
Transaction Management Part I:
Concurrency Control

Shan-Hung Wu & DataLab

CS, NTHU

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Tx Management

2

Native API Revisited

• A tx is created upon accepting
an JDBC connection
– by
VanillaDb.txMgr().newT

ransaction()

• Passed as a parameter to
Planners/Scanners/RecordFiles

3

VanillaDb.init("studentdb");

// Step 1
Transaction tx =
VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION_SERIALIZABLE, true);

// Step 2
Planner planner = VanillaDb.newPlanner();
String query = "SELECT s-name, d-name FROM
departments, "
+ "students WHERE major-id = d-id";
Plan plan = planner.createQueryPlan(query,
tx);
Scan scan = plan.open();

// Step 3
System.out.println("name\tmajor");
System.out.println("-------\t-------");
while (scan.next()) {
String sName = (String) scan.getVal("s-
name").asJavaVal();
String dName = (String) scan.getVal("d-
name").asJavaVal();
System.out.println(sName + "\t" + dName);
}
scan.close();

// Step 4
tx.commit();

Transaction Manager in VanillaDB

• VanillaDb.txMgr()is responsible for
creating new transaction and maintaining the
active transaction list

4

TransactionMgr

+ serialConcurMgrCls : Class<?>

+ rrConcurMgrCls : Class<?>

+ rcConcurMgrCls : Class<?>

+ recoveryMgrCls : Class<?>

+ TransactionMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

+ createCheckpoint(tx : Transaction)

+ newTransaction(isolationLevel : int, readOnly : boolean) : Tranasction

+ newTransaction(isolationLevel : int, readOnly : boolean, txNum : long) :

Transaction

+ getNextTxNum() : long

Transactions

• Ensures ACID

• Concurrency
manager for C
and I

• Recovery
manager for A
and D

5

Transaction

+ Transaction(concurMgr : ConcurrencyMgr,

recoveryMgr : RecoveryMgr,

bufferMgr : BufferMgr

readOnly : boolean, txNum : long)

+ addLifeCycleListener(l : TransactionLifeCycleListener)

+ commit()

+ rollback()

+ endStatement()

+ getTransactionNumber() : long

+ isReadOnly() : boolean

+ concurrencyMgr() : ConcurrencyMgr

+ recoveryMgr() : RecoveryMgr

+ bufferMgr() : BufferMgr

Transaction Lifecycle

1. Begin

2. End statement

– If spanning
across multiple
statements

3. Commit or
rollback

6

Transaction

+ Transaction(concurMgr : ConcurrencyMgr,

recoveryMgr : RecoveryMgr,

bufferMgr : BufferMgr

readOnly : boolean, txNum : long)

+ addLifeCycleListener(l : TransactionLifeCycleListener)

+ commit()

+ rollback()

+ endStatement()

+ getTransactionNumber() : long

+ isReadOnly() : boolean

+ concurrencyMgr() : ConcurrencyMgr

+ recoveryMgr() : RecoveryMgr

+ bufferMgr() : BufferMgr

Lifecycle Listeners
• Tx lifecycle listener

– Takes actions to tx life cycle events

7

BufferMgrRecoveryMgr<<abstract>>

ConcurrencyMgr

<<interface>>

TransactionLifecycleListener

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

Lifecycle Listener: Buffer Mgr
• Buffer manager

– On tx rollback/commit: unpins all pages pinned by the
current tx

– Registered itself as a life cycle listener on start of each
tx

8

@Override
public void onTxCommit(Transaction tx) {

unpinAll(tx);
}

@Override
public void onTxRollback(Transaction tx) {

unpinAll(tx);
}

@Override
public void onTxEndStatement(Transaction tx) {

// do nothing
}

Lifecycle Listener: Recovery Mgr
• (Naive) Recovery manager

– Commit: flushes dirty pages and then commit log

– Rollback: undo all modifications by reading log
records

9

@Override
public void onTxCommit(Transaction tx) {

VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CommitRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

@Override
public void onTxRollback(Transaction tx) {

doRollback(tx);
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

@Override
public void onTxEndStatement(Transaction tx) {

// do nothing
}

Lifecycle Listener: Concurrency Mgr

• (Naive) Concurrency manager

– On tx commit/rollback: releases all locks

10

@Override
public void onTxCommit(Transaction tx) {

lockTbl.releaseAll(txNum, false);
}

@Override
public void onTxRollback(Transaction tx) {

lockTbl.releaseAll(txNum, false);
}

@Override
public void onTxEndStatement(Transaction tx) {

// do nothing
}

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Today’s Focus: Concurrency Mgr

11

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

12

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

13

Concurrency Manager

• Ensures consistency and isolation

14

Consistency

• Consistency

– Txs will leave the database in a consistent state

– I.e., all integrity constraints (ICs) are meet

• Primary and foreign key constrains

• Non-null constrain

• (Field) type constrain

• …

– Users are responsible for issuing “valid” txs

15

Isolation

• Isolation

– Interleaved execution of txs should have the net
effect identical to executing tx in some serial order

– 𝑇1 and 𝑇2 are executed concurrently, isolation
gives that the net effect to be equivalent to either

• 𝑇1 followed by 𝑇2 or

• 𝑇2 followed by 𝑇1

– The DBMS does not guarantee to result in which
particular order

16

Why do we need to interleave txs?

17

Concurrent Txs

• The concurrent result should be the same as serial
execution in some order
– Better concurrency

18

• Since I/O is slow, it is better to execute Tx1 and Tx2
concurrently to reduce CPU idle time

Tx1 Tx2

R(A)

CPU

W(A)

R(A)

CPU

R(A)

CPU

W(B)

Tx1 Tx2

R(A)

CPU R(A)

W(A) CPU

R(A)

CPU

W(B)

Tx1 Tx2

R(A)

CPU R(A)

CPU

R(A)

W(A) CPU

W(B)

Tx1 Tx2

R(A)

CPU

R(A)

CPU

W(B)

R(A)

CPU

W(A)

=
idle

Concurrent Txs

• Pros:

– Increases throughput (via CPU and I/O pipelining)

– Shortens response time for short txs

• But operations must be interleaved correctly

19

Transactions and Schedules

• Before executing 𝑇1 and 𝑇2:
– A = 300, B = 400

• Two possible execution results
– 𝑇1 followed by 𝑇2

• A = 400, B = 300  A = 424, B = 318

– 𝑇2 followed by 𝑇1
• A = 318, B = 424  A = 418, B = 324

20

Transactions and Schedules

• A schedule is a list of actions/operations from
a set of transaction

• If the actions of different transactions are not
interleaved, we call this schedule a serial
schedule

21

Transactions and Schedules

• Equivalent schedules

– The effect of executing the first schedule is
identical to the effect of executing the second
schedule

• Serializable schedule

– A schedule that is equivalent to some serial
execution of the transactions

22

Transactions and Schedules

• A possible interleaving schedule

– Result: A = 424, B = 318

– A serializable schedule

• Equivalent to 𝑇1 followed by 𝑇2

23

Transactions and Schedules

• How about this schedule?

– Result: A = 424, B = 324

– A non-serializable schedule

– Violates the isolation requirement

24

Goal

• Interleave operations while making sure the
schedules are serializable

• How?

25

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

26

Simplified Notation

• Can be simplified to:

• Here, we care about operations, not values

27

Anomalies

• Weird situations that would happen when
interleaving operations

– But not in serial schedules

• Mainly due to the conflicting operations

28

Conflict Operations

• Two operations on the same object are
conflict if they are operated by different txs
and at least one of these operations is a write

29

Types

• Write-read conflict

• Read-write conflict

• Write-write conflict

• Read-read conflict?
– No anomaly

30

Anomalies due to Write-Read Conflict

• Reading uncommitted data

– Dirty reads

• A unrecoverable schedule

– T1 cannot abort!

– Cascading aborts if T2 completes after T1 aborts
31

Anomalies due to Read-Write Conflict

• Unrepeatable reads:

– 𝑇1: 𝑖𝑓 (𝐴 > 0) 𝐴 = 𝐴 − 1;

– 𝑇2: 𝑖𝑓 (𝐴 > 0) 𝐴 = 𝐴 − 1;

– IC on 𝐴: cannot be negative

T1

T2

A=1 A=0,

A=1, A=0, C

A=-1, C

32

Anomalies due to Write-Write Conflict

• Lost updates:

– 𝑇1: 𝐴 = 𝐴 + 1; 𝐵 = 𝐵 ∗ 10;

– 𝑇2: 𝐴 = 𝐴 + 2; 𝐵 = 𝐵 ∗ 5;

– Start with A=10, B=10

T1

T2

A=11

A=13, B=50, C

B=500, C

33

Avoiding Anomalies

• Idea:

• Perform all conflicting actions between T1 and
T2 in the same order (either T1’s before T2’s
or T2’s before T1’s)

• I.e., to ensure conflict serializability

34

Conflict Equivalent
• If two operations are not conflict, we can swap

them to generate an equivalent schedule
• Schedule 1 is conflict equivalent to schedule 2

and schedule 3

35

Schedule 1

Schedule 2

Schedule 3

Conflict Serializable

• By swapping non-conflict operations, we can
transfer the schedule 1 into a serial schedule 4

• We say that schedule 1 is conflict serializable

36

Schedule 3

Schedule 4

Ensuring Conflict Serializability is
Not Enough

• Conflict serializable, but not recoverable

37

Avoiding Anomalies

• We also need to ensure recoverable schedule

• Definition: A schedule is recoverable if each tx
T commits only after all txs whose changes T
reads, commit

• How?

– Avoid cascading aborts

– Disallow a tx from reading uncommitted changes
from other txs

38

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

39

Lock-Based Concurrency Control

• For isolation and consistency, a DBMS should
only allow serializable, recoverable schedules

– Uncommitted changes cannot be seen (no WR)

– Ensure repeatable read (no RW)

– Cannot overwrite uncommitted change (no WW)

• A lock for each data item seems to be a good
solution

40

Lock ≠ latch

• Lock: long-term, tx-level

• Latch: short-term, ds/alg-level

41

lock(A) unlock(A)

lock(A) unlock(A)

Questions

• What type of lock to get for each operation?

• When should a transaction acquire/release
lock?

• We need a locking protocol

– A set of rules followed by all transactions for
requesting and releasing locks

42

Two-Phase Locking Protocol (2PL)

• Defines two type of locks:
– Shared (S) lock

– Exclusive (X) lock

• Phase 1: Growing Phase
– Each tx must obtain an S (X) lock on an object before

reading (writing) it

• Phase 2: Shrinking Phase
– A transaction can not request additional locks once it

releases any locks

• Ensures conflict serializability

43

Compatible? S X

S True False

X False False

Example

• Ensures conflict serializability

X(A) unlock(A)

X(A) unlock(A,B)

X(B) unlock(B)

X(B)

44

Implementation

• Lock and unlock requests are handled by the
lock manager
– Shared between concurrency managers

• Lock table entry
– Number of transactions currently holding a lock

– Type of lock held

– Pointer to queue of lock requests

• Locking and unlocking have to be atomic
operations

45

Lock Table

• Implemented as an in-
memory hash table
indexed on the name of
the data item being
locked

• New lock request is
added to the end of the
queue of requests for the
data item

• Request is granted if it is
compatible with all
earlier requestsgranted

waiting

T8

I44

T1 T23

I4

T23

I7 I23

T23 T1 T8 T2

I912

From Database System Concepts 6/e, Silberschatz, Korth. Sudarshan. 46

Problems of 2PL

• Starvation is also possible if concurrency
control manager is badly implemented

X(A) unlock(A)

X(A) unlock(A,B)

X(B) unlock(B)

X(B)

X(A)

S(B) S(A)

X(B)

ABORT

47

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

48

How to improve 2PL to avoid
cascading rollback?

Strict Two-Phase Locking

• S2PL

1. Each tx obtains locks as in the growing phase in
2PL

2. But the tx holds all locks until it completes

• Allows only serializable and stric schedules

50

Strict Two-Phase Locking

• Definition: A schedule is strict iff for any two
txs T1 and T2, if a write operation of T1
precedes a conflicting operation of T2 (either
read or write), then T1 commits before that
conflicting operation of T2
– Strictiness no cascading abort (converse not

true)

• Avoids cascading rollback, but still has
deadlock

51

Serializability and Recoverability

52

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

53

Coping with Deadlocks

• Cycle of transactions waiting for locks to be
released by each other

• Detection: Waits-for graph
– For detecting cycles

• Checked when
acquiring locks (or buffers)

T1 T2

54

X(A)

S(B) S(A)

X(B)

Other Techniques (1)

• Timeout & rollack (deadlock detection)
– Assume 𝑇𝑖 wants a lock that 𝑇𝑗 holds

1. 𝑇𝑖 waits for the lock

2. If 𝑇𝑖 stays on the wait list too long then: 𝑇𝑖 is rolled
back

• Wait-die (deadlock prevention)
– Assume each 𝑇𝑖 has a timestamp (e.g., tx number)

– If 𝑇𝑖 wants a lock that 𝑇𝑗 holds

1. If 𝑇𝑖 is older than 𝑇𝑖, it waits for 𝑇𝑗;

2. Otherwise 𝑇𝑖 aborts

55

Other Techniques (2)

• Conservative locking (deadlock prevention)

– Every 𝑇𝑖 locks all objects at once (atomically) in the
beginning

– No interleaving for conflicting txs---performs well only
if there is no/very few long txs (e.g., in-memory DBMS)

– How to know which objects to lock before tx
execution?

– Requires the coder of a stored procedure to specify its
read- and write-sets explicitly

– Does not support ad-hoc queries

56

You Have Assignment!

57

Assignment: Conservative Locking

• Implement a ConcurrencyMgr running the
conservative locking protocol

– Modify the stored procedure API to accommodate
read-/write-sets

Assignment: Conservative Locking

• Report

– How you implement the new ConcurrencyMgr

• API changes and/or new classes

– Compare the throughputs before and after your
modification using the given benchmark & loader

– Observe and discuss the impact of buffer pool size
to your new system

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

60

Granularity of Locks

• What “objects” to lock?

– Records vs. blocks vs. tables/files

• Granularity of locking objects

– Fine granularity: high concurrency, high locking
overhead

– Coarse granularity: low locking overhead, low
concurrency

61

Reducing Locking Overhead

• Data “containers” are nested

• When scanning, can we lock a file instead of
all contained blocks/records to reduce the
locking overhead?

62

Multiple-Granularity Locks

• Multiple-granularity locking (MGL) allows
users to set locks on objects that contain other
objects

– Locking a file implies locking all contained
blocks/records

• How does a lock manager know if a file is
lockable?

– Some other tx may hold a conflicting lock on a
block in that file

63

Checking If An Object Is Locked

• To lock a file, check whether all
blocks/records in that file are locked
• Good strategy?

• Does not save the locking overhead

64

X lock?

Multiple-Granularity Locks

• Allow transactions to lock at each level, but with a
special protocol using new “intention” locks:

• Intention-shared (IS)
– Indicates explicit locking at a lower level of the tree but

only with shared locks

• Intention-exclusive (IX)
– Indicates explicit locking at a lower level with exclusive or

shared locks

• Shared and intention-exclusive (SIX)
– The subtree rooted by that node is locked explicitly in

shared mode and explicit locking is being done at a lower
level with exclusive-mode locks

65

Multiple-Granularity Locks

• The compatibility matrix for all lock modes is:

IS IX S S IX X

IS

IX

S

S IX

X











  







   

 

 







66

Multiple Granularity Locking Scheme
• Transaction Ti can lock a node Q, using the following

rules:
1. The lock compatibility matrix must be observed
2. The root of the tree must be locked first, and may be

locked in any mode
3. A node Q can be locked by Ti in S or IS mode only if the

parent of Q is currently locked by Ti in either IX or IS
mode

4. A node Q can be locked by Ti in X, SIX, or IX mode only if
the parent of Q is currently locked by Ti in either IX or SIX
mode

5. Ti can lock a node only if it has not previously unlocked
any node (that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q
are currently locked by Ti

67

Acquiring Locks in MGL: An Example

68

IS

IS

IS

S

• Locks are acquired in root-to-leaf order
• Tx1 wants to share-lock a record
• Tx2 wants to exclusive-lock a file

X?

Releasing Locks in MGL

69

• Locks need to be released in leaf-to-root
order

• Why?
IS

IS

IS

S

X?

Usage Examples of MGL

• 𝑇1 scans R, and updates a few tuples:

– 𝑇1 gets an SIX lock on R, and occasionally get X
lock on the tuples under modification

• 𝑇2 uses an index to read only part of R:

– 𝑇2 gets an IS lock on R, and repeatedly gets an S
lock on a tuple of R

• 𝑇3 reads the size of R:

– 𝑇3 gets an S lock on R

70

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

71

Dynamic Databases

• So far, we have treated a database as a fixed
collection of independent data objects

– Only reads and writes

• However, the database can grow and shrink
through the insertions and deletions

• Any trouble?

• Phantoms

72

Phantoms Caused by Insertion

– 𝑇1: SELECT * FROM users WHERE age=10;

– 𝑇2: INSERT INTO users
VALUES (3, 'Bob', 10); COMMIT;

– 𝑇1: SELECT * FROM users WHERE age=10;

• A transaction that reads the entire contents of
a table multiple times will see different data

– E.g., in a join query

73

Phantoms Caused by Update

– 𝑇1: SELECT * FROM users WHERE age=10;

– 𝑇2: UPDATE users SET age=10 WHERE id=7;
COMMIT;

– 𝑇1: SELECT * FROM users WHERE age=10;

• 𝑇1 only share locks the records with the age
equals to 10

• The record with id=7 is not in the locking item
set of 𝑇1, so 𝑇2 can update this record

74

How to Prevent Phantoms?

• EOF locks or multi-granularity locks
– X-lock the containing file when inserting/updating

records in a block

– Hurt performance (no concurrent inserts/updates)

– Usually used to prevent phantoms by insert

– But not phantoms by update

• Index (or predicate) locking
– Prevent phantoms caused by both insert and update

– Works only if indices for the inserting/updating fields
are created

75

Phantom and Conservative Locking

• Phantom problem remains

• Assignment bonus: implement MGL to
prevent phantom due to inserts

76

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

77

Transaction Characteristics

• SQL allows users to specify the followings:

• Access model
– READ ONLY or READ WRITE

– By Connection.setReadOnly() in JDBC

• Isolation level
– Trade anomalies for better tx concurrency

– By
Connection.setTransactionIsolation

()

78

Isolation Levels

Isolation level Dirty reads Unrepeatable reads Phantoms

Read Uncommitted Maybe Maybe Maybe

Read Committed No Maybe Maybe

Repeatable Read No No Maybe

Serializable No No No

• Defined by the ANSI/ISO SQL standard

• How to implement these using a locking protocol?

79

Isolation Levels

Isolation level Dirty reads Unrepeatable reads Phantoms

Read Uncommitted Maybe Maybe Maybe

Read Committed No Maybe Maybe

Repeatable Read No No Maybe

Serializable No No No

Isolation level Shared Lock Predicate Lock

Read Uncommitted No No

Read Committed Released early No

Repeatable Read Held to completion No

Serializable Held to completion Held to completion

• Defined by the ANSI/ISO SQL standard

80

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

81

Meta-Structures

• DBMS maintains some meta-structures in
addition to data perceived by users

– E.g., FileHeaderPage in RecordFile

82

Record File

Free space
pointer

header block block 2

r4 r5r1 r3

block 1

Concurrency Control of Access to
Meta-Structures

• Access to FileHeaderPage?

– Whenever insertions/deletions of records happen

• How to lock FileHeaderPage?

– S2PL?

• S2PL will serialize all insertions and deletions

– Hurts performance if we have many
inserts/deletes

83

Early Lock Release

• Actually, lock of FileHeaderPage can be released
early
– No “data” revealed; no hurt to I

• Locking steps for a (logical) insertion/deletion:
– Acquire locks of FileHeaderPage and target object

(RecordPage or a record) in order
– Perform changes
– Release the lock of FileHeaderPage (but not the

object)

• Better concurrency for I
• No harm to C
• Needs special care to ensure A and D

84

Outline

• Schedules
• Anomalies
• Lock-based concurrency control

– 2PL and S2PL
– Deadlock
– Granularity of locks

• Dynamic databases
– Phantom
– Isolation levels

• Meta-structures
• Concurrency manager in VanillaCore

85

Concurrency Manager

• In storage.tx.concurrency

• Lock-based protocol
– MGL granularities: file, block, and record

– S2PL

– Deadlock detection: time-limit

• Support txs at different isolation levels
concurrently
– Serializable

– Repeatable Read

– Read Committed

86

Lock Modes in Practice (1/2)

• DBMS needs to support concurrent txs in
different modes

Read rec Modify/delete rec Insert rec

SERIALIZABLE IS lock on file and
block

S lock on record

IX lock on file
and block

X lock on record

X lock on file and
block

X lock on record

REPEATABLE

READ

IS lock on file and
block; release
immediately

S lock on record

IX lock on file and
block

X lock on record

X lock on file and
block

X lock on record

87

Read committed and avoid
cascading abort

Prevent phantoms due to inserts, but not updates

Lock Modes in Practice (1/2)

88

Read rec Modify/delete rec Insert rec

READ

COMMITTED

IS lock on file and
block; release
immediately

S lock on record
and release it upon
end statement

IX lock on file and
block

X lock on record

X lock on file and
block

X lock on record

Allow non-repeatable reads

Concurrency Manager
• Decide what locks to obtain along the access path

89

<<abstract>>

ConcurrencyMgr

txnum : long

locktbl : Locktable

<<abstract>> + modifyFile(fileName : String)

<<abstract>> + readFile(fileName : String)

<<abstract>> + insertBlock(blk : BlockId)

<<abstract>> + readBlock(blk : BlockId)

<<abstract>> + modifyBlock(blk : BlockId)

// methods for B-tree index locking

...

Concurrency Manager

• CCMgr for three isolation levels
– SerializableConcurrencyMgr

– RepeatableRead1ConcurrencyMgr

– ReadCommittedConcurrencyMgr

• Every transaction has its own concurrency
managers corresponding to the isolation level

90

Lock Table

• Implements the compatibility table

• Use time-limit strategy to resolve deadlock

91

LockTable

<<final>> ~ IS_LOCK : int

<<final>> ~ IX_LOCK : int

<<final>> ~ S_LOCK : int

<<final>> ~ SIX_LOCK : int

<<final>> ~ X_LOCK : int

<<synchronized>> ~ sLock(obj: Object, txNum : long)

<<synchronized>> ~ xLock(obj: Object, txNum : long)

<<synchronized>> ~ sixLock(obj: Object, txNum : long)

<<synchronized>> ~ isLock(obj: Object, txNum : long)

<<synchronized>> ~ ixLock(obj: Object, txNum : long)

<<synchronized>> ~ release(obj: Object, txNum : long, lockType : int)

<<synchronized>> ~ releaseAll(txNum : long, sLockOnly : boolean)

References

• Database Design and Implementation, chapter 14. Edward
Sciore.

• Database management System 3/e, chapter 16.
Ramakrishnan Gehrke.

• Database system concepts 6/e, chapter 15, 16. Silberschatz.
• Derby Developer’s Guide: Locking, concurrency, and

isolation.
– http://db.apache.org/derby/docs/10.9/devguide/cdevconcepts

30291.html

• IBM DB2 document: Locks and concurrency control
– http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.js

p?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0005
266.html

92

http://db.apache.org/derby/docs/10.9/devguide/cdevconcepts30291.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.admin.perf.doc/doc/c0005266.html

