
VanillaCore Walkthrough
Part 2

Introduction to Databases

DataLab

CS, NTHU

1

The Unlocked Modules

2

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaDB

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Blocked

Outline

• File package

• Buffer package

3

Outline

• File package

• Buffer package

4

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaDB

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Blocked

Where are we?

5

file Package

6

FileMgr

Page

BlockId

IO Interfaces

Java NIO
Implementation

Jaydio
Implementation

uses

uses

implements

uses

uses
BufferMgr

BlockId

public class BlockId {
private String fileName;
private long blkNum;

public BlockId(String fileName, long blkNum) {
this.fileName = fileName;
this.blkNum = blkNum;

}

public String fileName() {
return fileName;

}

public long number() {
return blkNum;

}
...

}

BlockId

+ BlockId(filename : String, blknum : long)

+ fileName() : String

+ number() : long

+ equals(Object : obj) : boolean

+ toString() : String

+ hachCode() : int

7

Page

8

Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int

+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : BlockId)

<<synchronized>> + write(blk : BlockId)

<<synchronized>> + append(filename : String) : BlockId

<<synchronized>> + getVal(offset : int, type : Type) : Constant

<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

Page

• Backed by IoBuffer

• Translate constants using Constant.asBytes()

– Fixed length for numeric type constants (e.g., 4 bytes for
IntegerConstant)

– Variable length for VarcharConstant

• How to reconstruct a varchar constant in getter?

9

private IoBuffer contents = IoAllocator.newIoBuffer(BLOCK_SIZE);

Storing A Varchar

• Page stores a Varchar in two parts

– The first is the length of those bytes

– The second is the bytes from asByte()

10

byte

10

setVal

11

public synchronized void setVal(int offset, Constant val) {
byte[] byteval = val.asBytes();

// Append the size of value if it is not fixed size
if (!val.getType().isFixedSize()) {

// check the field capacity and value size
if (offset + ByteHelper.INT_SIZE + byteval.length > BLOCK_SIZE)

throw new BufferOverflowException();

byte[] sizeBytes = ByteHelper.toBytes(byteval.length);
contents.put(offset, sizeBytes);
offset += sizeBytes.length;

}

// Put bytes
contents.put(offset, byteval);

}

10

String

42

Integer

getVal

12

public synchronized Constant getVal(int offset, Type type) {
int size;
byte[] byteVal = null;

// Check the length of bytes
if (type.isFixedSize()) {

size = type.maxSize();
} else {

byteVal = new byte[ByteHelper.INT_SIZE];
contents.get(offset, byteVal);
size = ByteHelper.toInteger(byteVal);
offset += ByteHelper.INT_SIZE;

}

// Get bytes and translate it to Constant
byteVal = new byte[size];
contents.get(offset, byteVal);
return Constant.newInstance(type, byteVal);

}

10

String

42

Integer

Sizing Information

• There are static APIs providing sizing
information in Page

13

public static int maxSize(Type type) {
return type.isFixedSize() ? type.maxSize() : ByteHelper.INT_SIZE

+ type.maxSize();
}

public static int size(Constant val) {
return val.getType().isFixedSize() ? val.size() : ByteHelper.INT_SIZE

+ val.size();
}

File I/Os

14

public Page() {
}

public synchronized void read(BlockId blk) {
fileMgr.read(blk, contents);

}

public synchronized void write(BlockId blk) {
fileMgr.write(blk, contents);

}

public synchronized BlockId append(String fileName) {
return fileMgr.append(fileName, contents);

}

FileMgr

• Handles the actual I/Os

• Keeps the IoChannel instances of all
opened files

15

FileMgr

<<final>> + DB_FILES_DIR : String

<<final>> + LOG_FILES_DIR : String

<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

<<synchronized>> ~ read(blk : BlockId, buffer : IoBuffer)

<<synchronized>> ~ write(blk : BlockId, buffer : IoBuffer)

<<synchronized>> ~ append(filename : String, buffer : IoBuffer) : BlockId

<<synchronized>> + size(filename : String) : long

+ isNew() : boolean

+ rebuildLogFile()

FileMgr

• A page delegates read, write and, append
to FileMgr

• Note that the file manager always
reads/writes/appends a block-sized number
of bytes from/to a file

– Exactly one disk access per call

16

file.io

17

IOAllocator

+ newIoBuffer(capacity : int) : IoBuffer

+ newIoChannel(file : File) : IoChannel

<<interface>>

IoBuffer

+ get(position : int, dst : byte[]) : IoBuffer

+ put(position : int, src : byte[]) : IoBuffer

+ clear()

+ rewind()

+ close()

<<interface>>

IoChannel

+ read(buffer : IoBuffer, position : long) : int

+ write(buffer : IoBuffer, position : long) : int

+ append(buffer : IoBuffer) : long

+ size() : long

+ close()

IoChannel in Java NIO

• Opens a file by creating a new
RandomAccessFile instance and then obtain
its file channel via getChannel()

• Files are open in “rws” mode when using Java
NIO
– The “rw” means that the file is open for reading an

writing
– The “s” means that the OS should not delay disk I/O in

order to optimize disk performance; instead, every
write operation must be written immediately to the
disk

18

IoBuffer in Java NIO

• We don’t want the memory space of
ByteBuffer be swapped out by OS

• ByteBuffer has two factory methods:
allocate and allocateDirect
– allocateDirect tells JVM to use one of the OS’s I/O

buffers to hold the bytes

– Not in Java programmable buffer, no garbage
collection

– Eliminates the redundancy of double buffering

19

Double Buffering

20

OS’s IO Buffers

JVM’s Heap Space

Buffer

Buffer

Block Data

A File’s Data

Memory

Disk
Read

Copy

get/set bytes

allocate

Buffer

allocateDirect get/set bytes

Block Data

Read

Outline

• File package

• Buffer package

21

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaDB

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Blocked

Where are we?

22

buffer Package

23

BufferPoolMgr
(Singleton)

BufferMgrPageFormatter

uses

uses Pages

uses

One per transaction

Buffer Pool

Buffer BufferBufferBuffer Buffer

BufferMgr vs. BufferPoolMgr

• Each transaction has its own BufferMgr,
but there is only one BufferPoolMgr

• Responsibility

– BufferPoolMgr manages the buffer pool

– BufferMgr handles waiting for pinning and
manages pinned buffers for each transaction

24

BufferPoolMgr

25

BufferPoolMgr

~ BufferPoolMgr(numbuffs : int)

<<synchronized>> ~ flushAll()

<<synchronized>> ~ flushAll(txnum : long)

<<synchronized>> ~ pin(blk : BlockId) : boolean

<<synchronized>> ~ pinNew(filename : String, fmtr : PageFormatter) : Buffer

<<synchronized>> ~ unpin(buffs : Buffer[])

<<synchronized>> ~ available() : int

BufferPoolMgr

• Singleton

• Finds a hit for a pin()

• Implements the clock replacement strategy

• The pin() returns null immediately if there’s
no candidate buffer

– Then, the BufferMgr make the calling thread
waiting and retrying later

26

BufferMgr

27

BufferMgr : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

+ pin(blk : BlockId)

+ pinNew(filename : String, fmtr : PageFormatter) : Buffer

+ unpin(buff : Buffer)

+ flushAll()

+ flushAll(txNum)

+ available() : int

BufferMgr

• Created when constructing a transaction

• A BufferMgr manages the pinned buffers and the
pinning counts of a transaction

• BufferMgr.pin() makes the calling thread to
wait if there’s no candidate buffer for replacement
– How?

28

Java wait() and notifyAll()
Methods

• In Java, every object has a waiting list

– obj.wait(timeout) puts the caller thread
into the waiting list of obj

• The thread will be removed from the list and
ready for execution in two conditions:

– Another thread call obj.notifyAll()

– Timeout elapsed

29

Java wait() and notifyAll()
Methods

• If…
1. obj.wait() is surrounded by a synchronized block,

and

2. there are multiple threads in obj’s waiting list,

• Then when notifyAll() is called, all waiting
threads will compete on the lock to enter the
synchronized block

– No FIFO guarantee which thread will be notified first, and
which will acquire the lock first

– Only one thread wins the lock, others blocked until the
winner releases the lock

30

BufferMgr

• pin(): if BufferPoolMgr returns null, put the
current thread into BufferPoolMgr‘s waiting list

• unpin(buff): notify all threads in
BufferPoolMgr‘s waiting list
– Only one thread will pin successfully due to the

synchronization

31

buff = bufferPool.pin(blk);
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
buff = bufferPool.pin(blk);

}

32

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

33

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Synchronize on the buffer pool (singleton)

34

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Find the given block from the pinned buffers
of this transaction

35

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Pins the requested block

Add the buffer to the pinned list of this transaction

36

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

If there was not any available buffer,
make the thread waiting

The thread in the head of the list can pin

Wake up other thread again

37

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Waitting too long? There might be deadlock.
Re-pin all blocks

38

public Buffer pin(BlockId blk) {
synchronized (bufferPool) {

PinnedBuffer pinnedBuff = pinnedBuffers.get(blk);
if (pinnedBuff != null) {

pinnedBuff.pinnedCount++;
return pinnedBuff.buffer;

}
if (pinnedBuffers.size() == BUFFER_POOL_SIZE)

throw new BufferAbortException();
try {

Buffer buff;
long timestamp = System.currentTimeMillis();
buff = bufferPool.pin(blk);
if (buff == null) {

waitingThreads.add(Thread.currentThread());
while (buff == null && !waitingTooLong(timestamp)) {

bufferPool.wait(MAX_TIME);
if (waitingThreads.get(0).equals(Thread.currentThread()))

buff = bufferPool.pin(blk);
}
waitingThreads.remove(Thread.currentThread());
bufferPool.notifyAll();

}
if (buff == null) {

repin();
buff = pin(blk);

} else {
pinnedBuffers.put(buff.block(), new PinnedBuffer(buff));

}
return buff;

} catch (InterruptedException e) {
throw new BufferAbortException();

}
}

}

Self-deadlock: throw exception

Buffer

• Wraps a page and stores
– ID of the holding block
– Pin count
– Modified information
– Log information

• Supports WAL
– setVal() requires an LSN

• Must be preceded by
LogMgr.append()

– flush() calls
LogMgr.flush(maxLsn)

• Called by BufferMgr upon
swapping

39

Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type : Type) :

Constant

<<synchronized>> + setVal(offset : int, val :

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) :

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew (filename : String,

fmtr : PageFormatter)

PageFormatter

• The pinNew(fmtr) method
of BufferMgr appends a new
block to a file

• PageFormatter initializes
the block
– To be extended in packages

(storage.record and
storage.index.btree) where the
semantics of records are defined

40

class ZeroIntFormatter implements PageFormatter {
public void format(Page p) {

Constant zero = new IntegerConstant(0);
int recsize = Page.size(zero);
for (int i = 0; i + recsize <= Page.BLOCK_SIZE; i += recsize)

p.setVal(i, zero);
}

}

<<interface>>

PageFormatter

+ format(p : Page)

