
Record Management

Shan-Hung Wu & DataLab

CS, NTHU

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

2

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Where?

3

Data Access Layers

4

RecordFileA

RecordPage

Buffer Buffer Buffer

BufferMgr

...

...

RecordFileB

RecordPage

...

Page Page Page

ByteBuffer ByteBuffer ByteBuffer

FileA

Block1 Block2

...

FileB

Block1 Block2

...

FileChannelA

FileMgr

FileChannelB

r8 r9

r8 r9

r9 r10

r9 r10

Record Management

• Main interface: RecordFile

– An iterator of records in a file

– One instance per TableScan

• Via VanillaDb.catalogMgr().

getTableInfo(tblName, tx).open()

– Thread local

5

Responsibilities of RecordFile

• To decide how records are stored in a file

• To decide which block to pin

– To save the cost of buffer access

• To work with the recovery and concurrency
managers

– To ensure tx ACID

– Discussed later

6

Logical Schema vs. Physical Schema

• Record manager converts (logical) schema to
physical schema

blog-id url created author-id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 736

45896 … 2012/10/31 729

50633 … 2013/01/15 25

55868 … 2013/8/21 199

blog-posts

record

HeaderHeader

3398133981

2012/112012/11729729 3398233982

/15/15

2009/10/312009/10/31

730730 4177041770

......

......

file

~
~

~
~

block 0

......

......

block 1

7

Design Considerations for Physical
Schema

• Should all records of a table be stored in the
same file?

• Should a record be placed entirely within one
block?

• Should all fields of a record to be stored next
to each other?

• Should a field be represented as a fixed
number of bytes?

• How to manage free space?

8

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

9

Should all records of a table be stored
in the same file?

10

Homogeneous vs. Heterogeneous Files

• A file is homogeneous if all of its records come
from the same table

– Makes single-table queries easy to answer

• Allow heterogeneous files or not?

11

Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students,
departments WHERE d-id = major-id

• Homogeneous file

– The disk drive has to seek back and forth between
the blocks of two files

students

1 joe 10 2015 4 rob 20 20112 kay 20 2013

block 0 block 1

5 tom 10 2013 9 jim 20 20116 bob 20 2016

departments

10 math 30 earthsci20 compsci

block 0

12

Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students,
departments WHERE d-id = major-id

• Nonhomogeneous file

– Stores the students and departments records in
the same file

• Records are clustered on department id

– Requires fewer block accesses to answer this join
query

dept-students

1 joe 10 2015

block 0 block 1

5 tom 10 201310 math 20 compsci 2 kay 20 2013 6 bob 20 20164 rob 20 2011 ...

13

Homogeneous vs. Nonhomogeneous
Files

• Nonhomogeneous file

– Pros

• Clustering improves the efficiency of queries that join
the clustered tables

– Cons

• Single-table queries become less efficient

• Join queries on non-clustered field will also be less
efficient

• Suits only for schemas with hierarchy

14

Should each record be placed entirely
within one block?

15

Spanned vs. Unspanned Records

• A spanned record is a record whose values
span two or more blocks

spanned

unspanned

Record File

r1 r2 r3

block 0 block 1

r4a r4b r5

Record File

r1 r2 r3

block 0 block 1

r4 r5

16

Spanned vs. Unspanned Records

• Spanned record

– Pros

• No disk space is wasted

• Record size is not limited by block size

– Cons

• Reading one record may require multiple blocks access
and reconstruction

17

Is each field in a record represented as
a fixed number of bytes?

18

Fixed-Length vs. Variable-Length Fields

• Field types supported by SQL
– int, varchar(n), text, etc.

• Most of types are naturally fixed-length
– All numeric and data/time types

• A fixed-length field representation uses the same
number of bytes to hold each value of the field
– Integer can be stored as 4-bytes binary value

• How about those fields with variable-length types?
– varchar(n),clob(n), etc.

19

Fixed-Length vs. Variable-Length Fields

• Consider a field “d-name” defined as type
varchar(20) using the variable-length
representation

• Modifying this field may require rearrange
other records

10 math 30 earthsci20 compsci

10 math 30 earthsci20 computer-science

10 math 20 computer-science 30 earth-science

20

Storing Variable-Length Fields

• Three different ways to store a varchar(n)

– Variable-length representation

– Indexed representation, which stores the string
value in a separate location

– Fixed-length representation, which allocates same
amount of space for this field in each records

10 math 30 earthsci20 compsci

math earthscicompsci

0 4 11

10 0 30 1120 4

10 math 20 compsci ...

21

Pros & Cons

• Variable-length representation
– Space-efficient
– Record rearrangement is possible

• Indexed representation
– Space-efficient (although with overhead of index)
– Extra index access for each record read/write
– Suits for text, clob(n)

• Fixed-length representation
– Easy implementation of random access
– Wastes space

22

Should all fields of a record to be
stored next to each other?

23

Column-Store vs. Row-Store

• Row-oriented store

– Row-by-row sequentially on disk

– (s-id,s-name,major-id,grad-year)

• How about storing the values of a single column
contiguously on disk?
• Sorted by s-id

1 joe 10 2015 4 rob 20 20112 kay 20 2013 5 tom 10 2013 9 jim 20 20116 bob 20 2016

joe kay rob tom bob jim1 2 4 5 6 9 10 20 20 10 20 20 2015 2013 2011 2013 2016 2011

24

Pros & Cons

• Row-oriented store
– Accessing a single row is more efficiently

– Write-optimized

– For OLTP workloads

• Column-oriented store
– Efficient column read

– Efficient column calculation (e.g., group by and
aggregation)

– Better comparison

– For OLAP workloads

25

Design Considerations for Record
Manager

• How to choose a proper record file structure?

• Several factors that should be taken into
account

– Workload

– Supported SQL types

– Schema

26

Implementing a File of Records

• A simple implementation for OLTP workloads:

– Homogeneous files

– Unspanned records

– Fixed-length records

– Row-oriented store

• Treats each file as a sequence of blocks and
treats each block as an array of records

– We call such a block a record page

27

Record Page

• Divides a block into slots, where each slot is
large enough to hold a record plus one
additional integer

– This integer is a flag that denotes the slot usage

– 0 means “empty” and 1 means “in use”

1 r0 0 r1 1 r2 1 r3 0 rN...

[slot 0] [slot 1] [slot 2][slot 3] [slot N]

28

Table Information

• The table information stores

– The record length

– The name, type, length, and offset of each field of
a record

• The table information allows the record
manager to determine where values are
located within the block

29

Table Information

• Table information of students table
– Record length: 76 bytes

– Fields information:

students(s-id:int,

s-name:varchar(20),

major-id:int,

grad-year:long)

Field Name Type Max Size (in byte) Offset

s-id int 4 0

s-name varchar(20) 60 4

major-id int 4 64

grad-year long 8 68

1 joe 10 2015 2 kay 20 2013

0 4

1 0

slot 0 slot 1

4 rob 20 20111

slot 49

8 68 72 4000

......

3920

The position s-id field of record in slot n is 𝑛 ∗ (76 + 4) + 4
30

Accessing The Record Page

• To insert a new record

– The record manager finds a slot with empty flag

– Updates the flag as in use

– Returns the slot number

– If all flag values are “1”, then the block is full

1 joe 10 2015 2 kay 20 2013

0 4

1 0

slot 0 slot 1

4 rob 20 20111

slot 49

8 68 72 4000

......

3920

31

Accessing The Record Page

• To delete the value of the record in slot k
– The record manager simply sets the flat at that

slot to 0 as empty

• To modify a field value of the record in slot k
– The record manager determines the location of

that field, and writes the value to that location

• Each record in a page has an ID. When the
records are fixed-length, the ID can be its slot
number

32

Implementing Variable-Length Fields

• What changes to make when we want to
support variable-length fields?

– The field offsets in a record are no longer fixed

– The records of same table can have different
lengths

• The record position cannot be calculated by multiplying
its slot number by slot size

• Modifying a field value can cause a record’s length to
change

33

Implementing Variable-Length Fields

• If the record’s length changes
– We need to shift the records after modified record
– The shifted records may spill out of the block

• Move to overflow block

• The original block and overflow block form a single
large record page

1 joe 10 2015 2 kay 20 20131 1

slot 0 slot 1

4 rob 20 20111

slot 2

1 joe 10 2015 2 Michael Ralph Stonebraker 20 20131 1

slot 0 slot 1

4 rob 20 20111

slot 2

Modify the s-name of second record in original block

34

Implementing Variable-Length Fields

• How to delete a record?
– Only set the flag to empty

• Record size is variable, this empty space may not be re-
use

– Reclaim the empty space
• Dissociate the record’s ID from slot

1 joe 10 2015 2 kay 20 20131 1

[record 0]

4 rob 20 20111

[record 1] [record 2]

1 joe 10 2015 2 kay 20 20131 0

[record 0]

4 rob 20 20111

[record 2]

1 joe 10 20151

[record 0]

4 rob 20 20111

[record 2]

35

Implementing Variable-Length Fields

• The record manager cannot random access a
record in a page, because it has no position
information

– We need a different page layout

36

Implementing Variable-Length Fields

• There is a header at the beginning of each record
page containing following information
– Number of records

– The end of free space in that page

– IDs and pointers to each record and size of each
record

• The records are placed at the other end of page

From Database System Concepts 6/e, Silberschatz, Korth. Sudarshan.
37

Implementing Variable-Length Fields

• When a modification on a record requires
more spaces, the record manager will find a
continuous free space within that page

• Rearranging the record page when record’s
length changes can eliminate the
fragmentation

– VACUUM command

38

Managing the Free Space Within a
Record File

• Each record page in a file has different amount
of free spaces

– The fixed-length field implementation

– The variable-length field implementation with id
table

1 joe 10 2015

[record 0]

4 rob 20 2011

[record 2]

2 Free Space

#rec Free space pointer

1 joe 10 2015 2 kay 20 20131 0

[record 0]

4 rob 20 20111

[record 2]

Wasted Space

39

M1: Chaining

• When the client wants to insert a new record, the
record manager needs to find continuous unused
bytes for it

• How to manage the free space within a file?
• Chaining the free spaces

• For variable-length records, it may access many
blocks to find out a large enough free space

Record File

Free space
pointer

header block block 2

r4 r5r1 r3

block 1

40

M2: Meta-Pages

• Using special pages to track the usage of
record pages

– Allocates one free space page for N record pages

– Free space page uses one byte to track the size of
unused space size for each following page

– Microsoft SQL Server approach

Record File

1

Free space page 1 block 2block 1

3 190 ...

block 3

...

N

41

M3: Meta-File

• Using additional file to track the location and
size all free spaces

– PostgreSQL approach

Record File

block 1block 0 block 2

...

1

Free Space Map

1 2 ...4

42

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

– How records are stored?

– Which blocks to pin

– Working with the recovery and concurrency
manager to ensure tx ACID

43

Responsibilities of RecordFile

• To decide how records are stored in a file

• To decide which block to pin (to save the cost
of buffer access)

• To work with the recovery and concurrency
manager to ensure tx ACID

44

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

– How records are stored?

– Which blocks to pin?

– Working with the recovery and concurrency
manager to ensure tx ACID

45

How Records are Stored?

• Choices:
– Un-spanned record
– Homogeneous file
– Row-oriented store
– Fixed-length field
– Chained free space: O(1) search time

• RecordPage: lays out records in a page
• FileHeaderPage: header of free-space chain

46

Record File

Free space
pointer

header block block 2

r4 r5r1 r3

block 1

Using the Table Information

• The VanillaCore record manager needs to know the
table information

• The classes storage.metadata.TableInfo and
sql.Schema manage the table information

• The record manager can get this information from
metadata manager

47

TableInfo

+ TableInfo(tblname : String, schema : Schema)

+ fileName() : String

+ tableName() : String

+ schema() : Schema

+ open(tx : Transaction) : RecordFile

Schema : Serializable

+ Schema()

+ addField(fldName : String, type : Type)

+ add(fldName : String, sch : Schema)

+ addAll(sch : Schema)

+ fields() : SortedSet<String>

+ hasField(fldName : String) : boolean

+ type(fldname : String) : Type

+ toString() : String

+ equals(obj : Object) : boolean

+ hashCode() : int

Using the Table Information

• Sample code of constructing table information

48

Schema sch = new Schema();

sch.addField("s-id", Type.INTEGER);
sch.addField("s-name", Type.VARCHAR(20));
sch.addField("major-id", Type.INTEGER);
sch.addField("grad-year", Type.BIGINT);

TableInfo ti = new TableInfo("students", sch);

Managing the Records in a Page

• Implements the record page as following layout
– Minimal slot size: 4+4+8 bytes (flag, pointer to next

deleted slot)

• The RecordPage manages the records within a
page

• The RecordId denotes the identifier of each
record

1 joe 10 20151 0

[record 0]

4 rob 20 20111unknown value

[record 2]

0 unknown value

49

RecordId

• Identifier of a record

– id is equal to slot number because of fixed-length
implementation

50

RecordId

+ RecordId(blk : BlockId, id : int)

+ block() : BlockId

+ id() : int

+ equals(obj : Object) : boolean

+ toString() : String

+ hashCode() : int

RecordPage

• Extends the interface Record
• Manages a buffer for the currently opened data

block
• Calls the concurrency control manager to ensure

the isolation property

51

RecordPage

52

RecordPage : Record

+ offsetMap(sch: Schema) : Map<String, Integer>

+ recordSize(sch: Schema) : int

+ slotSize(sch: Schema) : int

+ RecordPage(blk : BlockId, ti : TableInfo , tx : Transaction,

doLog : boolean)

+ close()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val : Constant)

+ delete(nextDeletedSlot : RecordId)

+ insertIntoNextEmptySlot() : boolean

+ insertIntoDeletedSlot(): RecordId

+ moveToId(id : int)

+ currentId() : int

+ currentBlk() : BlockId

Accessing Records in a Record Page

• Sample code of using a record page

53

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = VanillaDb.catalogMgr().getTableInfo(tableName, tx);
String fileName = ti.fileName();
RecordId lastDeletedRid = ...;
BlockId blk = new BlockId(fileName, 235);
RecordPage rp = new RecordPage(blk, ti, tx, true); // pin the buffer

// Part1: read and delete
while (rp.next()) {

Constant sid = rp.getVal("s-id");
if (sid.equals(new IntegerConstant(50))) {

rp.delete(lastDeletedRid);
lastDeletedRid = new RecordId(rp.currentBlk(), rp.currentId());

}
}

// Part 2: insert into empty slot if exist
rp.moveToId(-1); // point before the first record
boolean hasFreeSlot = rp.insertIntoNextEmptySlot();
if (hasFreeSlot) {

rp.setVal("s-id", new IntegerConstant(65));
...

}
rp.close(); // unpin the buffer
tx.commit();

Formatting Record Page

• A record page has a specific structure

– Partitioned into slot, with the value of the first
integer in each slot as usage flag

• Formatting the record page before it can be
used

• The class RecordFormatter performs this
service, via its method format

54

RecordFormatter : PageFormatter

+ RecordFormatter(ti : TableInfo)

+ format(page : Page)

File Header

• The class FileHeaderPage manages the
header

– The pointer to the deleted slot chain

– The tail slot

55

FileHeaderPage

+ FileHeaderPage(fileName : String, tx : Transaction)

+ close()

+ hasDataRecords() : boolean

+ hasDeletedSlots() : boolean

+ getLastDeletedSlot() : RecordId

+ getTailSlot() : RecordId

+ setLastDeletedSlot(rid : RecordId)

+ setTailSlot(rid : RecordId)

Managing the Records in a File

• A record file consists of several record pages

– Data access API is similar to record pages

• Record file manages the file properties

– File header, file size

– Appends new block at the end of file

– Maintains the current position in a file and uses
the data manipulation methods of the record page

Record File

header block block 2

r0

block 1

Tail
Free space

pointer r1 r2 r0 r2 r3

block 3

r0 r2 r3r1 ...

56

RecordFile

• Manages a file of records and calls the
concurrency manager to ensure isolation
property

• Provides methods for iterating through the
records and accessing their contents

57

RecordFile

58

RecordFile: Record

+ formatFileHeader(fileName : String, tx : Transaction)

+ RecordFile(ti : TableInfo , tx : Transaction, doLog :

boolean)

+ close()

+ beforeFirst()

+ next() : boolean

+ getVal(fldName : String) : Constant

+ setVal(fldName : String, val : Constant)

+ delete()

+ insert()

+ moveToRecordId(rid : RecordId)

+ currentRecordId() : RecordId

+ fileSize() : long

Accessing Records in a Record File

• Sample code of using a record file

Caution:
When inserting a new record, all the fields should have inserted values.
Otherwise, the user might read some unpredictable value 59

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = ...;
RecordFile rf = ti.open(tx, true);
rf.beforeFirst();

// Part 1: reads records and delete records
while (rf.next())

if (rf.getVal("s-id").equals(new IntegerConstant(50)))
rf.delete();

rf.close();

// Part 2: insert new record
rf = ti.open(tx, true);
for (int id = 0; id < 100; id++) {

rf.insert();
rf.setVal("s-id", new IntegerConstant(id));
rf.setVal("s-name", new VarcharConstant("student" + id));
rf.setVal("major-id", new IntegerConstant((id % 3 + 1) * 10));
rf.setVal("grad-year", new BigIntConstant(2016));

}
rf.close();

Recap of Data Access Layers

60

RecordFileA

RecordPage

Buffer Buffer Buffer

BufferMgr

...

...

RecordFileB

RecordPage

...

Page Page Page

ByteBuffer ByteBuffer ByteBuffer

FileA

Block1 Block2

...

FileB

Block1 Block2

...

FileChannelA

FileMgr

FileChannelB

r8 r9

r8 r9

r9 r10

r9 r10

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

– How records are stored?

– Which blocks to pin?

– Working with the recovery and concurrency
manager to ensure tx ACID

61

Which Block to Pin?

• Each RecordFile instance pins only two
pages:

– RecordPage corresponding to the current
position

– FileHeaderPage

• Unpin upon close()

– This is why a JDBC user should close a
ResultSet as soon as possible

62

Outline

• Overview

• Design Considerations for Record Manager

• The VanillaCore Record Manager

– How records are stored?

– Which blocks to pin?

– Working with the recovery and concurrency
manager to ensure tx ACID

63

Tx Support

• C and I by working with ConcurrencyManager

– All read/write from/to files and blocks must obtain
appropriate locks first via
concurrencyMgr.read/modifyXxx()

• A and D by working with RecoveryManager

– All set values are logged via
recoveryMgr.logXxx()

– By virtue of WAL implementation in memory-
management layer

64

References

• Database page layout of PostgreSQL.
http://www.postgresql.org/docs/8.0/static/stora
ge-page-layout.html

• Microsoft SQL Server page structure.
http://msdn.microsoft.com/en-
us/library/ms190969(v=sql.105).aspx

• Database Design and Implementation, chapter 15.
Edward Sciore.

• Database system concepts 6/e, chapter 10.
Silberschatz.

65

http://www.postgresql.org/docs/8.0/static/storage-page-layout.html
http://msdn.microsoft.com/en-us/library/ms190969(v=sql.105).aspx

