
Buffer & File Optimization

Introduction to Databases

DataLab

CS, NTHU

1



Outline

• Useful Java Classes for Concurrency

• Lock Striping

• Summary of File & Buffer Optimization

2



Outline

• Useful Java Classes for Concurrency

• Lock Striping

• Summary of File & Buffer Optimization

3



ReentrantLock

• An implementation of Lock

– Provided in java.util.concurrent.locks

• A ReentrantLock has better performance than a 
synchronized block in multi-threading scenario

• See more here
4

class X {
private final ReentrantLock lock = new ReentrantLock();

public void m() {
lock.lock(); // block until condition holds
try {

// do something
} finally {

lock.unlock();
}

}
}

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.html


ReentrantReadWriteLock

• An implementation of ReadWriteLock

– Provided in java.util.concurrent.locks

• In addition to all functions ReentrantLock
provide, ReentrantReadWriteLock also have 
ReadLock and WriteLock

– A thread will be blocked during acquiring a ReadLock
only if there is another thread holds a WriteLock

• See more here

5

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html


ReentrantReadWriteLock

6

class Counter {
// Locks
private final ReentrantReadWriteLock rwLock = new ReentrantReadWriteLock();
private final Lock rLock = rwLock.readLock();
private final Lock wLock = rwLock.writeLock();

// Value
private int value = 0;

public int get() {
rLock.lock();
try {

return value;
} finally {

rLock.unlock();
}

}

public void increment() {
wLock.lock();
try {

value += 1;
} finally {

wLock.unlock();
}

}
}



ConcurrentHashMap

• A thread-safe HashMap

– Provided in java.util.concurrent

• A ConcurrentHashMap works better than a 
synchronized HashMap which is just simply 
protected by synchronized blocks

• See more here

7

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html


Outline

• Useful Java Classes for Concurrency

• Lock Striping

• Summary of File & Buffer Optimization

8



9

File “Cats” File “Dogs” File “Birds”

Thread 1 Thread 2

FileMgr



10

File “Cats” File “Dogs” File “Birds”

Thread 1 Thread 2

FileMgr

Synchronized on this

Waiting…



11

File “Cats” File “Dogs” File “Birds”

Thread 1 Thread 2

FileMgr

Synchronized on this

Waiting…



12

File “Cats” File “Dogs” File “Birds”

Thread 1 Thread 2

FileMgr

Sync. on “Cats” Sync. on “Dogs” Sync. on “Birds”



Global Synchronization

13

class ResourceMgr {

private Map<String, Resource> resourcePool =
new HashMap<String, Resource>();

public synchronized void doSomething(String key) {
Resource res = getResource(key);
res.doAThing();

}

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

}



Synchronization on Each Resource Object

14

class ResourceMgr {

private Map<String, Resource> resourcePool =
new HashMap<String, Resource>();

public void doSomething(String key) {
Resource res = getResource(key);

synchronized (res) {
res.doAThing();

}
}

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

}

Lock on the required object

There is a problem here



Race Condition

15

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res = NULL

res

Pool

= NULL



Race Condition

16

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res

res

Pool

Resource 1

= NULL

= NULL



Race Condition

17

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res

res

meow

Pool

Resource 1

= NULL



Race Condition

18

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res

res

meow

Pool

Resource 1

Resource 2

= NULL



Race Condition

19

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res

res

meow

Pool

Resource 1

Resource 2



Race Condition

20

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

Thread 1

Thread 2

key=“meow”

key=“meow”

res

res

meow

Pool

Resource 1

Resource 2

There are two resource
with the same key !!
And only 1 can be found



Solution

21

private synchronized Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

The problem solved, but not good enough



Lock Striping

22

• Lock striping basically uses a fixed-size, shared 
collection of locks to reduce the contention on 
the same object



23

Thread 2

Object1

Object2

Object3

Object4

Object5

Object6

Object7

Object8

Thread 1

key=“meow”
(142890132)

key=“meow”
(142890132)

142890132 % 8 = 4

142890132 % 8 = 4

Lock Striping

Anchors

Synchronized on object(4)

Synchronized on object(4)
Blocked



24

Thread 2

Object1

Object2

Object3

Object4

Object5

Object6

Object7

Object8

Thread 1

key=“meow”
(142890132)

key=“kerker”
(453621342)

142890132 % 8 = 4

453621342 % 8 = 6

Lock Striping

Anchors

Synchronized on object(4)

Synchronized on object(6)

Pass



Final Solution

25

private Object[] anchors = new Object[100];

private Object getAnchor(String key) {
return anchors[key.hashCode() % anchors.length];

}

private Resource getResource(String key) {
synchronized (getAnchor(key)) {

Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;
}

}

Don’t forget to use ConcurrentHashMap for resource pool



Outline

• Useful Java Classes for Concurrency

• Lock Striping

• Summary of File & Buffer Optimization

26



File Optimization

• Read Write Lock

– We use RentreenReadWriteLock in each 
IoChannel, use ReadLock for reading and 
WriteLock for modifications

• Lock Striping

– Use lock-striping in getFileChannel()

• Caching

– Cache the hashcode of BlockId

27



Buffer Optimization

• Reduce the size of critical section as small as 
possible

– e.g. BufferMgr.pin() and pinNew()

• Read Write Lock

– For each Buffer

• Lock Striping

– In BufferPoolMgr.pin() and pinNew()

28



Some Research on pin()

• According to a research [1], txs
usually take more time in buffer 
manager than in other modules

• Some researchers of HP lab found 
pin()is a big bottleneck when 
traversing B-tree indexes [2]

• They purposed a new way to 
optimize buffer manager for B-tree 
indexes

29

[1] “OLTP Through the Looking Glass, and What We Found There.” in SIGMOD’08
[2] “In-Memory Performance for Big Data” in VLDB’14


