
Query Optimization

Shan-Hung Wu and DataLab

CS, NTHU

1



Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore 

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Where Are We?

2



Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner 
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

3



Outline

• Overview

• Cost Estimation
• Cardinality Estimation
• Histogram-based Estimation
• Types of Histograms

• Heuristic Query Optimizer
• Basic Planner 
• Pushing Select Down
• Join Ordering
• Heuristic Query Planner in VanillaCore

• Selinger-Style Query Optimizer

4



SQL and Relational Algebra

• A SQL command can be expressed as multiple trees 
in relational algebra

SelectScan

ProjectScan

ProductScan

TableScan
dept

TableScan
student

ProjectScan

ProductScan

TableScan
dept

TableScan
student

SelectScan
s-id=5 and major-id=4

SelectScan
major-id=d-id

SELECT sname FROM student, dept

WHERE  major-id = d-id AND s-id = 5 AND major-id = 4;
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Query Optimization

• A good scan tree can be faster than a bad one for 
orders of magnitude

• Query optimizer:
1. Generate candidate plan trees

2. Estimate cost of each corresponding scan tree (not 
discussed yet)

3. Pick and open the “best” one to execute query

• Goal (ideally): find the one with least cost

• Goal (in practice): avoid bad trees
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Metric for Cost

• Cost of a query?

• To user: query delay

• Low delay also implies better system throughput

• Typically, I/O delay dominates query delay
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Cost Estimation

• For each plan/table p, we estimate B(p)
• #blocks accessed by the corresponding scan

• Usually, estimating B(p) requires more 
knowledge:
• R(p): #records output

• Search cost (#blocks) of index, if used

• V(p,f): #distinct values for field f in p
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Estimating B(p)

p B(p)

TablePlan Actual #blocks cached by StatMgr (via periodic table scanning)

ProjectPlan(c) B(c)

SelectPlan(c) B(c)

IndexSelectPlan(t) IndexSearchCost(R(t), R(p)) + R(p)

ProductPlan(c1, c2) B(c1) + (R(c1) * B(c2))

IndexJoinPlan(c1, t2) B(c1) + (R(c1) * IndexSearchCost(R(t2), 1)) + R(p)

10

• B(c) is evaluated recursively down to the table 
level



For Any p, We Need to Estimate 
R(p) and Index Search Cost

• Index Search Cost: 
• HashIndex.searchCost()

• BTreeIndex.searchCost()

• Estimating R(p) is called cardinality 
estimation
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Naïve Approach

• Uniform assumption
• All values in field appear with the same probability

• Few statistics are enough:

R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c
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p = Select(c, f=x)

• R(p)?

• Selectivity(f=x): 
1

𝑉 𝑐,𝑓

• R(p): Selectivity(f=x) * R(c)

14

R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c



p = Select(c, f>x)

• R(p)?

• Selectivity(f>x): 
𝑀𝑎𝑥 𝑐,𝑓 −𝑥

𝑀𝑎𝑥 𝑐,𝑓 −𝑀𝑖𝑛(𝑐,𝑓)

• R(p): Selectivity(f>x) * R(c)
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R(c) #records in child plan c
V(c, f) #distinct values in field f in c
Max(c, f) Max value in field f in c
Min(c, f) Min value in field f in c
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Naïve Estimation is Inaccurate

• In the real world, values in a field are seldom 
uniform distributed

• p = Select(c, f=14)

• Estimated R(p) = 
1

15
* R(c) = 3

• Actually, R(p) = 9 f.#recs
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Histogram

• Approximates value distribution in every field

• Partitions field values into a set of buckets

• More #buckets, more accurate approximation
• Tradeoff between accurate and storage cost
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Buckets

• Each bucket b collects statistics of a value range
• Assumes uniform distribution of records and values in b

• R(p, f, b):  #records

• V(p, f, b): #distinct values

• Range(p, f, b): value range
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Cardinality Estimation

• Not matter what p is, we have

for any f

• Problem: how to construct the histogram?
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Range Selection (1/2)

• p = Select(c, f in Range)

• For each bucket b in f:

• Selectivity = 
|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏 ∩𝑅𝑎𝑛𝑔𝑒|

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏 |

• Range(p,f,b) = Range(c,f,b) ∩ Range

• V(p,f,b) = V(c,f,b) * selectivity

• R(p,f,b) = R(c,f,b) * selectivity

• Assumptions:
• #Records in a bucket are uniformly distributed

• Values in a bucket are uniformly distributed

21

Range(c, f, b)
V(c, f, b)
R(c, f, b) 

Given ∀f,b:



Range Selection (2/2)

• p = Select(c, f in Range)

• For each bucket b in f’ ≠ f:

• Reduction = 
σ𝑏 𝑅(𝑝,𝑓,𝑏)

𝑅(𝑐)

• Range(p,f’,b) = Range(c,f’,b)

• R(p,f’,b) = R(c,f’,b) * Reduction

• V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

• Assumptions:
• Values in different fields are independent with each 

other
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Product

• p = Product(c1, c2)

• For each (b,f) in c1:
• Range(p,f,b) = Range(c1,f,b)

• V(p,f,b) = V(c1,f,b)

• R(p,f,b) = R(c1,f,b) * R(c2)

• For each (b,f) in c2:
• Range(p,f,b) = Range(c2,f,b)

• V(p,f,b) = V(c2,f,b)

• R(p,f,b) = R(c2,f,b) * R(c1)
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Range(c2, f, b)
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c.f

Join Selection  (1/2)
• p = Select(c, f=g)
• For each bucket b1 in f and b2 in g:

• Range(p,f,b1) = Range(p,g,b2) = IR = Range(c,f,b1) ∩ Range(c,g,b2)

• V(p,f,b1) = V(p,g,b2) = minV = min(
𝐼𝑅 ∗𝑉(𝑐,𝑓,𝑏1)

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑓,𝑏1 |
, 

𝐼𝑅 ∗𝑉(𝑐,𝑔,𝑏2)

|𝑅𝑎𝑛𝑔𝑒 𝑐,𝑔,𝑏2 |
)

• R1 = R(c,f,b1) * 
𝑚𝑖𝑛𝑉

𝑉(𝑐,𝑓,𝑏1)
* 

1

𝑉(𝑐,𝑔,𝑏2)
* 
𝑅(𝑐,𝑔,𝑏2)

R(𝑐)

• R2 = R(c,g,b2) *  
𝑚𝑖𝑛𝑉

𝑉(𝑐,𝑔,𝑏2)
*  

1

𝑉(𝑐,𝑓,𝑏1)
* 
𝑅(𝑐,𝑓,𝑏1)

R(𝑐)

• R(p,f,b1) = R(p,g,b2) = min(R1, R2)

• Assumptions:
• #Records & values in bucket are uniformly distributed
• All values in the range having smaller number of values appear in the 

range having larger number of values
• Values in different fields are independent with each other
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Match rate with recs in b2

Match rate with b2

c.g

p.f
p.g

or Joint(a, b, a.f=b.g)



Join Selection  (2/2)

• p = Select(c, f=g)

• For each bucket b in f’ ∉ {f, g}:

• Reduction = 
σ𝑏 𝑅(𝑝,𝑓,𝑏)

𝑅(𝑐)

• R(p,f’,b) = R(c,f’,b) * Reduction

• V(p,f’,b) = min(V(c,f’,b), R(p,f’,b))

• Range(p,f’,b) = Range(c,f’,b)

• Assumptions:
• Values in different fields are independent with each 

other
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Cost Estimation in VanillaCore

• B(p): p.blocksAccessed()

• Histogram-based cardinality estimation:
• R(p): p.histogram().recordsOutput()

• V(p,f): p.histogram().distinctVaues(f)

• Each plan builds its own histogram in constructor

• Important utility methods to trace:
• SelectPlan.constantRangeHistorgram()

• ProductPlan.productHistogram()

• SelectPlan.joinFieldHistogram()

• AbstractJointPlan.joinHistogram()
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Table Histogram at Lowest-Level

• Data structure that approximates value distribution 

• Partitions field values into a set of buckets

• Each bucket b collects statistics of a value range
• Assumes uniform distribution of records and values in b

• Given a fixed #buckets, how to decide bucket 
ranges?
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• Partition strategy: all buckets have the same range

• |Range(b)| =  
𝑀𝑎𝑥 𝑝,𝑓 −𝑀𝑖𝑛 𝑝,𝑓 +1

#𝐵𝑢𝑐𝑘𝑒𝑡𝑠

• Problem: some buckets may be wasted

Equi-Width Histogram

29

f.#recs

0 f.values1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9
10

8
4

13

20

0



• Partition strategy: all buckets have the same #recs

• Depth =  
𝑅(𝑝)

#𝐵𝑢𝑐𝑘𝑒𝑡𝑠

• Problem: records/values in a bucket may not be 
uniformly distributed

Equi-Depth Histogram
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Max-Diff Histogram

• Partition strategy: split buckets at values with max. 
diff in #rec (MaxDiff(F)) or area (MaxDiff(A)):

1. #recs:  uniform #records in each bucket

2. Area: uniform #records and values in each bucket

f.#recs
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cut
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Histogram in VanillaCore

• Table histograms are statistics metadata
• org.vanilladb.core.storage.metadata.statistics

• Accessed (by TablePlan) via StatMgr.getTableStatInfo()
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Building Histogram (1/2)

• When system starts up:

• StatMgr:
• Scans table and calls SampledHistogramBuilder.sample()

• When done, calls 
SampledHistogramBuilder.newMaxDiffHistogram()

• Histogram types:
• MaxDiff(A) : when field value is numeric

• MaxDiff(F) : otherwise
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Building Histogram (2/2)

• At runtime:

• StatMgr tacks #recs updated for each table
• QueryPlanner calls StatMgr.countRecordUpdates() after 

executing modify/insert/delete queries

• Rebuilds histogram in background when 
StatMgr.getTableStatInfo() is called 
• If #recs updated > threshold (e.g., 100) 

• StatisticsRefreshTask:
• Scans table and calls SampledHistogramBuilder.sample()
• When done, calls 

SampledHistogramBuilder.newMaxDiffHistogram()
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Query Optimization

• Query optimizer:
1. Generate candidate plan trees

2. Estimate cost of each corresponding scan tree

3. Pick and open the “best” one to execute query

36
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In Reality…

• Generating all candidate plan trees are too costly
• #trees with n products/joins = Catalan number: 

• Compromise: consider left-skew
candidate trees only

• Query planner’s goal
• Avoiding bad trees

• Not finding the best tree

37

Select Plan

Product/Join Plan

Table CProduct/Join Plan

Table BTable A



Why Left-Skew Trees Only?

• Tend to be better than plans of other shapes

• Because many join algorithms scan right child c2 
multiple times

• Normally, we don’t want c2 to be a complex 
subtree
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BasicQueryPlanner
public Plan createPlan(QueryData data, Transaction tx) {

// Step 1: Create a plan for each mentioned table or view
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);
if (viewdef != null)

plans.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else

plans.add(new TablePlan(tblname, tx));
}
// Step 2: Create the product of all table plans
Plan p = plans.remove(0);
for (Plan nextplan : plans)

p = new ProductPlan(p, nextplan);
// Step 3: Add a selection plan for the predicate

p = new SelectPlan(p, data.pred());
// Step 4: Add a group-by plan if specified

if (data.groupFields() != null) {
p = new GroupByPlan(p, data.groupFields(), data.aggregationFn(), tx);

}
// Step 5: Project onto the specified fields
p = new ProjectPlan(p, data.projectFields());
// Step 6: Add a sort plan if specified
if (data.sortFields() != null)

p = new SortPlan(p, data.sortFields(), data.sortDirections(), tx);
// Step 7: Add a explain plan if the query is explain statement
if (data.isExplain())

p = new ExplainPlan(p);
return p;

} 39

• Product/join order 
follows what’s 
written in SQL



Cost & Bottlenecks

• B(root) dominated by #recs of product/join ops
• B(Product(c1, c2)) = B(c1) + (R(c1) * B(c2))

• B(IndexJoin(c1, c2)) = B(c1) + (R(c1) * SearchCost(…)) + …

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2
AND t2.f3 = t3.f4
AND t1.f5 = x

40

Select Plan

Product/Join Plan

Table t3Product/Join Plan

Table t2Table t1



Optimizations

• Goal ↓B(root) reduced to ↓R(c1)

• Heuristics:
• Pushing Select ops down

• Greedy Join ordering

41

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2
AND t2.f3 = t3.f4
AND t1.f5 = x

Select Plan

Product/Join Plan

Table t3Product/Join Plan

Table t2Table t1



Pushing Select Ops Down

• Execute Select ops as early as possible

• ↓R of each product/join op

SELECT *
FROM t1, t2, t3
WHERE t1.f1 = t2.f2 
AND t2.f3 = t3.f4
AND t1.f5 = x

Table t3

Product Plan

Select(t2.f3 = t3.f4)

Product Plan

Select(t1.f5 = x)

Select(t1.f1 = t2.f2)

Table t1 Table t2

42
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Greedy Join Ordering

• B(root) = B(p1) + (R(p1) * …) + …
• ↓ B(root) implies ↓(p1)

• B(p1) = B(c1) + (R(c1) * …) + …
• ↓ B(root) also implies ↓(c1)

• …

• B(root) ∝ R(p1) + R(c1) + …

• Greedy Join ordering: repeatedly add table to the 
“trunk” that result in lowest R(trunk)

43
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HeuristicPlanner in VanillaCore
public Plan createPlan(QueryData data, Transaction tx) {

// Step 1: Create a TablePlanner object for each mentioned table/view
int id = 0;
for (String tbl : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tbl, tx);
if (viewdef != null)

views.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));
else {

TablePlanner tp = new TablePlanner(tbl, data.pred(), tx, id);
tablePlanners.add(tp);

}
id += 1;

}
// Step 2: Choose the lowest-size plan to begin the trunk of join
Plan trunk = getLowestSelectPlan();
// Step 3: Repeatedly add a plan to the join trunk
while (!tablePlanners.isEmpty() || !views.isEmpty()) {

Plan p = getLowestJoinPlan(trunk);
if (p != null)

trunk = p;
else

// no applicable join
trunk = getLowestProductPlan(trunk);

}
// Step 4: Add a group by plan if specified
// Step 5. Project on the field names
// Step 6: Add a sort plan if specified
// Step 7: Add a explain plan if the query is explain statement

}

Feasible Select ops applied
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Why not HeuristicPlanner?

• Assumption: ↓R(c1) implies ↓R(p1))

• May not be true: joint rate also matters

• Exhaustively searching the best join order? 
• #Candidates: O(n!) for n joins (e.g., 8! = 40320)

46

Join

t1 t2

t3

Join

Join

t4

root
p1

c1
Small R(trunk) first

B(root) ∝ R(p1) + R(c1) + …



Selinger-Style Optimizer

• Recursion:
• B*({t1, t2, t3})=

min(B*({t1, t2} ⨝ t3), B*({t1, t3} ⨝ t2), B*({t2, t3} ⨝ t1))

• Sub-optimality : 
• If B*({t1, t2}) = B(t1 ⨝ t2) <= B(t2 ⨝ t1)
• Then B*({t1, t2} ⨝ t3) = B(t1 ⨝ t2 ⨝ t3) <= B(t2 ⨝ t1 ⨝ t3)

• We can use dynamic programming to avoid repeating 
computations

47

Join

t1 t2

t3

Join

Join

t4

root
p1

c1

B(root) ∝ R(p1) + R(c1) + …



• Consider 3 relations to join: X, Y, Z

• Step 1: compute the B(t) of each table t
• with proper selection ops

1-Set Best Plan R

{X} Index Select Plan 10

{Y} Table Plan 30

{Z} Select Plan 20

Selinger Optimizer Example (1/3)
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• Step 2: compute the cost of 2-way join
• Estimate all left-deep permutation using the single-

relation cost just cached

• E.g. {X, Y} = 
• B({X} ⨝ Y): 159

• B({Y} ⨝ X): 189

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

Selinger Optimizer Example (2/3)

1-Set Best Plan Cost

{X} Index Select  Plan 10

{Y} Table Plan 30

{Z} Select Plan 20

Because the R(X⨝Y), R(Y⨝X) is the same,
we can only keep one in K-set

49

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

{X, Z} Z ⨝ X 98

{Y, Z} Z ⨝ Y 77



• Step 3: compute the cost of 3-way join
• Estimate all left-deep tree permutation using the 2-

set costs

• E.g. {X, Y, Z} = 
• B({X, Y} ⨝ Z)=259

• B({X, Z} ⨝ Y)=100

• B({Y, Z} ⨝ X)=111

Selinger Optimizer Example (3/3)

2-Set Best Plan Cost

{X, Y} X ⨝ Y 159

{X, Z} Z ⨝ X 98

{Y, Z} Z ⨝ Y 77
50

3-Set Best Plan Cost

{X, Y, Z} Z ⨝ X ⨝ Y 100



Complexity (Simplified)

• E.g., when n=8:

• Exhaustively search: 8! = 40320 candidates

• Selinger-style planner: 28=256 candidates

51



SelingerLikeQueryPlanner in 
VanillaCore

• Package: org.vanilladb.core.query.planner.opt

52

private Plan getAllCombination(Plan viewTrunk) {
long finalKey = 0;

// for layer = 1, use select down strategy to construct
for (TablePlanner tp: tablePlanners) {

Plan bestPlan = null;
if (viewTrunk != null) {

bestPlan = tp.makeJoinPlan(viewTrunk);
if (bestPlan == null)
bestPlan = tp.makeProductPlan(viewTrunk);

}
else

bestPlan = tp.makeSelectPlan();

AccessPath ap = new AccessPath(tp, bestPlan);
lookupTbl.put(ap.getAPId(), ap);

// compute final access path id
finalKey += ap.getAPId();

}

.

.

.

}



// construct all combination layer by layer
for (int layer = 2; layer <= tablePlanners.size(); layer++) {

Set<Long> keySet = new HashSet<Long>(lookupTbl.keySet());

for (TablePlanner rightOne: tablePlanners) { 
for (Long key: keySet) {

AccessPath leftTrunk = lookupTbl.get(key);

// cannot join with table which (layer-1) combination already included
if (leftTrunk.isUsed(rightOne.getId()))

continue;

// do join
Plan bestPlan = rightOne.makeJoinPlan(leftTrunk.getPlan());
if (bestPlan == null)

bestPlan = rightOne.makeProductPlan(leftTrunk.getPlan());

AccessPath candidate = new AccessPath(leftTrunk, rightOne, bestPlan);
AccessPath ap = lookupTbl.get(candidate.getAPId());

// there is no access path contains this combination
if (ap == null) {

lookupTbl.put(candidate.getAPId(), candidate);
}
// check whether new access path is better than previous
else {

if (candidate.getCost() < ap.getCost())
lookupTbl.put(candidate.getAPId(), candidate);

}
}

}

// remove the elements belong to layer-1 
// because in the next layer we only need this layer's combination
for (Long key: keySet)

lookupTbl.remove(key);
}

return lookupTbl.get(finalKey).getPlan();
53

• Iterate all table planners to join with all existing 
(layer-1) combination to construct this layer



public class AccessPath {
private Plan p;
private AccessPathId apId;
private long cost = 0;
private ArrayList<Integer> tblUsed = new ArrayList<Integer>();

public class AccessPathId {
long id;

AccessPathId(TablePlanner tp) {
this.id = (long) Math.pow(2,tp.getId());

}

AccessPathId(AccessPath ap, TablePlanner tp) {
this.id = ap.getAPId()+(long) Math.pow(2,tp.getId());

}
public long getID() {

return id;
}

}

public AccessPath (TablePlanner newTp, Plan p) {
this.p = p;
this.tblUsed.add(newTp.getId());
this.apId = new AccessPathId(newTp);
this.cost = p.recordsOutput();

}
public AccessPath (AccessPath preAp, TablePlanner newTp, Plan p) {

this.p = p;
this.tblUsed.addAll(preAp.getTblUsed());
this.tblUsed.add(newTp.getId());
this.apId = new AccessPathId(preAp, newTp);

// approximate cost = previous cost + new cost
this.cost = preAp.getCost() + p.recordsOutput();

}
}
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• apID is the key of the lookup 
table

• Use sum of pow(2, tp.id) to 
represent the k-set in an 
access path

• Approximate B(root) using
R(p1) + R(c1)…
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