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BlockId

public class BlockId {
private String fileName;
private long blkNum;

public BlockId(String fileName, long blkNum) {
this.fileName = fileName;
this.blkNum = blkNum;

}

public String fileName() {
return fileName;

}

public long number() {
return blkNum;

}
...

}

BlockId

+ BlockId(filename : String, blknum : long)

+ fileName() : String

+ number() : long

+ equals(Object : obj) : boolean

+ toString() : String

+ hachCode() : int
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Page
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Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int

+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : BlockId)

<<synchronized>> + write(blk : BlockId)

<<synchronized>> + append(filename : String) : BlockId

<<synchronized>> + getVal(offset : int, type : Type) : Constant

<<synchronized>> + setVal(offset : int, val : Constant)

+ close()



Page

• Backed by IoBuffer

• Translate constants using Constant.asBytes()

– Fixed length for numeric type constants (e.g., 4 bytes for 
IntegerConstant)

– Variable length for VarcharConstant

• How to reconstruct a varchar constant in getter?
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private IoBuffer contents = IoAllocator.newIoBuffer(BLOCK_SIZE);



Storing A Varchar

• Page stores a Varchar in two parts

– The first is the length of those bytes

– The second is the bytes from asByte()
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byte
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setVal
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public synchronized void setVal(int offset, Constant val) {
byte[] byteval = val.asBytes();

// Append the size of value if it is not fixed size
if (!val.getType().isFixedSize()) {

// check the field capacity and value size
if (offset + ByteHelper.INT_SIZE + byteval.length > BLOCK_SIZE)

throw new BufferOverflowException();

byte[] sizeBytes = ByteHelper.toBytes(byteval.length);
contents.put(offset, sizeBytes);
offset += sizeBytes.length;

}

// Put bytes
contents.put(offset, byteval);

}
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getVal
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public synchronized Constant getVal(int offset, Type type) {
int size;
byte[] byteVal = null;

// Check the length of bytes
if (type.isFixedSize()) {

size = type.maxSize();
} else {

byteVal = new byte[ByteHelper.INT_SIZE];
contents.get(offset, byteVal);
size = ByteHelper.toInteger(byteVal);
offset += ByteHelper.INT_SIZE;

}

// Get bytes and translate it to Constant
byteVal = new byte[size];
contents.get(offset, byteVal);
return Constant.newInstance(type, byteVal);

}
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Sizing Information 

• There are static APIs providing sizing 
information in Page
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public static int maxSize(Type type) {
return type.isFixedSize() ? type.maxSize() : ByteHelper.INT_SIZE

+ type.maxSize();
}

public static int size(Constant val) {
return val.getType().isFixedSize() ? val.size() : ByteHelper.INT_SIZE

+ val.size();
}



File I/Os
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public Page() {
}

public synchronized void read(BlockId blk) {
fileMgr.read(blk, contents);

}

public synchronized void write(BlockId blk) {
fileMgr.write(blk, contents);

}

public synchronized BlockId append(String fileName) {
return fileMgr.append(fileName, contents);

}



FileMgr

• Handles the actual I/Os

• Keeps the IoChannel instances of all 
opened files
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FileMgr

<<final>> + DB_FILES_DIR : String

<<final>> + LOG_FILES_DIR : String

<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

<<synchronized>> ~ read(blk : BlockId, buffer : IoBuffer)

<<synchronized>> ~ write(blk : BlockId, buffer : IoBuffer)

<<synchronized>> ~ append(filename : String, buffer : IoBuffer) : BlockId

<<synchronized>> + size(filename : String) : long

+ isNew() : boolean

+ rebuildLogFile()



FileMgr

• A page delegates read, write and, append
to FileMgr

• Note that the file manager always 
reads/writes/appends a block-sized number 
of bytes from/to a file

– Exactly one disk access per call
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file.io
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IOAllocator

+ newIoBuffer(capacity : int) : IoBuffer

+ newIoChannel(file : File) : IoChannel

<<interface>>

IoBuffer

+ get(position : int, dst : byte[]) : IoBuffer

+ put(position : int, src : byte[]) : IoBuffer

+ clear()

+ rewind()

+ close()

<<interface>>

IoChannel

+ read(buffer : IoBuffer, position : long) : int

+ write(buffer : IoBuffer, position : long) : int

+ append(buffer : IoBuffer) : long

+ size() : long

+ close()



IoChannel in Java NIO

• Opens a file by creating a new 
RandomAccessFile instance and then obtain 
its file channel via getChannel()

• Files are open in “rws” mode when using Java 
NIO
– The “rw” means that the file is open for reading an 

writing
– The “s” means that the OS should not delay disk I/O in 

order to optimize disk performance; instead, every 
write operation must be written immediately  to the 
disk
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IoBuffer in Java NIO

• We don’t want the memory space of 
ByteBuffer be swapped out by OS

• ByteBuffer has two factory methods: 
allocate and allocateDirect
– allocateDirect tells JVM to use one of the OS’s I/O 

buffers to hold the bytes

– Not in Java programmable buffer, no garbage 
collection

– Eliminates the redundancy of double buffering
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Double Buffering

20

OS’s IO Buffers

JVM’s Heap Space

Buffer

Buffer

Block Data

A File’s Data

Memory

Disk
Read

Copy

get/set bytes

allocate

Buffer

allocateDirect get/set bytes

Block Data

Read



Outline

• File package

• Buffer package

21



Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaDB 

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Blocked

Where are we?

22



buffer Package
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BufferMgr vs. BufferPoolMgr

• Each transaction has its own BufferMgr, 
but there is only one BufferPoolMgr

• Responsibility

– BufferPoolMgr manages the buffer pool

– BufferMgr handles waiting for pinning and 
manages pinned buffers for each transaction
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BufferPoolMgr
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BufferPoolMgr

~ BufferPoolMgr(numbuffs : int)

<<synchronized>> ~ flushAll()

<<synchronized>> ~ flushAll(txnum : long)

<<synchronized>> ~ pin(blk : BlockId) : boolean

<<synchronized>> ~ pinNew(filename : String, fmtr : PageFormatter) : Buffer

<<synchronized>> ~ unpin(buffs : Buffer[])

<<synchronized>> ~ available() : int



BufferPoolMgr

• Singleton

• Finds a hit for a pin()

• Implements the clock replacement strategy

• The pin() returns null immediately if there’s 
no candidate buffer

– Then, the BufferMgr make the calling thread 
waiting and retrying later
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BufferMgr
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BufferMgr  : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

+ pin(blk : BlockId) 

+ pinNew(filename : String, fmtr : PageFormatter) : Buffer

+ unpin(buff : Buffer)

+ flushAll()

+ flushAll(txNum)

+ available() : int



BufferMgr

• Created when constructing a transaction

• A BufferMgr manages the pinned buffers and the 
pinning counts of a transaction

• BufferMgr.pin() makes the calling thread to 
wait if there’s no candidate buffer for replacement
– How?
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Java wait() and notifyAll() 
Methods

• In Java, every object has a waiting list

– obj.wait(timeout) puts the caller thread 
into the waiting list of obj

• The thread will be removed from the list and 
ready for execution in two conditions:

– Another thread call obj.notifyAll()

– Timeout elapsed
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Java wait() and notifyAll() 
Methods

• If…
1. obj.wait() is  surrounded by a synchronized block, 

and 

2. there are multiple threads in obj’s waiting list, 

• Then when notifyAll() is called, all waiting 
threads will compete on the lock to enter the 
synchronized block

– No FIFO guarantee which thread will be notified first, and 
which will acquire the lock first

– Only one thread wins the lock, others blocked until the 
winner releases the lock
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BufferMgr

• pin(): if BufferPoolMgr returns null, put the 
current thread into BufferPoolMgr‘s waiting list

• unpin(buff): notify all threads in 
BufferPoolMgr‘s waiting list
– Only one thread will pin successfully due to the 

synchronization
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buff = bufferPool.pin(blk);
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
buff = bufferPool.pin(blk);

}



32

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Synchronize on the buffer pool (singleton)
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Find the given block from the pinned buffers
of this transaction
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Pins the requested block

Add the buffer to the pinned list of this transaction
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

If there was not any available buffer, 
make the thread waiting

The thread in the head of the list can pin

Wake up other thread again
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Waitting too long? There might be deadlock.
Re-pin all blocks
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public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Self-deadlock: throw exception



Buffer

• Wraps a page and stores
– ID of the holding block
– Pin count
– Modified information
– Log information

• Supports WAL
– setVal() requires an LSN

• Must be preceded by 
LogMgr.append()

– flush() calls 
LogMgr.flush(maxLsn)

• Called by BufferMgr upon 
swapping 
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Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type : Type) : 

Constant

<<synchronized>> + setVal(offset : int, val : 

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) : 

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew (filename : String, 

fmtr : PageFormatter)



PageFormatter

• The pinNew(fmtr) method 
of BufferMgr appends a new 
block to a file

• PageFormatter initializes
the block
– To be extended in packages 

( storage.record and  
storage.index.btree) where the 
semantics of records are defined 
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class ZeroIntFormatter implements PageFormatter {
public void format(Page p) {

Constant zero = new IntegerConstant(0);
int recsize = Page.size(zero);
for (int i = 0; i + recsize <= Page.BLOCK_SIZE; i += recsize)

p.setVal(i, zero);
}

}

<<interface>>

PageFormatter

+ format(p : Page)


