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Data Access Layers
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Record Management

• Main interface: RecordFile

– An iterator of records in a file

– One instance per TableScan

• Via VanillaDb.catalogMgr().

getTableInfo(tblName, tx).open()

– Thread local
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Responsibilities of RecordFile

• To decide how records are stored in a file

• To decide which block to pin

– To save the cost of buffer access

• To work with the recovery and concurrency 
managers 

– To ensure tx ACID

– Discussed later
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Logical Schema vs. Physical Schema

• Record manager converts (logical) schema to 
physical schema

blog-id url created author-id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 736

45896 … 2012/10/31 729

50633 … 2013/01/15 25

55868 … 2013/8/21 199

blog-posts
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730730 4177041770 ......
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Design Considerations for Physical 
Schema

• Should all records of a table be stored in the 
same file?

• Should a record be placed entirely within one 
block?

• Should all fields of a record to be stored next 
to each other?

• Should a field be represented as a fixed 
number of bytes?

• How to manage free space?
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Should all records of a table be stored 
in the same file?

10



Homogeneous vs. Heterogeneous Files

• A file is homogeneous if all of its records come 
from the same table

– Makes single-table queries easy to answer

• Allow heterogeneous files or not?
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Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students, 
departments WHERE d-id = major-id

• Homogeneous file

– The disk drive has to seek back and forth between 
the blocks of two files

students

1 joe 10 2015 4 rob 20 20112 kay 20 2013

block 0 block 1

5 tom 10 2013 9 jim 20 20116 bob 20 2016

departments

10 math 30 earthsci20 compsci

block 0
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Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students, 
departments WHERE d-id = major-id

• Nonhomogeneous file

– Stores the students and departments records in 
the same file

• Records are clustered on department id

– Requires fewer block accesses to answer this join 
query

dept-students

1 joe 10 2015

block 0 block 1

5 tom 10 201310 math 20 compsci 2 kay 20 2013 6 bob 20 20164 rob 20 2011 ...
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Homogeneous vs. Nonhomogeneous 
Files

• Nonhomogeneous file

– Pros

• Clustering improves the efficiency of queries that join 
the clustered tables

– Cons

• Single-table queries become less efficient

• Join queries on non-clustered field will also be less 
efficient

• Suits only for schemas with hierarchy
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Should each record be placed entirely 
within one block?
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Spanned vs. Unspanned Records

• A spanned record is a record whose values 
span two or more blocks

spanned

unspanned

Record File

r1 r2 r3

block 0 block 1

r4a    r4b   r5

Record File

r1 r2 r3

block 0 block 1

r4 r5
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Spanned vs. Unspanned Records

• Spanned record

– Pros

• No disk space is wasted 

• Record size is not limited by block size

– Cons

• Reading one record may require multiple blocks access 
and reconstruction
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Is each field in a record represented as 
a fixed number of bytes?
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Fixed-Length vs. Variable-Length Fields

• Field types supported by SQL
– int, varchar(n), text, etc.

• Most of types are naturally fixed-length
– All numeric and data/time types

• A fixed-length field representation uses the same 
number of bytes to hold each value of the field
– Integer can be stored as 4-bytes binary value

• How about those fields with variable-length types?
– varchar(n),clob(n), etc.
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Fixed-Length vs. Variable-Length Fields

• Consider a field “d-name” defined as type 
varchar(20) using the variable-length 
representation

• Modifying this field may require rearrange 
other records

10 math 30 earthsci20 compsci

10 math 30 earthsci20 computer-science

10 math 20 computer-science 30 earth-science
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Storing Variable-Length Fields

• Three different ways to store a varchar(n)

– Variable-length representation

– Indexed representation, which stores the string 
value in a separate location

– Fixed-length representation, which allocates same 
amount of space for this field in each records

10 math 30 earthsci20 compsci

math earthscicompsci

0 4 11

10  0 30  1120  4

10 math 20 compsci ...
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Pros & Cons

• Variable-length representation
– Space-efficient
– Record rearrangement is possible

• Indexed representation
– Space-efficient (although with overhead of index)
– Extra index access for each record read/write
– Suits for text, clob(n)

• Fixed-length representation
– Easy implementation of random access
– Wastes space
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Should all fields of a record to be 
stored next to each other?
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Column-Store vs. Row-Store

• Row-oriented store

– Row-by-row sequentially on disk

– (s-id,s-name,major-id,grad-year)

• How about storing the values of a single column 
contiguously on disk?
• Sorted by s-id

1 joe 10 2015 4 rob 20 20112 kay 20 2013 5 tom 10 2013 9 jim 20 20116 bob 20 2016

joe kay rob tom bob jim1 2 4 5 6 9 10 20 20 10 20 20 2015 2013 2011 2013 2016 2011
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Pros & Cons

• Row-oriented store
– Accessing a single row is more efficiently

– Write-optimized

– For OLTP workloads

• Column-oriented store
– Efficient column read

– Efficient column calculation (e.g., group by and 
aggregation)

– Better comparison 

– For OLAP workloads
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Design Considerations for Record 
Manager

• How to choose a proper record file structure?

• Several factors that should be taken into 
account

– Workload

– Supported SQL types

– Schema
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Implementing a File of Records

• A simple implementation for OLTP workloads:

– Homogeneous files

– Unspanned records

– Fixed-length records

– Row-oriented store

• Treats each file as a sequence of blocks and 
treats each block as an array of records

– We call such a block a record page
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Record Page

• Divides a block into slots, where each slot is 
large enough to hold a record plus one 
additional integer 

– This integer is a flag that denotes the slot usage

– 0 means “empty” and 1 means “in use”

1 r0 0 r1 1 r2 1 r3 0 rN...

[      slot 0      ] [      slot 1     ] [      slot 2     ][      slot 3     ] [     slot N      ]
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Table Information

• The table information stores

– The record length

– The name, type, length, and offset of each field of 
a record

• The table information allows the record 
manager to determine where values are 
located within the block
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Table Information

• Table information of students table
– Record length: 76 bytes

– Fields information:

students(s-id:int,

s-name:varchar(20),

major-id:int,

grad-year:long)

Field Name Type Max Size (in byte) Offset

s-id int 4 0

s-name varchar(20) 60 4

major-id int 4 64

grad-year long 8 68

1 joe 10 2015 2 kay 20 2013

0 4

1 0

slot 0      slot 1     

4 rob 20 20111

slot 49     

8 68 72 4000

......

3920

The position s-id field of record in slot n is 𝑛 ∗ (76 + 4) + 4
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Accessing The Record Page

• To insert a new record

– The record manager finds a slot with empty flag

– Updates the flag as in use

– Returns the slot number

– If all flag values are “1”, then the block is full

1 joe 10 2015 2 kay 20 2013

0 4

1 0

slot 0      slot 1     

4 rob 20 20111

slot 49     

8 68 72 4000

......

3920
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Accessing The Record Page

• To delete the value of the record in slot k
– The record manager simply sets the flat at that 

slot to 0 as empty

• To modify a field value of the record in slot k
– The record manager determines the location of 

that field, and writes the value to that location

• Each record in a page has an ID. When the 
records are fixed-length, the ID can be its slot 
number
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Implementing Variable-Length Fields

• What changes to make when we want to 
support variable-length fields?

– The field offsets in a record are no longer fixed

– The records of same table can have different 
lengths

• The record position cannot be calculated by multiplying 
its slot number by slot size

• Modifying a field value can cause a record’s length to 
change

33



Implementing Variable-Length Fields

• If the record’s length changes
– We need to shift the records after modified record
– The shifted records may spill out of the block

• Move to overflow block

• The original block and overflow block form a single 
large record page

1 joe 10 2015 2 kay 20 20131 1

slot 0      slot 1     

4 rob 20 20111

slot 2     

1 joe 10 2015 2 Michael Ralph Stonebraker 20 20131 1

slot 0      slot 1     

4 rob 20 20111

slot 2     

Modify the s-name of second record in original block
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Implementing Variable-Length Fields

• How to delete a record?
– Only set the flag to empty

• Record size is variable, this empty space may not be re-
use

– Reclaim the empty space
• Dissociate the record’s ID from slot

1 joe 10 2015 2 kay 20 20131 1

[                   record 0                  ]

4 rob 20 20111

[                   record 1                  ] [                   record 2                  ]

1 joe 10 2015 2 kay 20 20131 0

[                   record 0                  ]

4 rob 20 20111

[                   record 2                  ]

1 joe 10 20151

[                   record 0                  ]

4 rob 20 20111

[                   record 2                  ]
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Implementing Variable-Length Fields

• The record manager cannot random access a 
record in a page, because it has no position 
information  

– We need a different page layout
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Implementing Variable-Length Fields

• There is a header at the beginning of each  record 
page containing following information
– Number of records

– The end of free space in that page

– IDs and pointers to each record and size of each 
record

• The records are placed at the other end of page

From Database System Concepts 6/e, Silberschatz, Korth. Sudarshan.
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Implementing Variable-Length Fields

• When a modification on a record requires 
more spaces, the record manager will find a  
continuous free space within that page 

• Rearranging the record page when record’s 
length changes can eliminate the 
fragmentation 

– VACUUM command
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Managing the Free Space Within a 
Record File

• Each record page in a file has different amount 
of free spaces

– The fixed-length field implementation

– The variable-length field implementation with id 
table

1 joe 10 2015

[              record 0             ]

4 rob 20 2011

[             record 2             ]

2 Free Space

#rec Free space pointer

1 joe 10 2015 2 kay 20 20131 0

[                   record 0                  ]

4 rob 20 20111

[                   record 2                  ]

Wasted Space
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M1: Chaining

• When the client wants to insert a new record, the 
record manager needs to find continuous unused 
bytes for it

• How to manage the free space within a file?
• Chaining the free spaces

• For variable-length records, it may access many 
blocks to find out a large enough free space

Record File

Free space 
pointer

header block block 2

r4 r5r1 r3

block 1
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M2: Meta-Pages

• Using special pages to track the usage of 
record pages

– Allocates one free space page for N record pages 

– Free space page uses one byte to track the size of 
unused space size for each following page

– Microsoft SQL Server approach

Record File

1

Free space page 1 block 2block 1

3 190 ...

block 3

...

N
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M3: Meta-File

• Using additional file to track the location and 
size all free spaces

– PostgreSQL approach

Record File

block 1block 0 block 2

...

1

Free Space Map 

1 2 ...4
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– How records are stored?

– Which blocks to pin

– Working with the recovery and concurrency 
manager to ensure tx ACID
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Responsibilities of RecordFile

• To decide how records are stored in a file

• To decide which block to pin (to save the cost 
of buffer access)

• To work with the recovery and concurrency 
manager to ensure tx ACID
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Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

– How records are stored?

– Which blocks to pin?

– Working with the recovery and concurrency 
manager to ensure tx ACID
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How Records are Stored?

• Choices:
– Un-spanned record
– Homogeneous file
– Row-oriented store
– Fixed-length field
– Chained free space: O(1) search time

• RecordPage: lays out records in a page
• FileHeaderPage: header of free-space chain

46

Record File

Free space 
pointer

header block block 2

r4 r5r1 r3

block 1



Using the Table Information

• The VanillaCore record manager needs to know the 
table information

• The classes storage.metadata.TableInfo and 
sql.Schema manage the table information

• The record manager can get this information from 
metadata manager

47

TableInfo

+ TableInfo(tblname : String, schema : Schema)

+ fileName() : String 

+ tableName() : String

+ schema() : Schema

+ open(tx : Transaction) : RecordFile

Schema : Serializable

+ Schema()

+ addField(fldName : String, type : Type)

+ add(fldName : String, sch : Schema)

+ addAll(sch : Schema)

+ fields() : SortedSet<String>

+ hasField(fldName : String) : boolean

+ type(fldname : String) : Type

+ toString() : String

+ equals(obj : Object) : boolean

+ hashCode() : int



Using the Table Information

• Sample code of constructing table information

48

Schema sch = new Schema();

sch.addField("s-id", Type.INTEGER);
sch.addField("s-name", Type.VARCHAR(20));
sch.addField("major-id", Type.INTEGER);
sch.addField("grad-year", Type.BIGINT);

TableInfo ti = new TableInfo("students", sch);



Managing the Records in a Page

• Implements the record page as following layout
– Minimal slot size: 4+4+8 bytes (flag, pointer to next 

deleted slot)

• The RecordPage manages the records within a 
page

• The RecordId denotes the identifier of each 
record

1 joe 10 20151 0

[                   record 0                  ]

4 rob 20 20111unknown value 

[                   record 2                  ]

0 unknown value ...... ...

49



RecordId

• Identifier of a record

– id is equal to slot number because of fixed-length 
implementation

50

RecordId

+ RecordId(blk : BlockId, id : int)

+ block() : BlockId

+ id() : int

+ equals(obj : Object) : boolean

+ toString() : String

+ hashCode() : int



RecordPage

• Extends the interface Record
• Manages a buffer for the currently opened data 

block
• Calls the concurrency control manager to ensure 

the isolation property
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RecordPage
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RecordPage : Record

+ offsetMap(sch: Schema) : Map<String, Integer>

+ recordSize(sch: Schema) : int

+ slotSize(sch: Schema) : int

+ RecordPage(blk : BlockId, ti : TableInfo , tx : Transaction, 

doLog : boolean)

+ close()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val  : Constant)

+ delete(nextDeletedSlot : RecordId)

+ insertIntoNextEmptySlot() : boolean

+ insertIntoDeletedSlot(): RecordId

+ moveToId(id : int)

+ currentId() : int

+ currentBlk() : BlockId



Accessing Records in a Record Page

• Sample code of using a record page

53

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = VanillaDb.catalogMgr().getTableInfo(tableName, tx);
String fileName = ti.fileName();
RecordId lastDeletedRid = ...;
BlockId blk = new BlockId(fileName, 235);
RecordPage rp = new RecordPage(blk, ti, tx, true); // pin the buffer

// Part1: read and delete
while (rp.next()) {

Constant sid = rp.getVal("s-id");
if (sid.equals(new IntegerConstant(50))) {

rp.delete(lastDeletedRid);
lastDeletedRid = new RecordId(rp.currentBlk(), rp.currentId());

}
}

// Part 2: insert into empty slot if exist
rp.moveToId(-1); // point before the first record
boolean hasFreeSlot = rp.insertIntoNextEmptySlot();
if (hasFreeSlot) {

rp.setVal("s-id", new IntegerConstant(65));
...

}
rp.close(); // unpin the buffer
tx.commit();



Formatting Record Page

• A record page has a specific structure

– Partitioned into slot, with the value of the first 
integer in each slot as usage flag

• Formatting the record page before it can be 
used

• The class RecordFormatter performs this 
service, via its method format

54

RecordFormatter : PageFormatter

+ RecordFormatter(ti : TableInfo)

+ format(page : Page)



File Header

• The class FileHeaderPage manages the 
header

– The pointer to the deleted slot chain

– The tail slot

55

FileHeaderPage

+ FileHeaderPage(fileName : String, tx : Transaction)

+ close() 

+ hasDataRecords() : boolean

+ hasDeletedSlots() : boolean

+ getLastDeletedSlot() : RecordId

+ getTailSlot() : RecordId

+ setLastDeletedSlot(rid : RecordId)

+ setTailSlot(rid : RecordId)



Managing the Records in a File

• A record file consists of several record pages

– Data access API is similar to record pages

• Record file manages the file properties

– File header, file size 

– Appends new block at the end of file

– Maintains the current position in a file and uses 
the data manipulation methods of the record page

Record File

header block block 2

r0

block 1

Tail
Free space 

pointer r1 r2 r0 r2 r3

block 3

r0 r2 r3r1 ...
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RecordFile

• Manages a file of records and calls the 
concurrency manager to ensure isolation 
property

• Provides methods for iterating through the  
records and accessing their contents
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RecordFile

58

RecordFile: Record

+ formatFileHeader(fileName : String, tx : Transaction)

+ RecordFile(ti : TableInfo , tx : Transaction, doLog : 

boolean)

+ close()

+ beforeFirst()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val  : Constant)

+ delete()

+ insert()

+ moveToRecordId(rid : RecordId)

+ currentRecordId() : RecordId

+ fileSize() : long



Accessing Records in a Record File

• Sample code of using a record file

Caution:
When inserting a new record, all the fields should have inserted values.
Otherwise, the user might read some unpredictable value 59

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = ...;
RecordFile rf = ti.open(tx, true);
rf.beforeFirst();

// Part 1: reads records and delete records
while (rf.next())

if (rf.getVal("s-id").equals(new IntegerConstant(50)))
rf.delete();

rf.close();

// Part 2: insert new record
rf = ti.open(tx, true);
for (int id = 0; id < 100; id++) {

rf.insert();
rf.setVal("s-id", new IntegerConstant(id));
rf.setVal("s-name", new VarcharConstant("student" + id));
rf.setVal("major-id", new IntegerConstant((id % 3 + 1) * 10));
rf.setVal("grad-year", new BigIntConstant(2016));

}
rf.close();



Recap of Data Access Layers
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manager to ensure tx ACID
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Which Block to Pin?

• Each RecordFile instance pins only two 
pages:

– RecordPage corresponding to the current 
position

– FileHeaderPage

• Unpin upon close()

– This is why a JDBC user should close a 
ResultSet as soon as possible 
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– How records are stored?

– Which blocks to pin?

– Working with the recovery and concurrency 
manager to ensure tx ACID
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Tx Support

• C and I by working with ConcurrencyManager

– All read/write from/to files and blocks must obtain 
appropriate locks first via 
concurrencyMgr.read/modifyXxx()

• A and D by working with RecoveryManager

– All set values are logged via 
recoveryMgr.logXxx()

– By virtue of WAL implementation in memory-
management layer
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