Assignment 3 Solution

Introduction to Database Systems
Datalab
CS, NTHU

Modified/Added Classes

Parse

— Lexer

— Parser

— queryData

Algebra

— ExplainPlan ~ ExplainScan

— TablePlan ~ ProductPlan ~ SelectPlan ~ SortPlan -
GroupByPlan ~ ProjectPlan

Planner
— BasicQueryPlanner

An example of Experiment Results

Overview

Fo = - == — == !
e o o o e e e mm o _ | | BasicQueryPlanner
| | |
| . R
: createQueryPlan() I I createPlan() :
)y |
'Planner | | |
. _ - - - -l ___________ |
I I | mm e e e e e e = - I
I queryCommand() } I |
| : : |
| : ' |
I_P_afs_er_' _________________ : : > QueryData() |
|
|
______________________ | | QueryData |
\ 4 I _______________
| |
I matchKeyword() :
| |
! I
|
I eatKeyword() I
| Lexer |

Modified/Added Classes

* Parse

— Lexer

Lexer

matchKeyword()

eatKeyword()

Parse

e Lexer

— added “explain” in keywords.

void initKeywords() {
keywords = Arrays.asList("select", "from", "where", "and", "insert",
"into", "values", "delete", "drop", "update", "set", "create", "table",

int", "double", "varchar", "view", "as", "index",

"lOng”, IIC‘PdE‘P", ”b}."”, IlascllJ Il‘jESC s I'Sum”, ”l:\':lunt"J ”a"._."-g”,
"min", "max", "distinct", "group"”, "add", "sub", "mul", "div",
"explain", "using", "hash", "btree");

Parser

Parse

* Parser
— add isExplain

QueryData queryCommand() {
boolean isExplain = ;
if (lex.matchKeyword("explain")) {
isExplain = g

lex.eatKeyword("explain®);

}

lex.eatKeyword("select
ProjectList projs = projectList();

Parse

 Parser
— Parser returns SQL data
— In method “queryCommand()”

return new QueryData(isExplain, projs.asStringSet(), tables, pred,

groupFields, projs.aggregationFns(), sortFields, sortDirs);

QueryData

|
|
|
QueryData() I
|
|
|

QueryData

Parse

* QueryData

QueryData(boolean isExplain, Set<String> projFields, Set<String> tables, Predicate pred,
Set«<String> groupFields, Set<AggregationFn> aggFn, List<String> sortFields, List<Integer> sortDirs) {
.isExplain = isExplain;
.projFields = projFields;
.tables = tables;
.pred = pred;

.groupFields = groupFields;
.aggfFn = aggFn;

.sortFields = sortFields;
.sortDirs = sortDirs;

11

Parse

* QueryData

String toString()
StringBuilder result
if (isExplain)

result.append("explain ");
result.append(“"select ");

{
= new StringBuilder();

12

Modified/Added Classes

* Algebra
— ExplainPlan ~ ExplainScan
— TablePlan ~ ProductPlan ~ SelectPlan ~ SortPlan -
GroupByPlan ~ ProjectPlan

13

| | | ExplainScan |
'\ SP/IDBC Connectionﬂ-:- getval() | |

—— o e ———

- toStrlng() I :

toStrmg() I

\ 4

toStrmg()

\ 4

toString()
Y O
toString() :

ExplainPlan

@Override
Schema schema() {
Schema schema = new Schema();
schema.addField("query-plan", Type.VARCHAR(568));
return schema;

@Override
Scan open() {
return new ExplainScan(p.open(), schema(), p.toString());

15

ExplainScan

e That the result shows once

@Override
void beforeFirst() {
isBeforeFirst =

}

@Override

boolean next() {
if (isBeforeFirst) {
isBeforeFirst =
return
} else
return

16

ExplainScan

* Return the result of explain

@0verride
Constant getVal(String fldName) {
if (fldName.equals("query-plan")) {
return new VarcharConstant(result);

} else
throw new RuntimeException("field " + fldName + " not found.");

17

ExplainScan

e Return the number of actual records

ExplainScan(Scan s, Schema schema, String explain) {
.result = "\n" + explain;
.schema = schema;
s.beforeFirst();
while (s.next())

numRecs++;

s.close();
.result = result + "\nActual #recs:

+ numRecs;

18

TablePlan

@Overrilide
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("->TablePlan on (").append(ti.tableName())
.append(") (#blks=");
sb.append(blocksAccessed()).append("”, #recs=").append(recordsOutput())
.append(")\n");
return sb.toString();

->TablePlan on (warehouse) (#blks=2, #recs=1)

19

ProductPlan

@Override
public String toString() ({
String c2 = p2.toString();
String[] cs2 = c2.split("\n");
String ¢l = pl.toString();
String[] csl = cl.split("\n");
StringBuilder sb = new StringBuilder();
sb.append("->ProductPlan (#blks=" + blocksAccessed() + ", #recs="
+ recordsOutput() + ")\n");

for (String child : cs2)
sb.append(“\t").append(child).append(“\n");

for (String child : csl)
sb.append("\t").append(child).append("\n");
return sb.toString();

->ProductPlan (#blks=22, #recs=10)
->TablePlan on (warehouse) (#blks=2, #recs=1)
->TablePlan on (district) (#blks=2, #recs=10)

SelectPlan

@Override
public String toString() ({
String ¢ = p.toString();
String[] cs = c.split("\n");
StringBuilder sb = new StringBuilder();
sb.append("->SelectPlan pred: (" + pred.toString() + ") (#blks="
+ blocksAccessed() + ", #recs=" + recordsOutput() + ")\n");
for (String child : cs)
sb.append(“\t").append(child).append(“\n");
return sb.toString();

->SelectPlan pred:(d_w_id=w_id) (#blks=22, #recs=10)
->ProductPlan (#blks=22, #recs=10)
->TablePlan on (warehouse) (#blks=2, #recs=1)
->TablePlan on (district) (#blks=2, #recs=10)

SortPlan

@Override
public String toString() {
String ¢ = p.toString();
String[] cs = c.split("\n");
StringBuilder sb = new StringBuilder();
sb.append("->");
sb.append(“SortPlan (#blks=" + blocksAccessed() + ", #recs="
+ recordsOutput() + ")\n");
for (String child : cs)
sb.append("\t").append(child) .append(“\n");

return sb.toString();

->SortPlan (#blks=2, #recs=10)
->SelectPlan pred:(d_w_id=w_id) (#blks=22, #recs=10)
->ProductPlan (#blks=22, #recs=10)
->TablePlan on (warehouse) (#blks=2, #recs=1)
->TablePlan on (district) (#blks=2, #recs=10)

GroupByPlan

@Override
public String toString() {
String ¢ = sp.toString();
String[] cs = c.split("\n");
StringBuilder sb = new StringBuilder();
sb.append(“->");
sb.append("GroupByPlan: (#blks=" + blocksAccessed() + ", #recs="
+ recordsOutput() + ")\n");
for (String child : cs)
sb.append("\t").append(child) .append("\n");

return sb.toString();

->GroupByPlan: (#blks=2, #recs=1)
->SortPlan (#blks=2, #recs=10)
->SelectPlan pred:(d_w_id=w_id) (#blks=22, #recs=10)
->ProductPlan (#blks=22, #recs=10)
->TablePlan on (warehouse) (#blks=2, #recs=1)
->TablePlan on (district) (#blks=2, #recs=10)

ProjectPlan

@Override
public String toString() {
String ¢ = p.toString();
String[] cs = c.split("\n");
StringBuilder sb = new StringBuilder();
sb.append("->ProjectPlan (#blks=" + blocksAccessed() + ", #recs="
+ recordsOutput() + ")\n");
for (String child : cs)
sb.append("\t").append(child).append("\n");
return sb.toString();

->ProjectPlan (#blks=2, #recs=1)
->GroupByPlan: (#blks=2, #recs=1)
->SortPlan (#blks=2, #recs=10)
->SelectPlan pred:(d_w_id=w_id) (#blks=22, #recs=10)
->ProductPlan (#blks=22, #recs=10)
->TablePlan on (warehouse) (#blks=2, #recs=1)
->TablePlan on (district) (#blks=2, #recs=10)

Modified/Added Classes

e Planner

— BasicQueryPlanner

—7 fmd

BasicQueryPlanner

@Override
Plan createPlan(QueryData data, Transaction tx) {

List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {
String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);
if (viewdef !=)
plans.add(VanillaDb.newPlanner().createQueryPlan(viewdef, tx));

else
plans.add(new TablePlan(tblname, tx));

Plan p = plans.remove(8);
for (Plan nextplan : plans)
p = new ProductPlan(p, nextplan);

p = new SelectPlan(p, data.pred());

if (data.groupFields() !=) {
p = new GroupByPlan(p, data.groupFields(), data.aggregationFn(), tx);

p = new ProjectPlan(p, data.projectFields());

if (data.sortFields() !=)
p = new SortPlan(p, data.sortFields(), data.sortDirections(), tx);

if (data.isExplain())
= new ExplainPlan(p);
return p;

Modified/Added Classes

 Examples of Experiment Results

Examples of Experiment Results

SQL> EXPLAIN SELECT i_id FROM item WHERE 1_1id<500

query-plan
-»>ProjectPlan (#blks=6251, #recs=391)
->SelectPlan pred:(1_id<500.0) (#blks=6251, #recs=391)
-»>TablePlan (item) (#blks=6251, #recs=100060)

Actual #irecs: 499

29

Examples of Experiment Results

SQL> EXPLAIN SELECT d_id FROM district, warehouse WHERE d_w_id <500

query-plan
-»ProjectPlan (#blks=43, #recs=4@)
-»SelectPlan pred:(d w_i1d<500.8) (#blks=43, #recs=40)
-»ProductPlan (#blks=43, #recs=48)
-»TablePlan (district) (#blks=3, #recs=20)
-»>TablePlan (warehouse) (#blks=2, #recs=2)

Actual #recs: 40

30

Examples of Experiment Results

SQL> EXPLAIN SELECT i_price FROM item ORDER BY i_price

query-plan
-»SortPlan (#blks=393, #recs=100000)
->ProjectPlan (#blks=6251, #recs=100000)
-»SelectPlan pred: () (#blks=6251, #recs=100000)
->TablePlan (item) (#blks=6251, #recs=100000)

Actual #recs: 100000

31

Examples of Experiment Results

SQL> EXPLAIN SELECT MAX(d _id) FROM district, warehouse WHERE d w id = w_id GROUP BY w_i

query-plan
->ProjectPlan (#blks=4, #recs=2)
->GroupByPlan (#blks=4, #recs=2)
-»SortPlan (#blks=4, #recs=28)
-»SelectPlan pred:(d w_id=w _id) (#blks=43, #recs=28)
->ProductPlan (#blks=43, #recs=40)

->TablePlan (district) (#blks=3, #recs=20)
->TablePlan (warehouse) (#blks=2, #recs=2)

Actual #recs: 2

32

	Assignment 3 Solution
	Modified/Added Classes
	Overview
	Modified/Added Classes
	Lexer
	Parse
	Parser
	Parse
	Parse
	QueryData
	Parse
	Parse
	Modified/Added Classes
	投影片編號 14
	ExplainPlan
	ExplainScan
	ExplainScan
	ExplainScan
	TablePlan
	ProductPlan
	SelectPlan
	SortPlan
	 GroupByPlan
	ProjectPlan
	Modified/Added Classes
	BasicQueryPlanner
	BasicQueryPlanner
	Modified/Added Classes
	Examples of Experiment Results
	Examples of Experiment Results
	Examples of Experiment Results
	Examples of Experiment Results

