
Indexing

Shan-Hung Wu

CS, NTHU

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

2

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

3

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Where are we?

4

Why Index?

• Query:
– SELECT * FROM students WHERE dept = 10

• Record file for students:

• Selectivity is usually low

• Full table scan results in poor performance

5

1 joe 10 2015 4 rob 20 20112 kay 20 2013 5 tom 10 2013 9 jim 20 20116 bob 20 2016

r1 r2 r3 r4 r5 r6

10 r1 20 r310 r4 20 r2 20 r5 20 r6

What is an Index?

• Query:
– SELECT * FROM students WHERE dept = 10

• Index: a data structure (file) defined on fields
that speeds up data accessing

– Input: field values or ranges

– Output: rids

1 joe 10 2015 4 rob 20 20112 kay 20 2013 5 tom 10 2013 9 jim 20 20116 bob 20 2016

r1 r2 r3 r4 r5 r6

Index is another file

6

Terminology (1/2)

• Every index has an associated search key

– I.e., one or more fields

• Primary index vs. secondary index

– If search key contains primary key or not

• Index entry/record:

– <data value, data rid>

10 r1 20 r310 r4 20 r2 20 r5 20 r6Search key: dept

10 r1

dataVal

dataRid

7

Terminology (2/2)

• An index is designed to speed up equality or
range selections on the search key
– ... WHERE dept = 10

– ... WHERE dept > 30 AND dept < 100

8

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

9

SQL Statements for Index Creation

• The SQL:1999 standard does not include any
statement for creating or dropping indeice

• Creating index:
– CREATE INDEX <name> ON
<table>(<fields>) USING <method>

– E.g., CREATE INDEX idxdept ON

students(dept) USING btree

• In VanillaCore, an index only supports one
indexed field

10

The Index Class in VanillaCore

• An abstract class in storage.index
– beforeFirst() resets iterator and search value
– next() moves to the next rid matching search value

11

<<abstract>>

Index

<<final>> + IDX_HASH : int

<<final>> + IDX_BTREE : int

+ searchCost(idxType : int, fldType : Type, totRecs : long,

matchRecs : long) : long

+ newIntance(ii : IndexInfo, fldType : Type, tx : Transaction) : Index

<<abstract>> + beforeFirst(searchkey : ConstantRange)

<<abstract>> + next() : boolean

<<abstract>> + getDataRecordId() : RecordId

<<abstract>> + insert(key : Constant, dataRecordId : RecordId)

<<abstract>> + delete(key : Constant, dataRecordId : RecordId)

<<abstract>> + close()

<<abstract>> + preLoadToMemory()

IndexInfo

• Factory class for Index via open()
• Stores information about an index
• Similar to TableInfo

12

IndexInfo

+ IndexInfo(idxName : String, tblName :

String, fldName : String, idxType : int)

+ open(tx : Transaction) : Index

+ fieldName() : String

+ tableName() : String

+ indexType() : int

+ indexName() : String

Using an Index
• SELECT sname FROM students WHERE dept=10

13

Transaction tx = VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION_SERIALIZABLE, false);

// Open a scan on the data table
Plan studentPlan = new TablePlan("students", tx);
TableScan studentScan = (TableScan) studentPlan.open();

// Open index on the field dept of students table
Map<String, IndexInfo> idxmap =

VanillaDb.catalogMgr().getIndexInfo("students", tx);
Index deptIndex = idxmap.get("dept").open(tx);

// Retrieve all index records having dataval of 10
deptIndex.beforeFirst(ConstantRange

.newInstance(new IntegerConstant(10)));
while (deptIndex.next()) {

// Use the rid to move to a student record
RecordId rid = deptIndex.getDataRecordId();
studentScan.moveToRecordId(rid);
System.out.println(studentScan.getVal("sname"));

}

deptIndex.close();
studentScan.close();
tx.commit();

Updating Indexes
• INSERT INTO students (sid,sname,dept,gradyear)

VALUES (7,’sam’,10,2014)

14

Transaction tx = VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableScan studentScan = (TableScan) new TablePlan("students", tx).open();

// Create a map containing all indexes of students table
Map<String, IndexInfo> idxMap = VanillaDb.catalogMgr().getIndexInfo(

"students", tx);
Map<String, Index> indexes = new HashMap<String, Index>();
for (String fld : idxmap.keySet())

indexes.put(fld, idxMap.get(fld).open(tx));

// Insert a new record into students table
studentScan.insert();
studentScan.setVal("sid", new IntegerConstant(7));
studentScan.setVal("sname", new VarcharConstant("sam"));
studentScan.setVal("dept", new IntegerConstant(10));
studentScan.setVal("grad", new IntegerConstant(2014));

// Insert a record into each of the indexes
RecordId rid = studentScan.getRecordId();
for (String fld : indexes.keySet()) {

Constant val = studentScan.getVal(fld);
Index idx = indexes.get(fld);
idx.insert(val, rid);

}

for (Index idx : indexes.values())
idx.close();

studentScan.close();
tx.commit();

• Faster reads at the
cost of slower writes

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

15

h

45 r1
h(key) mod 3

42 r3

25 r7 34 r2

48 r9

28 r12

50 r8 23 r6

25 r17
key

Primary bucket pages Overflow pages

Hash-Based Indexes
• Designed for equality selections
• Uses a hashing function

– Search values  bucket numbers

• Bucket
– Primary page plus zero or more overflow pages

• Based on static or dynamic hashing techniques

bucket 1

bucket 0

bucket 2

16

Static Hashing

• The number of bucket N is fixed
• Overflow pages if needed
• h(k) mod N = bucket to which data entry with key k

belongs
• Records having the same hash value are stored in the

same bucket

h

45 r1
h(key) mod 3

42 r3

25 r7 34 r2

48 r9

28 r12

50 r8 23 r6

25 r17
key

Primary bucket pages Overflow pages

N=3

17

Search Cost of Static Hashing

• How to compute the #block-access?

• Assume index has B blocks and has N buckets

• Then each bucket is about B/N blocks long

Bucket 0 45 r1 42 r3

25 r7 34 r2

48 r9

28 r12

50 r8 23 r6

25 r17

23 r4 5 r18 11 r55 23 r34

Bucket 1

Bucket 2

#rec = 13
rpb = 3
B = 13/3 =5
N = 3
#blockAccess = 2

18

Hash Index in VanillaCore

• Related Package
– storage.index.hash.HashIndex

19

HashIndex

<<final>> + NUM_BUCKETS : int

+ searchCost(ifldType : Type, totRecs : long, matchRecs : long) : long

+ HashIndex(ii : IndexInfo, fldtype : Type, tx : Transaction)

+ beforeFirst(searchRange : ConstantRange)

+ next() : boolean

+ getDataRecordId() : RecordId

+ insert(key : Constant, dataRecorId : RecordId)

+ delete(key : Constant, dataRecorId : RecordId)

+ close()

+ preLoadToMemory()

HashIndex

20

• Stores each bucket in a record file

– Name: {index-name}{bucket-num}

• beforeFirst()

1. Hashes the search value, and

2. Opens the corresponding record file

• The index record [key, blknum, id]

45 235 20

key block id

RecordId

Limitations of Static Hashing (1/2)

• Search cost: B/N

• Increase efficiency  increase N (#buckets)

– Best when 1 block per bucket

• However, a large #buckets leads to wasted
space

– Empty pages waiting the index to grow into it

21

Limitations of Static Hashing (2/2)

• Hard to decide N

• Why not double #buckets when a bucket is full?

– Redistributing records is costly

Bucket 0 45 r1 42 r3

25 r7 34 r2

48 r9

28 r12

50 r8 23 r6 23 r4

Bucket 1

Bucket 2

42 r3

25 r7

48 r9

50 r8

45 r1

34 r2 28 r12

23 r6 23 r4

Bucket 0

Bucket 1

Bucket 2

Bucket 3

Bucket 4

Bucket 5

25 r17

25 r17

Can we do better?
22

Extendable Hash Indexes

• Use directory: pointers to buckets

• Double #buckets by doubling the directory

• Splitting just the bucket that overflowed

23

Extendable Hash Indexes

• Directory is array of size 4

• To find bucket for r, take last ‘global depth’
#bits of h(r)

Global depth of directory:
Max #bits needed to tell
which bucket an entry belongs to

Local depth of a bucket:
#bits used to determine if an
entry belongs to this bucket

24

Example (1/4)

• After inserting entry r with h(r)=13
– Binary number: 1101

25

Example (2/4)

• While inserting entry r with h(r)=20

– Binary number: 10100

split bucket A

000

100
26

Example (3/4)

• After inserting entry r with h(r)=20

• Update the global depth
– Some buckets will have local depth less than global depth

27

Example (4/4)

• After inserting entry r with h(r)=9

28

Remarks

• At most 1 page split for each insert

• Cheap doubling

– When local depth of bucket = global depth

– Only 3 page access (1 directory page, 2 data pages)

• No overflow page?

– Still has, but only when there are a lot of records
with same key value

29

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

30

Is Hash-Based Index Good Enough?

• Hash-based indexes are good for equality
selections

• However, cannot support range searches

– E.g., ... WHERE dept>100

• We now consider an index structured as a
search tree

– Speeds up search by sorting values

– Supports both range and equality searches

31

Power of Sorting

• Create an “index” file
– where dataVal’s are sorted

• Query: “Find all students with dept > 100”
– Do binary search to find first such student, then scan the

index till end to find others

• However, slow update: O(#data-records)

32

Index with sorted dataVal’s

B-Tree Index

• The most widely used index

• Index records are sorted on dataVal in each page

• M-way balanced search tree:

– O(logM(#data-records)) for equality search & update

– O(#data-records) for range search

Directory record:[val, blkNum]

Index record:[val, rid]

33

Leaf pages

Directory pages

Searching

• “Finding all index records having a specified
dataVal v”

1. Search begins at root
2. Fetches child block pointed by parent until leaf
• Search cost: O(tree height), usually < 5

Leaf pages

Directory pages

Search v=ben

34

Range Searching

• > v: traverse leaf nodes from v to end

• < v: traverse leaf nodes from start to v

35

Leaf pages

Directory pages

Search v=ben

Insertion

1. Search the index with the inserted dataVal

2. Insert the new index record into the target leaf
block

• What if the block has no more room?
– Remember extendable hashing? Spilt it!

Insert [kay, r48]

36

Splitting

1. Leaf node: Redistribute entries evenly; copy up
middle dataVal

2. Directory node (recursive): Redistribute entries
evenly; push up middle dataVal

• Update cost: O(tree height)

37

Insert [kay, r48]

[kay,r48]...

kay

New directory record has dataVal = fist value in the new block

Duplicate DataVals (1/2)

• When splitting a leaf block, we must place all
records with same dataVal in same block

38

Cannot be found

Duplicate DataVals (2/2)

• E.g., insert [ron, r27]

• What if there are too many records with same
dataVal?

39

Overflow Blocks (1/2)

• Keep records of the same dataVal

• Chained by primary blocks

40

Overflow Blocks (2/2)

• First dataVal in primary leaf block = dataVal in
overflow block

• After deleting [peg, r59], should the two leaf
nodes merge?

– No

41

Deletion

1. Search the index with the target dataVal
2. Delete the index record in a leaf block
3. Move the next records one-slot ahead
4. Merge blocks if #records is less than a threshold
5. Recursive delete on parents

10 r1 20 r310 r4 20 r2 20 r5 20 r6

10 r1 20 r310 r4 20 r5 20 r6

10 r1 20 r310 r4 20 r5 20 r6

42

B-tree Index in VanillaCore

• Related package
– storage.index.btree

• B-tree page
– Directory pages

– Leaf pages

• Supports node-splitting for insert ops
• But not merging for delete ops

– Only records in leaf nodes are deleted, leaving directory unchanged

43

[10 child1] [20 child]level#rec

[10 r1] [11 r3]overflow#rec next

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

44

Related Relational Algebra

• Related package: query.algebra.index

• IndexSelectPlan

• IndexJoinPlan

45

Update Planner

• Related package: query.planner.index

• IndexUpdatePlanner

46

Outline

• Overview

– API in VanillaCore

• Hash-Based Indexes

• B-Tree Indexes

• Query Processing

• Transaction Management

47

Index Locking

• Why?

– To ensure I

– Avoid phantom problems

• S2PL?

– Index/block/record level

• Poor performance!

48

Block-Level S2PL

• Tx A: search A
• Tx B: insert B

• Root node becomes the bottleneck
• Better locking protocol?

49

S

S

S

X

X

X

Observations

• Every tx traverse the tree from root to leaf
– A tx can release “ancestor” locks early while still

being able to prevent conflicting access

• For inserts, a split can only propagate up along
“full” nodes

50

XS

Lock Crabbing Protocol (1/2)

• Search:

– Start at root and go down

– S-lock child then unlock parent

• Insert/delete:

– Start at root and go down

– X-lock child

– Unlock all ancestors if child is safe

• Safe: “not full” / “not half empty”

51

S

S

S

Lock Crabbing Protocol (2/2)

• Range searches:
> A: expanding locks from A to end

< A: expanding locks from start to A

• Locks not released early are held until tx ends

52

S
A

S

Phantoms

– 𝑇1: SELECT * FROM users WHERE age=10;

– 𝑇2: INSERT INTO users
VALUES (3, 'Bob', 10); COMMIT;

– 𝑇3: UPDATE users SET age=10 WHERE id=7;
COMMIT;

– 𝑇1: SELECT * FROM users WHERE age=10;

• If index on age is available, T2 and T3 will be blocked

• Index locking prevents phantoms due to both inserts &
updates
– A special case of predicate locking

53

Phantom due to
insert

Phantom due to update

Isolation Levels (1/2)

Read rec Modify/delete rec Insert rec

SERIALIZABLE S lock on index

IS lock on file
IS lock on block

S lock on record

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock on index

REPEATABLE

READ

S lock on index;
release upon end
statement

IS lock on file and
block; release
immediately

S lock on record

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock in index

54

Read committed
and avoid

cascading abort

Prevent phantoms due to inserts & updates

IX

Isolation Levels (2/2)

55

Read rec Modify/delete rec Insert rec

READ

COMMITTED

S lock on index;
release upon end
statement

IS lock on file and
block; release
immediately

S lock on record;
release upon end
statement

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock on index

Allow non-repeatable reads

IX

• Naïve: value-level, physical logging

• Causes huge overhead!

• Block-level, physiological logging
– E.g., to log “insert at slot X”

Recovery

56

Insert A

Index Locking/Logging in VanillaDB

• Hash index: no special design
– Rely on locking/logging mechanism implemented

in RecordFile for each bucket

– Locks on FileHeaderPage are released early;
parallel inserts/deletes

• B-tree index:
– Lock crabbing

– Phantom prevention if index available

– Physiological logs for block ops

57

