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Consequences of Slow I/Os

• Architecture that minimizes I/Os:
– Block access to/from disks

– Self-managed caching of blocks

– Choose the plan that costs least (fewest block I/Os)
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OS File System

DBMS File Manager

DisksBlocks

Pages
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Storage Access Patterns

IBM Systems Journal, 1971
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Storage Access Patterns

• Spatial locality: each client (e.g., scan) focuses 
on a small number of blocks a time

– Despite ending up with huge block accesses

– E.g.,  to produce the next output record, a product 
scan needs only two blocks a time (left and right)

• Temporal locality: recently used blocks are 
likely to be used in the near future

– E.g., blocks of catalogs  
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Minimizing Disk Access by Caching

• Idea: to reserve a pool of pages that keep the 
contents of most currently used blocks

– To swap in/out blocks only when there’s no empty 
page left in the pool

8

Main Memory

Clients

OS File System

DBMS File Manager

DisksBlocks

Pages



Benefits

• Economic: only small memory space required

• Saves reads (if a requested block hits a page)

• Saves writes: all values set to a block only 
need to be written once upon swapping
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Why not virtual memory?
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Virtual Memory

• Modern OSs 
support virtual 
memory

• Illusion: a very large 
address space for 
each process

– Larger than physical 
memory

From http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/images/
Chapter9/9_01_VirtualMemoryLarger.jpg 11



Don’t Rely on Virtual Memory (1/2)

• Problem 1: bad page replacement algorithms

– E.g., FIFO, LRU, etc. 

• OS has no idea which blocks will probably be 
used by a process in the near future

– E.g., DBMS knows a user is likely to read the next 
record in a block (via scan.next())

– But OS doesn’t

12



Don’t Rely on Virtual Memory (2/2)

• Problem 2: uncontrolled delayed writes
– Swapping is automatic

• When powered off, dirty pages may gone
– Impairs the DBMS ability to recover after a system 

crash
– Hurts durability of committed transactions

• Immediate writes?
– Impairs the caching
– Data may still corrupt due to partial writes upon crash

• Meta-writes (of logs) are needed
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Self-Managed Pages in DBMS

• Pros:

• Controlled swapping

– Fewer I/Os than VM via better replacement 
strategy

– DBMS can tell which page must/cannot be flushed

• Supports meta-writes

– DBMS can write logs to recover from crashes
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What Blocks to Cache?

• Those of user data (DBs, including catalogs) 

– Pages for these blocks are managed by the buffer 
manager

• Those of logs

– In meta-writes

– Pages managed by the log manager
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Access Pattern to User Blocks

• Random block reads and writes
– From clients directly

– Even from sequential scans (if above OS file system)

• Concurrent access to multiple blocks by multiple 
threads
– Each thread per, e.g., JDBC client

• Predictable access to certain blocks
– Each scan needs certain blocks a time

– In particular, a table scan need one block a time and 
can forget what just read
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Buffer Manger

• To reduce I/Os, the buffer manager allocates a 
pool of pages, called buffer pool
– Caching multiple blocks

– Implement swapping

• Pages should be the direct I/O buffers held by 
the OS
– Avoids swapping by VM 

– Eliminates the redundancy of double buffering

– E.g., ByteBuffer.allocateDirect()
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How do make use of predictable block 
accesses to further reduce I/Os? 
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Pinning Blocks

• Each table scan needs one block a time

– The semantic of blocks is hidden behind the 
associated RecordFile

• It is the RecordFile instances that talk to 
memory manager about which blocks are 
needed 

– One instance per thread/client

• Through pinning
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Pinning Blocks

• When a RecordFile needs a block
1. Asks buffer manager to pin (read-in) a block in some 

page
2. Client accesses the contents of the page
3. When the client is done with the block, it tells the 

buffer manager to unpin the block

• When swapping, only pages containing the 
unpinned blocks can be swapped out
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Pinning Pages

• Results of pinning:
1. A hit, no I/O

2. Swapping: there exists at least one candidate 
page in the buffer pool holding unpinned block
• Need to flush the page contents back to disk if the 

page is dirty

• Which candidate page? replacement strategies

• Then read in the desired block

3. Waiting: all pages in the buffer pool are pinned
• Wait until some other unpins a page
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Buffers

• Each page in the buffer pool needs to associate 
with additional information:
– Is contained block pinned?
– Is contained block modified (dirty)?
– Information required by the replacement strategy

• A buffer wraps a page and hold this information
• A block can be pinned and accessed by multiple 

clients
– Buffer must be thread safe (same as page)
– DBMS needs other mechanism (i.e., concurrency 

control) to serialize conflict operations to a buffer
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Example API

• A block can be pinned multiple times
• There’s no guarantee that pin()’s on the same block will 

return the same buffer instance
24

Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type : 

Type) : Constant

<<synchronized>> + setVal(offset : int, val : 

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) : 

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew(filename : 

String, fmtr : PageFormatter)

BufferMgr 

<<final>> # BUFFER_SIZE : int

+ BufferMgr()

<<synchronized>> + pin(blk : BlockId, txNum : long) : Buffer

<<synchronized>> + pinNew(filename : String, fmtr : 

PageFormatter, txnum : long) : Buffer

<<synchronized>> + unpin( txnum : long, buffs : Buffer[])

+ flushAll(txnum : long)

+ available() : int



Buffer Replacement Strategies

• All buffers in the buffer pool begin unallocated

• Once all buffers are loaded, buffer manager 
has to replace the unpinned block in some 
candidate buffer to serve new pin request

• Best candidate? 

– The buffer containing block that will be unused for 
the longest time

– Maximizes the hit rate of pins
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Buffer Replacement Strategies

• However, as in VM, access of blocks in unpinned 
buffers is not determinable

• Heuristics needed:
– Naïve

– FIFO

– LRU

– Clock

• Some commercial systems use different heuristics 
for different buffer type
– E.g., catalog buffers, index buffers, buffers for full 

table scan, etc.
26



Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40); 
unpin(20); pin(50); unpin(40); 
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool

27

Buffer 0 1 2 3
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Example

• A sequence of operations

– pin(10); pin(20); pin(30); pin(40); 
unpin(20); pin(50); unpin(40); 
unpin(10); unpin(30); unpin(50);

• There are 4 buffers in buffer pool
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Example

• Suppose that there are two more pin requests 
coming:
– pin(60); pin(70); 

• Let’s see how different replacement strategies 
work

32
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The Naïve Strategy

• Travers the buffer pool sequentially from 
beginning

• Replaces the first unpinned buffer met
– pin(60); pin(70); 

• Easy to implement, but?
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Buffer 0 1 2 3
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time read in 11 12 3 4

time unpinned 8 10 9 7



The Naïve Strategy

• Problem: buffers are not evenly utilized

– pin(60); unpin(60); pin(70); 
unpin(70); pin(60); unpin(60); ... 

• Low hit rate

– Some buffers may contain stale data
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Buffer 0 1 2 3

Block Id 60 50 30 40

time read in 15 6 3 4

time unpinned 16 10 9 7



The FIFO Strategy

• Chooses the buffer that contains the least-
recently-read-in block
– Each buffer records the time a block is read in

• Unpinned buffers can be maintained in a priority 
queue
– Finds the target unpinned buffer in O(1) time
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The FIFO Strategy

• Chooses the buffer that contains the least-
recently-read-in block
– Each buffer records the time a block is read in

• Unpinned buffers can be maintained in a priority 
queue
– Finds the target unpinned buffer in O(1) time
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The FIFO Strategy

• Assumption: the older blocks are less likely to 
be used in the future

• Valid?

• Not true for, e.g., catalog blocks

37

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7



The LRU Strategy

• Chooses the buffer that contains the least 
recently used block

– Each buffer records the time the block is 
unpinned

38

Buffer 0 1 2 3

Block Id 10 50 30 40

time read in 1 6 3 4

time unpinned 8 10 9 7



The LRU Strategy

• Choose the buffer that contains the least 
recently used block

– Each buffer records the time the block is 
unpinned

39

Buffer 0 1 2 3

Block Id 60 50 30 70

time read in 11 6 3 12

time unpinned 8 10 9 7



The LRU Strategy

• Assumption: blocks that are not used in the near 
past will unlikely be used in the near future
– Valid generally
– Avoids replacing commonly used pages

• But still not optimal for full table scan
• Most commercial systems use simple 

enhancements to LRU
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LRU Variants

• In Oracle DBMS, the LRU queue has two logical 
regions
– Cold region in front of the hot region

• Cold: LRU; hot: FIFO
• For full table scan

– Puts the just read page into the head (at LRU end)

41
W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N. MacNaughton, 
“The oracle universal server buffer,” VLDB, 1997.



The Clock Strategy

• Similar to Naïve strategy, but always start 
traversal from the previous replacement position

• Uses the unpinned buffers as evenly as possible

– With LRU flavor

• Easy to implement
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Buffer 0 1 2 3

Block Id 10 50 60 70

time read in 1 6 11 12

time unpinned 8 10 9 7

Last replacement

The Clock Strategy

• Similar to Naïve strategy, but always start 
traversal from the previous replacement position

• Uses the unpinned buffers as evenly as possible

– With LRU flavor

• Easy to implement



How many pages in buffer pool? 
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Pool Size

• The set of all blocks that are currently 
accessed by clients is called the working set

• Ideally, the buffer pool should be larger than 
the working set

– Otherwise, deadlock may happen
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Deadlock
• What if there is no candidate buffer when pinning?

– Buffer manager tells the client to wait

– Notifies (wakes up) the client to pin again when some 
other unpins a block

• Deadlock
– Clients A and B both want to use two buffers and 

there remain only two candidate buffers

– If they both have got one buffer and attempt to get 
another one, deadlock happens

– Circularly waiting the 
others to unpin

46
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Deadlock

• How to detect deadlock?

– No buffer becomes available for an exceptionally 
long time

– E.g., much longer than executing a query

• How to deal with deadlock?

– Forces at least one client to 

1. First unpin all blocks it holds

2. Then re-pins these blocks one-by-one
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Waiting: An Example 

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12

48
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Waiting: An Example 
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Waiting: An Example 

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12
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Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13
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Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13
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Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13

56

5 6 7 9 10 11 12

A B  C

...

pin(12)

Waiting list

Buffer pool

pin(4)

pin(8)

B

pin(13)

C

unpin(1~3)

Unpin all holding pages 
then re-pin again



Waiting: Deadlock Case
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Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13
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Waiting: Deadlock Case

• Buffer pool size: 10
• Block access from three clients:

– Client A: 1, 2, 3, 4
– Client B: 5, 6, 7, 8
– Client C: 9, 10, 11, 12, 13
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How about Self-Deadlock?

• A client that pins more blocks than a pool can hold
• Happens when

– The pool is too small
– The client is malicious (luckily, we write the 

clients/RecordFile ourselves)

• How to handle this?
– A (fixed-sized) buffer manager has no choice but throwing  

an exception

• The pool should be large enough to at least hold the 
working set of a single client

• A good client should pin blocks sparingly
– Unpins a block immediately when done
– Call close() after iterating a ResultSet in JDBC
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Why logging?
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Transactions Revisited
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...
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...

Scans /
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ACID

• A database ensures the ACID properties of txs
• Atomicity

– All operations in a transaction either succeed (transaction 
commits) or fail (transaction rollback) together

• Consistency
– After/before each transaction (which commits or rollback), 

your data do not violate any rule you have set

• Isolation
– Multiple transactions can run concurrently, but cannot 

interfere with each other

• Durability
– Once a transaction commits, any change it made lives in 

DB permanently (unless overridden by other transactions)
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How?
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Naïve C and I

• Observation: there is no tx that accesses data 
across DBs

• To ensure C and I, each tx can simply lock the 
entire DB it belongs

– Acquire lock at start

– Release lock when committed or rolled back

• Txs for different DBs can execute concurrently
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Naïve A and D

• D given buffers?

• Flush all dirty buffers of a tx before 
committing the tx

– Return to DBMS client after tx commit
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Naïve A and D

• What if system crashes 
and then recovers?

• To ensure A, DBMS needs 
to rollback uncommitted 
txs (2 and 3) at sart-up

– Why 3? 

• Problems:

– How to determine which txs to rollback?

– How to rollback all actions made by a tx?
69
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Naïve A and D

• Idea:  Write-Ahead-Logging (WAL)

– Record a log of each modification made by a tx

• E.g., <SETVAL, <TX>, <BLK>, <OFFSET>, <VAL_TYPE>, 
<OLD_VAL> >

• In memory to save I/Os (discussed later)

– To commit a tx, 

1. Write all associated logs to a log file before flushing a 
buffer 

2. After flushing, write a <COMMIT, <TX>> log to the log file

– To swap a dirty buffer (in BufferMgr)

• All logs must be flushed before flushing a user block 
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Naïve A and D

• Which txs to rollback?
– Observation: txs with COMMIT logs must have flushed all 

their dirty blocks 
– Ans: those without COMMIT logs in the log file 

• How to rollback a tx?
– Observation: only 3 possibilities for each action on disk: 
1. With log and block
2. With log, but without block
3. Without log and block
– Ans: simply undo actions that are logged to disk, flush all 

affected blocks, and then writes a <ROLLBACK, <TX>> log
– Applicable to self-rollback decided by a tx
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Naïve A and D

• Assumption of WAL: each block-write either 
succeeds or fails entirely on a disk, despite 
power failure

– I.e., no corrupted log block after crash

– Modern disks usually store enough power to finish 
the ongoing sector-write upon power-off 

– Valid if block size == sector size or a journaling file 
system (e.g., EXT3/4, NTFS) is used

• Block/physical vs. metadata/logical journals

72
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Caching Logs 

• Like user blocks, the blocks of the log file are 
cached

– Each tx operation is logged into memory

– Log blocks are flushed only on 

• Tx commit

• Buffer swapping

• Avoids excessive I/Os
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Do we need a buffer pool for the log 
blocks?
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Access Patterns: A Comparison

• User blocks
– Of multiple files

– Random reads, writes, and appends

– Concurrent access by multiple worker threads (each 
thread per JDBC client)

• Log blocks
– Of a single log file (why not one file per tx?)

– Always appends, by multiple worker threads

– Always sequential backward reads, by a single 
recovery thread at start-up
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Do we need a buffer pool for the log 
blocks?
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No! One Buffer Is Enough 

• For (sequential forward) appends
– All worker threads “pin” the tail block of the same file

– Exactly one buffer is needed 

• For the sequential backward reads
– The recovery thread “pins” the block being read

– There is only one recovery thread

– Exactly one buffer is needed

• DBMS needs an additional log manager
– To implement this specialized memory management 

strategy for log blocks
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Example API

• Each log record has an unique identifier called 
Log Sequence Number (LSN)
– Typically block ID + starting position

• flush(lsn) flushes all log records with LSNs 
no larger than lsn

78

LogMgr

<<final>> + LAST_POS : int

<<final>> + logFile : String

+ LogMgr()

<<synchronized>> + flush(lsn : long)

<<synchronized>> + iterator() : Iterator<BasicLogRecord>

<<synchronized>> + append(rec : Constant[]) : long

BasicLogRecord

+ BasicLogRecord(pg : Page, pos : int)

+ nextVal(type : Type) : Constant



Cache Management for Read

• Provides a log iterator that iterates the log 
records backward from tail

• Internally, the iterator allocates a page, which 
always holds the block where the current log 
record resides

• Optimal: more pages do not help in saving 
I/Os
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Cache Management for Append

• Permanently allocate a page, P, to hold the tail 
block of the log file

• When append(rec) is called:
1. If there is no room in P, then write the page P back 

to disk and clear its contents

2. Add the new log record to P

• When flush(lsn) is called:
1. If that log record is in P, then write P to disk

2. Else, do nothing

• Optimal: more pages do not help in saving I/Os
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• Overview
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LogMgr

• In storage.log package

83

LogMgr

<<final>> + LAST_POS : int

<<final>> + LOG_File : String

+ LogMgr()

<<synchronized>> + flush(lsn : long)

<<synchronized>> + iterator() : Iterator<ReversibleIterator>

<<synchronized>> + append(rec : Constant[]) : long



LogMgr

• Singleton

• Constructed during system startup
– Via VanillaDb.initFileAndLogMgr(dbname)

• Obtained via VanillaDb.logMgr()

• The method append appends a log record to the 
log file, and returns the record’s LSN as long
– No guarantee that the record will get written to disk

• A client can force a specific log record, and all its 
predecessors, to disk by calling flush
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LSNs

• Recall that an LSN identifies a log record

– Typically block ID + starting position

• VanillaCore simplifies the LSN to be a block 
number

– Recall: block ID = file name + block number

• All log records in a block are assigned the 
same LSN, therefore flushed together
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BasicLogRecord
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BasicLogRecord

+ BasicLogRecord(pg : Page, pos : int)

+ nextVal(Type) : Constant

• An iterator of values in an log record 

• The log manager only implements the memory 
management strategy
– Does not understand the contents of the log records 

– It is the recovery manager that defines the semantic 
of a log record 



LogIterator

• A client can read the records in the log file by 
calling the method iterator in LogMgr

– Returns a LogIterator instance
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LogIterator

+ LogIterator(blk : BlockId)

+ hasNext() : boolean 

+ next() : BasicLogRecord 

+ hasPrevious() : boolean 

+ previous() : BasicLogRecord 

+ remove()



LogIterator

• Calling next returns the next 
BasicLogRecord in reverse order from tail

• This is how the recovery manager wants to see 
the logs
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Log File

r1 r2 r3 r4 r5 r6 r7

block 0 block 1 block 2



Using LogMgr

Output:
[3, net]
[2, kri]
[1, abc]
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VanillaDb.initFileAndLogMgr("studentdb");
LogMgr logmgr = VanillaDb.logMgr();
long lsn1 = logmgr.append(new Constant[] { new IntegerConstant(1),

new VarcharConstant("abc") });
long lsn2 = logmgr.append(new Constant[] { new IntegerConstant(2),

new VarcharConstant("kri") });
long lsn3 = logmgr.append(new Constant[] { new IntegerConstant(3),

new VarcharConstant("net") });
logmgr.flush(lsn3);

Iterator<BasicLogRecord> iter = logmgr.iterator();
while (iter.hasNext()) {

BasicLogRecord rec = iter.next();
Constant c1 = rec.nextVal(Type.INTEGER);
Constant c2 = rec.nextVal(Type.VARCHAR);
System.out.println("[" + c1 + ", " + c2 + "]");

}



Outline

• Overview

• Buffering User Data

• Caching Logs

• Log Manager in VanillaCore

• Buffer Manager in VanillaCore
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BufferMgr

• Each transaction has its own BufferMgr
• Constructed while creating a transaction

– Via transactionMgr.newTransaction(…)

• Obtained via transaction.bufferMgr()
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BufferMgr  : TransactionLifecycleListener

<<final>> # BUFFER_POOL_SIZE : int

+ BufferMgr()

+ onTxCommit(tx : Transaction)

+ onTxRollback(tx : Transaction)

+ onTxEndStatement(tx : Transaction)

<<synchronized>> + pin(blk : BlockId) 

<<synchronized>> + pinNew(filename : String, fmtr : PageFormatter) : Buffer

<<synchronized>> + unpin(buffs : Buffer[])

+ flush()

+ flushAll()

+ available() : int



BufferMgr

• A BufferMgr of a transaction takes care which 
buffers are pinned by the transaction and make it 
waiting when there is no available buffer

• flush() flushes each buffer modified by the 
specified tx

• available() returns the number of buffers 
holding unpinned buffers
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BufferPoolMgr

• A BufferPoolMgr is a singleton object and 
it is hidden in buffer package to the outside 
world

• It manages a buffer pool for all pages and 
implements the clock buffer replacement 
strategy 

– The details of disk access is unknown to client
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Buffer

• Wraps a page and stores
– ID of the holding block
– Pin count
– Modified information
– Log information

• Supports WAL
– setVal() requires an LSN

• Must be preceded by 
LogMgr.append()

– flush() calls 
LogMgr.flush(maxLsn)

• Called by BufferMgr upon 
swapping 
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Buffer

~ Buffer()

<<synchronized>> + getVal(offset : int, type : Type) : 

Constant

<<synchronized>> + setVal(offset : int, val : 

Constant , txnum : long, lsn : long)

<<synchronized>> + block() : BlockId

<<synchronized>> ~ flush()

<<synchronized>> ~ pin()

<<synchronized>> ~ unpin()

<<synchronized>> ~ isPinned() : boolean

<<synchronized>> ~ isModifiedBy(txNum : long) : 

boolean

<<synchronized>> ~ assignToBlock(b : BlockId)

<<synchronized>> ~ assignToNew (filename : String, 

fmtr : PageFormatter)



PageFormatter

• The pinNew(fmtr) method 
of BufferMgr appends a new 
block to a file

• PageFormatter initializes
the block
– To be extended in packages 

( storage.record and  
storage.index.btree) where the 
semantics of records are defined 

96

class ZeroIntFormatter implements PageFormatter {
public void format(Page p) {

Constant zero = new IntegerConstant(0);
int recsize = Page.size(zero);
for (int i = 0; i + recsize <= Page.BLOCK_SIZE; i += recsize)

p.setVal(i, zero);
}

}

<<interface>>

PageFormatter

+ format(p : Page)



Using the Buffer Manager

• Reading value from a buffer
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// Initialize VanillaDB ...

Transaction tx = 
VanillaDb.txMgr().newTransaction(Connection.TRANSACTION_SERIALIZABLE, 

false);
BufferMgr bufferMgr = tx.bufferMgr();

BlockId blk = new BlockId("student.tbl", 0);
Buffer buff = bufferMgr.pin(blk);
Type snameType = Type.VARCHAR(20);
Constant sname = buff.getVal(46, snameType);

System.out.println(sname);

bufferMgr.unpin(buff);



Using the Buffer Manager

• Writing value 
into a buffer
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// Initialize VanillaDB ...

Transaction tx = 
VanillaDb.txMgr().newTransaction(Connection.TRANSACTION_SERIALIZABLE, 
false);
BufferMgr bufferMgr = tx.bufferMgr();
LogMgr logMgr = VanillaDb.logMgr();
long myTxnNum = 1;

BlockId blk = new BlockId("student.tbl", 0);
Buffer buff = bufferMgr.pin(blk);
Type snameType = Type.VARCHAR(20);
Constant sname = buff.getVal(46, snameType);
Constant[] logRec = new Constant[] { new BigIntConstant(myTxnNum), new
VarcharConstant("student.tbl"),
new BigIntConstant(blk.number()), new IntegerConstant(46), sname };

long lsn = logMgr.append(logRec);
buff.setVal(46, new VarcharConstant("kay").castTo(snameType), myTxnNum, 
lsn);
bufferMgr.unpin(buff);

// [WAL] when buff.flush() is called due to swapping or tx commit,
// logMgr.flush(lsn) is called first by buff



You Have Assignment!
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Assignment 3 (1/2)

• The current File and Buffer Managers are slow 
– Mainly due to the synchronization (for thread-safety)

• Optimize them to improve performance

• We provide you a basic implementation of these 
modules which have bad performance
– You need to modify them to reach higher throughput or 

lower latency in our benchmark

• You need to come out at least one optimization for 
each module
– storage.file

– storage.buffer



Assignment 3 (2/2)

• Use the micro-benchmark we provided to 
compare performance between the basic and 
your implementation

• Report
– Show the throughput and latency of benchmark 

between those implementation

– Show what you exactly do for optimization

– Discuss why your optimization works



Hints

• Critical sections are used in 
File/BufferManagers to protect some shared 
resource

• Breaks a single critical section into multiple 
ones

– Avoids unnecessary transaction/thread stalls

• Reduce the coverage of critical sections

– reduce the stall duration
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