.vanilladb.core.query.planner.opt

52

private Plan getAllCombination(Plan viewTrunk) {
long finalKey = 0;

// for layer = 1, use select down strategy to construct
for (TablePlanner tp: tablePlanners) {

Plan bestPlan = null;
if (viewTrunk != null) {

bestPlan = tp.makeJoinPlan(viewTrunk);
if (bestPlan == null)
bestPlan = tp.makeProductPlan(viewTrunk);

}
else

bestPlan = tp.makeSelectPlan();

AccessPath ap = new AccessPath(tp, bestPlan);
lookupTbl.put(ap.getAPId(), ap);

// compute final access path id
finalKey += ap.getAPId();

}

.

.

.

}

// construct all combination layer by layer
for (int layer = 2; layer <= tablePlanners.size(); layer++) {

Set<Long> keySet = new HashSet<Long>(lookupTbl.keySet());

for (TablePlanner rightOne: tablePlanners) {
for (Long key: keySet) {

AccessPath leftTrunk = lookupTbl.get(key);

// cannot join with table which (layer-1) combination already included
if (leftTrunk.isUsed(rightOne.getId()))

continue;

// do join
Plan bestPlan = rightOne.makeJoinPlan(leftTrunk.getPlan());
if (bestPlan == null)

bestPlan = rightOne.makeProductPlan(leftTrunk.getPlan());

AccessPath candidate = new AccessPath(leftTrunk, rightOne, bestPlan);
AccessPath ap = lookupTbl.get(candidate.getAPId());

// there is no access path contains this combination
if (ap == null) {

lookupTbl.put(candidate.getAPId(), candidate);
}
// check whether new access path is better than previous
else {

if (candidate.getCost() < ap.getCost())
lookupTbl.put(candidate.getAPId(), candidate);

}
}

}

// remove the elements belong to layer-1
// because in the next layer we only need this layer's combination
for (Long key: keySet)

lookupTbl.remove(key);
}

return lookupTbl.get(finalKey).getPlan();
53

• Iterate all table planners to join with all existing
(layer-1) combination to construct this layer

public class AccessPath {
private Plan p;
private AccessPathId apId;
private long cost = 0;
private ArrayList<Integer> tblUsed = new ArrayList<Integer>();

public class AccessPathId {
long id;

AccessPathId(TablePlanner tp) {
this.id = (long) Math.pow(2,tp.getId());

}

AccessPathId(AccessPath ap, TablePlanner tp) {
this.id = ap.getAPId()+(long) Math.pow(2,tp.getId());

}
public long getID() {

return id;
}

}

public AccessPath (TablePlanner newTp, Plan p) {
this.p = p;
this.tblUsed.add(newTp.getId());
this.apId = new AccessPathId(newTp);
this.cost = p.recordsOutput();

}
public AccessPath (AccessPath preAp, TablePlanner newTp, Plan p) {

this.p = p;
this.tblUsed.addAll(preAp.getTblUsed());
this.tblUsed.add(newTp.getId());
this.apId = new AccessPathId(preAp, newTp);

// approximate cost = previous cost + new cost
this.cost = preAp.getCost() + p.recordsOutput();

}
}

54

• apID is the key of the lookup
table

• Use sum of pow(2, tp.id) to
represent the k-set in an
access path

• Approximate B(root) using
R(p1) + R(c1)…

Reference

• https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ws1011/db2/db2
-selectivity.pdf

• https://www.cise.ufl.edu/~adobra/approxqp/histog
rams2

• https://pdfs.semanticscholar.org/b024/0a44105fa0
a0967d96d109aac9f021902ebb.pdf

55

https://db.inf.uni-tuebingen.de/staticfiles/teaching/ws1011/db2/db2-selectivity.pdf
https://www.cise.ufl.edu/~adobra/approxqp/histograms2
https://pdfs.semanticscholar.org/b024/0a44105fa0a0967d96d109aac9f021902ebb.pdf

