
Memory Management

Shan-Hung Wu & DataLab

CS, NTHU

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Memory Management

2

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

3

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

4

Consequences of Slow I/Os

• Architecture that minimizes I/Os:
– Block access to/from disks

– Self-managed caching of blocks

– Choose the plan that costs least (fewest block I/Os)

Main Memory

Clients

OS File System

DBMS File Manager

DisksBlocks

Pages

5

Storage Access Patterns

IBM Systems Journal, 1971
6

Storage Access Patterns

• Spatial locality: each client (e.g., scan) focuses
on a small number of blocks a time

– Despite ending up with huge block accesses

– E.g., to produce the next output record, a product
scan needs only two blocks a time (left and right)

• Temporal locality: recently used blocks are
likely to be used in the near future

– E.g., blocks of catalogs

7

Minimizing Disk Access by Caching

• Idea: to reserve a pool of pages that keep the
contents of most currently used blocks

– To swap in/out blocks only when there’s no empty
page left in the pool

8

Main Memory

Clients

OS File System

DBMS File Manager

DisksBlocks

Pages

Benefits

• Economic: only small memory space required

• Saves reads (if a requested block hits a page)

• Saves writes: all values set to a block only
need to be written once upon swapping

9

Main Memory

Clients

OS File System

DBMS File Manager

DisksBlocks

Pages

Why not virtual memory?

10

Virtual Memory

• Modern OSs
support virtual
memory

• Illusion: a very large
address space for
each process

– Larger than physical
memory

From http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/
Chapter9/9_01_VirtualMemoryLarger.jpg 11

Don’t Rely on Virtual Memory (1/2)

• Problem 1: bad page replacement algorithms

– E.g., FIFO, LRU, etc.

• OS has no idea which blocks will probably be
used by a process in the near future

– E.g., DBMS knows a user is likely to read the next
record in a block (via scan.next())

– But OS doesn’t

12

Don’t Rely on Virtual Memory (2/2)

• Problem 2: uncontrolled delayed writes
– Swapping is automatic

• When powered off, dirty pages may gone
– Impairs the DBMS ability to recover after a system

crash
– Hurts durability of committed transactions

• Immediate writes?
– Impairs the caching
– Data may still corrupt due to partial writes upon crash

• Meta-writes (of logs) are needed

13

Self-Managed Pages in DBMS

• Pros:

• Controlled swapping

– Fewer I/Os than VM via better replacement
strategy

– DBMS can tell which page must/cannot be flushed

• Supports meta-writes

– DBMS can write logs to recover from crashes

14

What Blocks to Cache?

• Those of user data (DBs, including catalogs)

– Pages for these blocks are managed by the buffer
manager

• Those of logs

– In meta-writes

– Pages managed by the log manager

15

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

16

Access Pattern to User Blocks

• Random block reads and writes
– From clients directly

– Even from sequential scans (if above OS file system)

• Concurrent access to multiple blocks by multiple
threads
– Each thread per, e.g., JDBC client

• Predictable access to certain blocks
– Each scan needs certain blocks a time

– In particular, a table scan need one block a time and
can forget what just read

17

Buffer Manger

• To reduce I/Os, the buffer manager allocates a
pool of pages, called buffer pool
– Caching multiple blocks

– Implement swapping

• Pages should be the direct I/O buffers held by
the OS
– Avoids swapping by VM

– Eliminates the redundancy of double buffering

– E.g., ByteBuffer.allocateDirect()

18

How do make use of predictable block
accesses to further reduce I/Os?

19

Pinning Blocks

• Each table scan needs one block a time

– The semantic of blocks is hidden behind the
associated RecordFile

• It is the RecordFile instances that talk to
memory manager about which blocks are
needed

– One instance per thread/client

• Through pinning

20

Pinning Blocks

• When a RecordFile needs a block
1. Asks buffer manager to pin (read-in) a block in some

page
2. Client accesses the contents of the page
3. When the client is done with the block, it tells the

buffer manager to unpin the block

• When swapping, only pages containing the
unpinned blocks can be swapped out

21

Pinning Pages

• Results of pinning:
1. A hit, no I/O

2. Swapping: there exists at least one candidate
page in the buffer pool holding unpinned block
• Need to flush the page contents back to disk if the

page is dirty

• Which candidate page? replacement strategies

• Then read in the desired block

3. Waiting: all pages in the buffer pool are pinned
• Wait until some other unpins a page

22

Buffers

• Each page in the buffer pool needs to associate
with additional information:
– Is contained block pinned?
– Is contained block modified (dirty)?
– Information required by the replacement strategy

• A buffer wraps a page and hold this information
• A block can be pinned and accessed by multiple

clients
– Buffer must be thread safe (same as page)
– DBMS needs other mechanism (i.e., concurrency

control) to serialize conflict operations to a buffer

23

Example API

• A block can be pinned multiple times
• There’s no guarantee that pin()’s on the same block will

return the same buffer instance
24

Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type :

Type) : Constant

<<synchronized>> + setVal(offset : int, val :

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) :

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew(filename :

String, fmtr : PageFormatter)

BufferMgr

<<final>> # BUFFER_SIZE : int

+ BufferMgr()

<<synchronized>> + pin(blk : BlockId, txNum : long) : Buffer

<<synchronized>> + pinNew(filename : String, fmtr :

PageFormatter, txnum : long) : Buffer

<<synchronized>> + unpin(txnum : long, buffs : Buffer[])

+ flushAll(txnum : long)

+ available() : int

Buffer Replacement Strategies

• All buffers in the buffer pool begin unallocated

• Once all buffers are loaded, buffer manager
has to replace the unpinned block in some
candidate buffer to serve new pin request

• Best candidate?

– The buffer containing block that will be unused for
the longest time

– Maximizes the hit rate of pins

25

Buffer Replacement Strategies

• However, as in VM, access of blocks in unpinned
buffers is not determinable

• Heuristics needed:
– Naïve

– FIFO

– LRU

– Clock

• Some commercial systems use different heuristics
for different buffer type
– E.g., catalog buffers, index buffers, buffers for full

table scan, etc.
26

Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

27

Buffer 0 1 2 3

Block Id

time read in

time unpinned

Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

28

Buffer 0 1 2 3

Block Id 10 20 30 40

time read in 1 2 3 4

time unpinned 5

Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

29

Buffer 0 1 2 3

Block Id 10 20 30 40

time read in 1 2 3 4

time unpinned 5

Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

30

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 5

Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40);
unpin(20); pin(50); unpin(40);
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

31

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

Example

• Suppose that there are two more pin requests
coming:
– pin(60); pin(70);

• Let’s see how different replacement strategies
work

32

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

The Naïve Strategy

• Travers the buffer pool sequentially from
beginning

• Replaces the first unpinned buffer met
– pin(60); pin(70);

• Easy to implement, but?

33

Buffer 0 1 2 3

Block Id 60 70 30 40

time read in 11 12 3 4

time unpinned 8 10 9 7

The Naïve Strategy

• Problem: buffers are not evenly utilized

– pin(60); unpin(60); pin(70);
unpin(70); pin(60); unpin(60); ...

• Low hit rate

– Some buffers may contain stale data

34

Buffer 0 1 2 3

Block Id 60 50 30 40

time read in 15 6 3 4

time unpinned 16 10 9 7

The FIFO Strategy

• Chooses the buffer that contains the least-
recently-read-in block
– Each buffer records the time a block is read in

• Unpinned buffers can be maintained in a priority
queue
– Finds the target unpinned buffer in O(1) time

35

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

The FIFO Strategy

• Chooses the buffer that contains the least-
recently-read-in block
– Each buffer records the time a block is read in

• Unpinned buffers can be maintained in a priority
queue
– Finds the target unpinned buffer in O(1) time

36

Buffer 0 1 2 3

Block Id 60 50 70 40

time read in 11 6 12 4

time unpinned 8 10 9 7

The FIFO Strategy

• Assumption: the older blocks are less likely to
be used in the future

• Valid?

• Not true for, e.g., catalog blocks

37

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

The LRU Strategy

• Chooses the buffer that contains the least
recently used block

– Each buffer records the time the block is
unpinned

38

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

The LRU Strategy

• Choose the buffer that contains the least
recently used block

– Each buffer records the time the block is
unpinned

39

Buffer 0 1 2 3

Block Id 60 50 30 70

time read in 11 6 3 12

time unpinned 8 10 9 7

The LRU Strategy

• Assumption: blocks that are not used in the near
past will unlikely be used in the near future
– Valid generally
– Avoids replacing commonly used pages

• But still not optimal for full table scan
• Most commercial systems use simple

enhancements to LRU

40

Buffer 0 1 2 3

Block Id 60 50 30 70

time read in 11 6 3 12

time unpinned 8 10 9 7

LRU Variants

• In Oracle DBMS, the LRU queue has two logical
regions
– Cold region in front of the hot region

• Cold: LRU; hot: FIFO
• For full table scan

– Puts the just read page into the head (at LRU end)

41
W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N. MacNaughton,
“The oracle universal server buffer,” VLDB, 1997.

The Clock Strategy

• Similar to Naïve strategy, but always start
traversal from the previous replacement position

• Uses the unpinned buffers as evenly as possible

– With LRU flavor

• Easy to implement

42

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7

Last replacement

43

Buffer 0 1 2 3

Block Id 10 50 60 70

time read in 1 6 11 12

time unpinned 8 10 9 7

Last replacement

The Clock Strategy

• Similar to Naïve strategy, but always start
traversal from the previous replacement position

• Uses the unpinned buffers as evenly as possible

– With LRU flavor

• Easy to implement

How many pages in buffer pool?

44

Pool Size

• The set of all blocks that are currently
accessed by clients is called the working set

• Ideally, the buffer pool should be larger than
the working set

– Otherwise, deadlock may happen

45

Deadlock
• What if there is no candidate buffer when pinning?

– Buffer manager tells the client to wait

– Notifies (wakes up) the client to pin again when some
other unpins a block

• Deadlock
– Clients A and B both want to use two buffers and

there remain only two candidate buffers

– If they both have got one buffer and attempt to get
another one, deadlock happens

– Circularly waiting the
others to unpin

46

A B

Deadlock

• How to detect deadlock?

– No buffer becomes available for an exceptionally
long time

– E.g., much longer than executing a query

• How to deal with deadlock?

– Forces at least one client to

1. First unpin all blocks it holds

2. Then re-pins these blocks one-by-one

47

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

48

1 2 3 5 6 7 9 10 11

A B C

...

pin(12)

Waiting list

Buffer pool

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

49

1 2 3 5 6 7 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

A

pin(8)

B

unpin(9)
wait for a
MAX_TIME

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

50

1 2 3 5 6 7 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

A

pin(8)

B

unpin(9)

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

51

1 2 3 5 6 7 4 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

B

unpin(9)

unpin(10)

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

52

1 2 3 5 6 7 4 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

B

unpin(9)

unpin(10)

Waiting: An Example

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

53

1 2 3 5 6 7 4 8 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

unpin(9)

unpin(10)

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

54

1 2 3 5 6 7 9 10 11

A B C

...

pin(12)

Waiting list

Buffer pool

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

55

1 2 3 5 6 7 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

A

pin(8)

B

pin(13)

C

Deadlock!

Detected by A

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

56

5 6 7 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

B

pin(13)

C

unpin(1~3)

Unpin all holding pages
then re-pin again

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

57

13 8 5 6 7 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

pin(13)

unpin(1~3)

Unpin all holding pages
then re-pin again

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

58

13 1 8 5 6 7 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

A

pin(13)

repin(1~4)

Unpin all holding pages
then re-pin again

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

59

13 1 2 3 4 9 10 11 12

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

pin(13)

repin(1~4)

Unpin all holding pages
then re-pin again

unpin(5~8)

Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

60

1 2 3 4

A B C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

pin(13)

repin(1~4)

Unpin all holding pages
then re-pin again

unpin(5~8)

unpin(9~13)

How about Self-Deadlock?

• A client that pins more blocks than a pool can hold
• Happens when

– The pool is too small
– The client is malicious (luckily, we write the

clients/RecordFile ourselves)

• How to handle this?
– A (fixed-sized) buffer manager has no choice but throwing

an exception

• The pool should be large enough to at least hold the
working set of a single client

• A good client should pin blocks sparingly
– Unpins a block immediately when done
– Call close() after iterating a ResultSet in JDBC

61

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

62

Why logging?

63

Transactions Revisited

64

BEGIN TRANSACTION;

...

COMMIT TRANSACTION;

Tx1

R(r1)

R(r2)

...

R(r47)

W(47)

...

Scans /
record files

ACID

• A database ensures the ACID properties of txs
• Atomicity

– All operations in a transaction either succeed (transaction
commits) or fail (transaction rollback) together

• Consistency
– After/before each transaction (which commits or rollback),

your data do not violate any rule you have set

• Isolation
– Multiple transactions can run concurrently, but cannot

interfere with each other

• Durability
– Once a transaction commits, any change it made lives in

DB permanently (unless overridden by other transactions)

65

How?

66

Naïve C and I

• Observation: there is no tx that accesses data
across DBs

• To ensure C and I, each tx can simply lock the
entire DB it belongs

– Acquire lock at start

– Release lock when committed or rolled back

• Txs for different DBs can execute concurrently

67

Naïve A and D

• D given buffers?

• Flush all dirty buffers of a tx before
committing the tx

– Return to DBMS client after tx commit

68

Naïve A and D

• What if system crashes
and then recovers?

• To ensure A, DBMS needs
to rollback uncommitted
txs (2 and 3) at sart-up

– Why 3?

• Problems:

– How to determine which txs to rollback?

– How to rollback all actions made by a tx?
69

Tx1 Tx2 Tx3

Crash

Committing

Committed

Committing

flushes due to swapping

Naïve A and D

• Idea: Write-Ahead-Logging (WAL)

– Record a log of each modification made by a tx

• E.g., <SETVAL, <TX>, <BLK>, <OFFSET>, <VAL_TYPE>,
<OLD_VAL> >

• In memory to save I/Os (discussed later)

– To commit a tx,

1. Write all associated logs to a log file before flushing a
buffer

2. After flushing, write a <COMMIT, <TX>> log to the log file

– To swap a dirty buffer (in BufferMgr)

• All logs must be flushed before flushing a user block

70

Naïve A and D

• Which txs to rollback?
– Observation: txs with COMMIT logs must have flushed all

their dirty blocks
– Ans: those without COMMIT logs in the log file

• How to rollback a tx?
– Observation: only 3 possibilities for each action on disk:
1. With log and block
2. With log, but without block
3. Without log and block
– Ans: simply undo actions that are logged to disk, flush all

affected blocks, and then writes a <ROLLBACK, <TX>> log
– Applicable to self-rollback decided by a tx

71

Naïve A and D

• Assumption of WAL: each block-write either
succeeds or fails entirely on a disk, despite
power failure

– I.e., no corrupted log block after crash

– Modern disks usually store enough power to finish
the ongoing sector-write upon power-off

– Valid if block size == sector size or a journaling file
system (e.g., EXT3/4, NTFS) is used

• Block/physical vs. metadata/logical journals

72

http://en.wikipedia.org/wiki/Journaling_file_system

Caching Logs

• Like user blocks, the blocks of the log file are
cached

– Each tx operation is logged into memory

– Log blocks are flushed only on

• Tx commit

• Buffer swapping

• Avoids excessive I/Os

73

Do we need a buffer pool for the log
blocks?

74

Access Patterns: A Comparison

• User blocks
– Of multiple files

– Random reads, writes, and appends

– Concurrent access by multiple worker threads (each
thread per JDBC client)

• Log blocks
– Of a single log file (why not one file per tx?)

– Always appends, by multiple worker threads

– Always sequential backward reads, by a single
recovery thread at start-up

75

Do we need a buffer pool for the log
blocks?

76

No! One Buffer Is Enough

• For (sequential forward) appends
– All worker threads “pin” the tail block of the same file

– Exactly one buffer is needed

• For the sequential backward reads
– The recovery thread “pins” the block being read

– There is only one recovery thread

– Exactly one buffer is needed

• DBMS needs an additional log manager
– To implement this specialized memory management

strategy for log blocks

77

Example API

• Each log record has an unique identifier called
Log Sequence Number (LSN)
– Typically block ID + starting position

• flush(lsn) flushes all log records with LSNs
no larger than lsn

78

LogMgr

<<final>> + LAST_POS : int

<<final>> + logFile : String

+ LogMgr()

<<synchronized>> + flush(lsn : long)

<<synchronized>> + iterator() : Iterator<BasicLogRecord>

<<synchronized>> + append(rec : Constant[]) : long

BasicLogRecord

+ BasicLogRecord(pg : Page, pos : int)

+ nextVal(type : Type) : Constant

Cache Management for Read

• Provides a log iterator that iterates the log
records backward from tail

• Internally, the iterator allocates a page, which
always holds the block where the current log
record resides

• Optimal: more pages do not help in saving
I/Os

79

Cache Management for Append

• Permanently allocate a page, P, to hold the tail
block of the log file

• When append(rec) is called:
1. If there is no room in P, then write the page P back

to disk and clear its contents

2. Add the new log record to P

• When flush(lsn) is called:
1. If that log record is in P, then write P to disk

2. Else, do nothing

• Optimal: more pages do not help in saving I/Os

80

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

81

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Log Manager in VanillaCore

82

LogMgr

• In storage.log package

83

LogMgr

<<final>> + LAST_POS : int

<<final>> + LOG_File : String

+ LogMgr()

<<synchronized>> + flush(lsn : long)

<<synchronized>> + iterator() : Iterator<ReversibleIterator>

<<synchronized>> + append(rec : Constant[]) : long

LogMgr

• Singleton

• Constructed during system startup
– Via VanillaDb.initFileAndLogMgr(dbname)

• Obtained via VanillaDb.logMgr()

• The method append appends a log record to the
log file, and returns the record’s LSN as long
– No guarantee that the record will get written to disk

• A client can force a specific log record, and all its
predecessors, to disk by calling flush

84

LSNs

• Recall that an LSN identifies a log record

– Typically block ID + starting position

• VanillaCore simplifies the LSN to be a block
number

– Recall: block ID = file name + block number

• All log records in a block are assigned the
same LSN, therefore flushed together

85

BasicLogRecord

86

BasicLogRecord

+ BasicLogRecord(pg : Page, pos : int)

+ nextVal(Type) : Constant

• An iterator of values in an log record

• The log manager only implements the memory
management strategy
– Does not understand the contents of the log records

– It is the recovery manager that defines the semantic
of a log record

LogIterator

• A client can read the records in the log file by
calling the method iterator in LogMgr

– Returns a LogIterator instance

87

LogIterator

+ LogIterator(blk : BlockId)

+ hasNext() : boolean

+ next() : BasicLogRecord

+ hasPrevious() : boolean

+ previous() : BasicLogRecord

+ remove()

LogIterator

• Calling next returns the next
BasicLogRecord in reverse order from tail

• This is how the recovery manager wants to see
the logs

88

Log File

r1 r2 r3 r4 r5 r6 r7

block 0 block 1 block 2

Using LogMgr

Output:
[3, net]
[2, kri]
[1, abc]

89

VanillaDb.initFileAndLogMgr("studentdb");
LogMgr logmgr = VanillaDb.logMgr();
long lsn1 = logmgr.append(new Constant[] { new IntegerConstant(1),

new VarcharConstant("abc") });
long lsn2 = logmgr.append(new Constant[] { new IntegerConstant(2),

new VarcharConstant("kri") });
long lsn3 = logmgr.append(new Constant[] { new IntegerConstant(3),

new VarcharConstant("net") });
logmgr.flush(lsn3);

Iterator<BasicLogRecord> iter = logmgr.iterator();
while (iter.hasNext()) {

BasicLogRecord rec = iter.next();
Constant c1 = rec.nextVal(Type.INTEGER);
Constant c2 = rec.nextVal(Type.VARCHAR);
System.out.println("[" + c1 + ", " + c2 + "]");

}

Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore

90

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Buffer Manager in VanillaCore

91

BufferMgr

• Each transaction has its own BufferMgr
• Constructed while creating a transaction

– Via transactionMgr.newTransaction(…)

• Obtained via transaction.bufferMgr()

92

BufferMgr : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

<<synchronized>> + pin(blk : BlockId)

<<synchronized>> + pinNew(filename : String, fmtr : PageFormatter) : Buffer

<<synchronized>> + unpin(buffs : Buffer[])

+ flush()

+ flushAll()

+ available() : int

BufferMgr

• A BufferMgr of a transaction takes care which
buffers are pinned by the transaction and make it
waiting when there is no available buffer

• flush() flushes each buffer modified by the
specified tx

• available() returns the number of buffers
holding unpinned buffers

93

BufferPoolMgr

• A BufferPoolMgr is a singleton object and
it is hidden in buffer package to the outside
world

• It manages a buffer pool for all pages and
implements the clock buffer replacement
strategy

– The details of disk access is unknown to client

94

Buffer

• Wraps a page and stores
– ID of the holding block
– Pin count
– Modified information
– Log information

• Supports WAL
– setVal() requires an LSN

• Must be preceded by
LogMgr.append()

– flush() calls
LogMgr.flush(maxLsn)

• Called by BufferMgr upon
swapping

95

Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type : Type) :

Constant

<<synchronized>> + setVal(offset : int, val :

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) :

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew (filename : String,

fmtr : PageFormatter)

PageFormatter

• The pinNew(fmtr) method
of BufferMgr appends a new
block to a file

• PageFormatter initializes
the block
– To be extended in packages

(storage.record and
storage.index.btree) where the
semantics of records are defined

96

class ZeroIntFormatter implements PageFormatter {
public void format(Page p) {

Constant zero = new IntegerConstant(0);
int recsize = Page.size(zero);
for (int i = 0; i + recsize <= Page.BLOCK_SIZE; i += recsize)

p.setVal(i, zero);
}

}

<<interface>>

PageFormatter

+ format(p : Page)

Using the Buffer Manager

• Reading value from a buffer

97

// Initialize VanillaDB ...

Transaction tx =
VanillaDb.txMgr().newTransaction(Connection.TRANSACTION_SERIALIZABLE,

false);
BufferMgr bufferMgr = tx.bufferMgr();

BlockId blk = new BlockId("student.tbl", 0);
Buffer buff = bufferMgr.pin(blk);
Type snameType = Type.VARCHAR(20);
Constant sname = buff.getVal(46, snameType);

System.out.println(sname);

bufferMgr.unpin(buff);

Using the Buffer Manager

• Writing value
into a buffer

98

// Initialize VanillaDB ...

Transaction tx =
VanillaDb.txMgr().newTransaction(Connection.TRANSACTION_SERIALIZABLE,
false);
BufferMgr bufferMgr = tx.bufferMgr();
LogMgr logMgr = VanillaDb.logMgr();
long myTxnNum = 1;

BlockId blk = new BlockId("student.tbl", 0);
Buffer buff = bufferMgr.pin(blk);
Type snameType = Type.VARCHAR(20);
Constant sname = buff.getVal(46, snameType);
Constant[] logRec = new Constant[] { new BigIntConstant(myTxnNum), new
VarcharConstant("student.tbl"),
new BigIntConstant(blk.number()), new IntegerConstant(46), sname };

long lsn = logMgr.append(logRec);
buff.setVal(46, new VarcharConstant("kay").castTo(snameType), myTxnNum,
lsn);
bufferMgr.unpin(buff);

// [WAL] when buff.flush() is called due to swapping or tx commit,
// logMgr.flush(lsn) is called first by buff

You Have Assignment!

99

Assignment 3 (1/2)

• The current File and Buffer Managers are slow
– Mainly due to the synchronization (for thread-safety)

• Optimize them to improve performance

• We provide you a basic implementation of these
modules which have bad performance
– You need to modify them to reach higher throughput or

lower latency in our benchmark

• You need to come out at least one optimization for
each module
– storage.file

– storage.buffer

Assignment 3 (2/2)

• Use the micro-benchmark we provided to
compare performance between the basic and
your implementation

• Report
– Show the throughput and latency of benchmark

between those implementation

– Show what you exactly do for optimization

– Discuss why your optimization works

Hints

• Critical sections are used in
File/BufferManagers to protect some shared
resource

• Breaks a single critical section into multiple
ones

– Avoids unnecessary transaction/thread stalls

• Reduce the coverage of critical sections

– reduce the stall duration

References

• W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N.
MacNaughton, The oracle universal server buffer, VLDB,
1997.

• M. Cyran., Oracle Database Concepts, 10g Release 2
(10.2), 2005.

• Edward Sciore., Database Design and Implementation,
chapter 13.

• Hellerstein, J. M., Stonebraker, M., and Hamilton, J.
Architecture of a database system. Foundations and
Trends in Databases 1, 2, 2007.

• Hussein M. Abdel-Wahab, CS 471 – Operating Systems
Slides, http://www.cs.odu.edu/~cs471w/

103

