Buffer & File Optimization

Introduction to Databases
Datalab
CS, NTHU




Outline

e Useful Java Classes for Concurrency
* Lock Striping
e Summary of File & Buffer Optimization



Outline

e Useful Java Classes for Concurrency



ReentrantlLock

 An implementation of Lock

— Provided in java.util.concurrent.locks

* AReentrantLock has better performance than a
synchronized block in multi-threading scenario

class X {
private final ReentrantLock lock = new ReentrantLock();

public void m() {
lock.lock(); // block until condition holds
try {
// do something
} finally {
lock.unlock();
}

}
}

e See more here


http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantLock.html

ReentrantReadWritelock

* An implementation of ReadWriteLock

— Provided in java.util.concurrent.locks

 |n addition to all functions ReentrantLock
provide, ReentrantReadWriteLock also have
ReadLock and WriteLock

— A thread will be blocked during acquiring a ReadLock
only if there is another thread holds aWritelLock

e See more here


https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

ReentrantReadWritelock

class Counter {
// Locks
private final ReentrantReadWritelLock rwLock = new ReentrantReadWritelLock();
private final Lock rLock = rwLock.readLock();
private final Lock wLock = rwLock.writelLock();

// Value
private int value = ©;

public int get() {
rLock.lock();
try {
return value;
} finally {
rLock.unlock();

}
}

public void increment() {
wLock.lock();
try {
value += 1;
} finally {
wLock.unlock();

}



ConcurrentHashMap

* Athread-safe HashMap
— Provided in java.util.concurrent

* AConcurrentHashMap works better than a
synchronized HashMap which is just simply
protected by synchronized blocks

e See more here


https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html

Outline

e Useful Java Classes for Concurrency
* Lock Striping
e Summary of File & Buffer Optimization



Thread 1 Thread 2

FileMgr

File “Dogs” File “Birds”




Thread 1 Thread 2

Waiting...

Synchronized on this

File “Dogs” File “Birds”




Thread 1 Thread 2

Waiting...

Synchronized on this

File “Dogs”

File “Birds”




Thread 2

Thread 1

R?,
O
=
B
Q
L




Global Synchronization

class ResourceMgr {

private Map<String, Resource> resourcePool =
new HashMap<String, Resource>();

public |synchronized void doSomething(String key) {

Resource res = getResource(key);
res.doAThing();

}

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;



Synchronization on Each Resource Object

class ResourceMgr {

private Map<String, Resource> resourcePool =
new HashMap<String, Resource>();

public void doSomething(String key) {
Resource res = getResource(key);

synchronized (res) {
res.doAThing();

}
}

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;



Race Condition

‘ private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

¥

return res;

Pool

Thread 1l key=“meow” res = NULL

= NULL



Race Condition

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

‘ if (res == null) {

res = new Resource();
resourcePool.put(key, res);

Resource 1

¥

return res;

Pool

Thread 1l key=“meow” res = NULL

= NULL

16



Race Condition

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {

res = new Resource();
)

resourcePool.put(key, res);
return res;

Resource 1

Pool

Thread1l key=“meow” res

= NULL

17



Race Condition

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {

res = new Resource();
)

resourcePool.put(key, res);
return res;

Resource 1

Resource 2

Pool

Thread1l key=“meow” res

Thread 2 key="meow” res = NULL

-

18



Race Condition

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {

res = new Resource();
)

resourcePool.put(key, res);
return res;

Resource 1

Resource 2
Pool

Thread1l key=“meow” res

Thread 2 key="meow” res

19



Race Condition

private Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {

res = new Resource();
)

resourcePool.put(key, res);
return res;

Resource 1

! Resource 2
Pool
There are two resource
Thread1 key=“meow” res with the same key !!

And only 1 can be found
Thread 2 key="“meow” res

20



Solution

private| synchronized Resource getResource(String key) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;

21



Lock Striping

* Lock striping basically uses a fixed-size, shared
collection of locks to reduce the contention on
the same object

22



Lock Striping

Anchors

142890132 % 8=4

Synchronized on object(4)

Thread 1

key="meow”
(142890132)

Thread 2 x

0, _

(142890132) Synchronized on object(4)




Thread 1

key=“meow”
(142890132)

Thread 2

key=“kerker”
(453621342)

Lock Striping

142890132 % 8=4

Synchronized on object(4)

Synchronized on object(6)

453621342 % 8 =6 o

Pass

Anchors

24



Final Solution

private Object[] anchors = new Object[100];

private Object getAnchor(String key) {
return anchors[key.hashCode() % anchors.length];

}

private Resource getResource(String key) {
synchronized (getAnchor(key)) {
Resource res = resourcePool.get(key);

if (res == null) {
res = new Resource();
resourcePool.put(key, res);

}

return res;

}

Don’t forget to use ConcurrentHashMap for resource pool



Outline

e Summary of File & Buffer Optimization



File Optimization

e Read Write Lock

— We use RentreenReadWritelLock in each
ToChannel, use ReadLock for reading and
WriteLock for modifications

* Lock Striping

— Use lock-striping in getFileChannel ()
e Caching

— Cache the hashcode of BlockId



Buffer Optimization

e Reduce the size of critical section as small as
possible

—e.g. BufferMgr.pin () and pinNew ()

e Read Write Lock
— Foreach Buffer

* Lock Striping
—InBufferPoolMgr.pin () and pinNew ()



* According to a research [1], txs
usually take more time in buffer
manager than in other modules

Some Researchon pin ()

Some researchers of HP lab found
pin () is a big bottleneck when

traversing B-tree indexes [2]

* They purposed a new way to
optimize buffer manager for B-tree

indexes

8. 1%bBtree
eys

21%

logging

18.7%

locking

10.2%

latching

29.6%

manager

buffer

12.3%

[1] “OLTP Through the Looking Glass, and What We Found There.” in SIGMOD’08
[2] “In-Memory Performance for Big Data” in VLDB’14

29



