VanillaCore Walkthrough
Part 2

Introduction to
Datala
CS, NTH

Databases

D

U

The Unlocked Modules

VanillaDB

Remote.JDBC (Client/Server)

Outline

* File package
* Buffer package

Outline

* File package

Where are we?

VanillaDB

.JDBC (Client/Server)

Remote

file Package

Blockld

FileMgr
BufferMgr

1O Interfaces

Java NIO Jaydio

Implementation Implementation

|

| !
I |
I I
I |
. I

| V2 implements . |
I I
I |
I I
I |
I I
|

BlockId

public class BlockId {
private String fileName;
private long blkNum;

public BlockId(String fileName, long blkNum) {
this.fileName = fileName;
this.blkNum = blkNum;

¥

public String fileName() { Blockld
return fileName;

¥

+ Blockld(filename : String, blknum : long)

public long number() { + fileName() : String

) + number() : long
return blkNum; + equals(Object : obj) : boolean

¥ + toString() : String
<o + hachCode() : int

Page

Page

<<final>> + BLOCK SIZE : int

+ maxSize(type : Type) : int
+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : Blockld)

<<synchronized>> + write(blk : Blockld)

<<synchronized>> + append(filename : String) : Blockld
<<synchronized>> + getVal(offset : int, type : Type) : Constant
<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

Page

 Backed by IoBuffer

private IoBuffer contents = IoAllocator.newIoBuffer(BLOCK SIZE);

* Translate constants using Constant.asBytes ()

— Fixed length for numeric type constants (e.g., 4 bytes for
IntegerConstant)

— Variable length for VarcharConstant

 How to reconstruct a varchar constant in getter?

Storing A Varchar

* Page stores a Varchar in two parts

— The first is the length of those bytes
— The second is the bytes from asByte ()

byte

setVal

public synchronized void setVal(int offset, Constant val) {
byte[] byteval = val.asBytes();

// Append the size of value if it is not fixed size
if (!val.getType().isFixedSize()) {
// check the field capacity and value size
if (offset + ByteHelper.INT SIZE + byteval.length > BLOCK SIZE)
throw new BufferOverflowException();

byte[] sizeBytes = ByteHelper.toBytes(byteval.length);
contents.put(offset, sizeBytes);
offset += sizeBytes.length;

}

10 ! 42
// Put bytes
contents.put(offset, byteval); ? f

} String Integer

11

getVal

public synchronized Constant getVal(int offset, Type type) {
int size;

byte[] byteval = null; — S—
10 42

// Check the length of bytes ?

if (type.isFixedSize()) { String Integer

size = type.maxSize();

} else {
byteVal = new byte[ByteHelper.INT SIZE];
contents.get(offset, byteVal);
size = ByteHelper.toInteger(byteVal);
offset += ByteHelper.INT SIZE;

}

// Get bytes and translate it to Constant
byteVal = new byte[size];
contents.get(offset, byteVal);

return Constant.newInstance(type, byteVal);

12

Sizing Information

* There are static APIs providing sizing
information in Page

public static int maxSize(Type type) {
return type.isFixedSize() ? type.maxSize() : ByteHelper.INT SIZE
+ type.maxSize();

}

public static int size(Constant val) {
return val.getType().isFixedSize() ? val.size() : ByteHelper.INT SIZE
+ val.size();

File 1/Os

public Page() {
}

public synchronized void read(BlockId blk) {
fileMgr.read(blk, contents);

}

public synchronized void write(BlockId blk) {
fileMgr.write(blk, contents);

}

public synchronized BlockId append(String fileName) {
return fileMgr.append(fileName, contents);

}

14

F'11leMgr

 Handles the actual I/Os

 Keeps the IoChannel instances of all
opened files

FileMgr

<<final>> + DB_FILES_DIR : String
<<final>> + LOG_FILES_DIR : String
<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

<<synchronized>> ~ read(blk : Blockld, buffer : loBuffer)
<<synchronized>> ~ write(blk : Blockld, buffer : loBuffer)
<<synchronized>> ~ append(filename : String, buffer : loBuffer) : Blockld
<<synchronized>> + size(filename : String) : long

+ isNew() : boolean

+ rebuildLogFile()

F'11leMgr

* A page delegates read, write and, append
toF1leMgr
* Note that the file manager always

reads/writes/appends a block-sized number
of bytes from/to a file

— Exactly one disk access per call

file.10

IOAllocator

+ newloBuffer(capacity : int) : loBuffer

+ newloChannel(file : File) : loChannel

<<interface>>
loBuffer

<<interface>>
loChannel

+ get(position : int, dst : byte[]) : loBuffer
+ put(position : int, src : byte[]) : loBuffer

+ clear()
+ rewind()
+ close()

+ read(buffer : loBuffer, position : long) : int
+ write(buffer : loBuffer, position : long) : int
+ append(buffer : loBuffer) : long

+ size() : long

+ close()

ToChannel inJava NIO

* Opens a file by creating a new
RandomAccessFile instance and then obtain
its file channel via getChannel ()

* Files are open in “rws” mode when using Java
NIO

— The “rw” means that the file is open for reading an
writing
— The “s” means that the OS should not delay disk I/O in

order to optimize disk performance; instead, every

write operation must be written immediately to the
disk

ToRufferinlava NIO

 We don’t want the memory space of
ByteBuffer be swapped out by OS

* ByteBuffer hastwo factory methods:
allocateandallocateDirect

— allocateDirect tells JVM to use one of the OS’s |/O
buffers to hold the bytes

— Not in Java programmable buffer, no garbage
collection

— Eliminates the redundancy of double buffering

Memory

Double Buffering

get/set bytes

allocate

Disk

allocateDirect

Block Data

get/set bytes

20

Outline

* Buffer package

Where are we?

VanillaDB

Remote.JDBC (Client/Server)

Qu

m
a
m/

ery Interface

buf fer Package

One per transaction

BufferMgr

BufferPoolMgr
(Singleton)

uses Pages

23

ButfferMgr vs. BufferPoolMgr

* Each transaction has its own Buf ferMgr,
but there is only one BufferPoolMgr

* Responsibility
— BufferPoolMgr manages the buffer pool

— Buf ferMgr handles waiting for pinning and
manages pinned buffers for each transaction

BufferPoolMgr

BufferPoolMgr

~ BufferPoolMgr(numbuffs : int)

<<synchronized>> ~ flushAll()

<<synchronized>> ~ flushAll(txnum : long)

<<synchronized>> ~ pin(blk : Blockld) : boolean

<<synchronized>> ~ pinNew(filename : String, fmtr : PageFormatter) : Buffer
<<synchronized>> ~ unpin(buffs : Buffer[])

<<synchronized>> ~ available() : int

BufferPoolMgr

Singleton
Finds a hitforapin ()

Implements the clock replacement strategy

The pin () returns null immediately if there’s
no candidate buffer

— Then, the Buf ferMgr make the calling thread
waiting and retrying later

ButferMgr

BufferMgr : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()
+ onTxCommit(tx

. Transaction)

+ onTxRollback(tx : Transaction)

+ onTxXEndStatement(tx : Transaction)

+ pin(blk : Blockld)

+ pinNew(filename : String, fmtr : PageFormatter) : Buffer
+ unpin(buff : Buffer)

+ flushAll()
+ flushAll(txNum)
+ available() : int

27

ButferMgr

* Created when constructing a transaction

* ABufferMgr manages the pinned buffers and the
pinning counts of a transaction

e BufferMgr.pin () makes the calling thread to
wait if there’s no candidate buffer for replacement
— How?

Javawait () and notifvyAll ()
Methods

* |n Java, every object has a waiting list

—obj.wait (timeout) puts the caller thread
into the waiting list of ol]

e The thread will be removed from the list and
ready for execution in two conditions:

— Another thread call obj .notifyAll ()
— Timeout elapsed

Javawait () and notifvyAll ()
Methods

e If...

1. obj.wait () is surrounded by a synchronized block,
and

2. there are multiple threads in obj’s waiting list,

e ThenwhennotifyAll () iscalled, all waiting
threads will compete on the lock to enter the
synchronized block

— No FIFO guarantee which thread will be notified first, and
which will acquire the lock first

— Only one thread wins the lock, others blocked until the
winner releases the lock

ButferMgr

pin ():ifBufferPoolMgr returns null, put the
current thread into Buf ferPoolMgr's waiting list

buff = bufferPool.pin(blk);

while (buff == null && !waitingToolLong(timestamp)) {
bufferPool .wait(MAX_ TIME);
buff = bufferPool.pin(blk);

}

unpin (buff): notify all threads in
BufferPoolMgr's waiting list

— Only one thread will pin successfully due to the
synchronization

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {
PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {
pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;
¥
if (pinnedBuffers.size() == BUFFER POOL_SIZE)
throw new BufferAbortException();
try {
Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {
waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {
bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))
buff = bufferPool.pin(blk);
¥
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyALL();

}
if (buff == null) {
repin();
buff = pin(blk);
} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));
}

return buff;
} catch (InterruptedException e) {
throw new BufferAbortException();

}

lic Buffer pin(BlockId blk
pub csynuchrinipz o d((b?;cf > e‘jﬂ Pt:) o L)) {{ Synchronize on the buffer pool (singleton)
PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {
pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER _POOL_SIZE)

throw new BufferAbortException();
try {
Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blR);
if (buff == null) {
waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {
bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))
buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyALL();

}
if (buff == null) {
repin();
buff = pin(blk);
} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));
}

return buff;
} catch (InterruptedException e) {
throw new BufferAbortException();

}

} 33

public Buffer pin(BlockId blk) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);

if (pinnedBuff I= null) { - ; :
pinnedBuff.pinnedCount++; Find the given block from the pinned buffers

return pinnedBuff.buffer; of this transaction

34

public Buffer pin(BlockId blk) {

Buffer buff;

buff = bufferPool.pin(blk);
i

Pins the requested block

Add the buffer to the pinned list of this transaction
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

return buff;

35

public Buffer pin(BlockId blk) {

Buffer buff;
long timestamp = System.currentTimeMillis(); | If there was not any available buffer,
buff = bufferPool.pin(blk); make the thread waiting
if (buff == null) {
waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {
bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))
} buff = bufferpool.pin(blk); The thread in the head of the list can pin
waitingThreads.remove(Thread.currentThread());

bufferPool.notifyALL();
} Wake up other thread again

pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

return buff;

} 36

public Buffer pin(BlockId blk) {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {
waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {
bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))
buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyALL();

}
if (buff == null) {
repin(); Waitting too long? There might be deadlock.
buff = p1n(b1k), Re-pin all blocks
} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));
}

return buff;

} 37

public Buffer pin(BlockId blk) {
synchronized (bufferpPool) {
PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {
pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}

if (pinnedBuffers.size() == BUFFER_POOL_SIZE)
throw new BufferAbortException();

Self-deadlock: throw exception

try {
Buffer buff;

long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blR);
if (buff == null) {
waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {
bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))
buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyALL();

}
if (buff == null) {
repin();
buff = pin(blk);
} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));
}

return buff;
} catch (InterruptedException e) {
throw new BufferAbortException();

}

38

Buffer

Wraps a page and stores Buffer
— |ID of the holding block
— Pin count
.« fo . . ~ Buffer()
- MOd |f|ed |nf0 rmation <<synchronized>> + getVal(offset : int, type : Type) :
. . Constant
- LOg |nf0 rmation <<synchronized>> + setVal(offset : int, val :
Constant , txnum : long, Isn : long)
Supports WAL <<synchronized>> + block() : Blockld

<<synchronized>> ~ flush()

— setVal () requires an LSN <<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

* Must be preceded by <<synchronized>> ~ isPinned() : boolean
LogMgr.append () <<synchronized>> ~ isModifiedBy(txNum : long) :
boolean
— flush () ca lls <<synchronized>> ~ assignToBlock(b : Blockd)

<<synchronized>> ~ assignToNew (filename : String,
fmtr : PageFormatter)

LogMgr.flush (maxLsn)
* Called by Buf ferMgr upon

swapping

PageFormatter

* The pinNew (fmtr) method

of Buf ferMgr appends a new e
block to a file

° PageFOrmatter |nit|allzes + format(p : Page)
the block

— To be extended in packages
(storage.record and

storage.index.btree)where the
semantics of records are defined

class ZeroIntFormatter implements PageFormatter {
public void format(Page p) {
Constant zero = new IntegerConstant(9);
int recsize = Page.size(zero);

for (int i = @; 1 + recsize <= Page.BLOCK SIZE; 1 += recsize)
p.setVal(i, zero);

