
Data Access and File
Management

Shan-Hung Wu & DataLab

CS, NTHU

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Storage Engine

2

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

3

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

4

Storage Engine

• Main functions:

• Data access

– File access (TableInfo, RecordFile)

– Metadata access (CatalogMgr)

– Index access (IndexInfo, Index)

• Transaction management

– C and I (ConcurrencyMgr)

– A and D (RecoveryMgr)

5

How does a RecordFile map to an
Actual File on Disk?

6

RecordFileA

...

RecordFileB

...

FileA

...

FileB

...

r8 r9

r8 r9

r9 r10

r9 r10

7

RecordFileA

RecordPage

Buffer Buffer Buffer

BufferMgr

...

...

RecordFileB

RecordPage

...

Page Page Page

ByteBuffer ByteBuffer ByteBuffer

FileA

Block1 Block2

...

FileB

Block1 Block2

...

FileChannelA

FileMgr

FileChannelB

r8 r9

r8 r9

r9 r10

r9 r10

Data Access Layers (Bottom Up)

• In storage.file package: Page and FileMgr
– Access disks as fast as passible

• In storage.buffer package: Buffer and
BufferMgr

– Cache pages
– Work with recover manager to ensure A and D

• In storage.record package: RecordPage and
RecordFile

– Arrange records in pages
– Pin/unpin buffers
– Work with recover manager to ensure A and D
– Work with concurrency manager to ensure C and I

• Index

• CatalogMgr
9

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

10

Why Disks?

• The contents of a database must be kept in
persistent storages
– So that the data will not lost if the system goes down,

ensuring D

11

Mass Storage
(Magnetic disk, tap, etc.)

Main Memory

Cache

CPU

Disk and File Management

• I/O operations:
– Read: transfer data from disk to main memory (RAM)

– Write: transfer data from RAM to disk

Mass Storage
(Magnetic disk, tap, etc.)

Main Memory

Cache

CPU

12

Speed and $

• Primary storage is fast but small

• Secondary storage is large but slow

Mass Storage
(Magnetic disk, tap, etc.)

Main Memory

Cache

CPU

Bandwidth & $
Increases

Latency & Size
Increases

Primary Storage

Secondary Storage

13

How Slow?

• Typically, accessing a block requires

– ~60ns on RAMs

– ~6ms on HDDs

– ~0.06ms on SSDs

• HDDs are 100,000 times slower than RAMs!

• SSDs are 1,000 times slower than RAMs!

14

Understanding Magnetic Disks

• Data are stored on disk in
units called sectors

• Sequential access is faster
than random access

– The disk arm movement is
slow

• Access time is the sum of
the seek time, rotational
delay, and transfer time

From Database Management System 2/e, Ramakrishnan.
15

Access Delay

• Seek time: 1~20ms

• Rotational delay: 0~10ms

• Transfer rate is about 1ms per 4KB page

• Seek time and rotational delay dominate

16

How about SSDs?

• Typically under 0.1ms delay for random access

• Sequential access may still be faster than
random access

– SSDs always read/write an entire block even
when only a small portion is needed

• But if reads/writes are all comparable in size
to a block, there will be no much performance
difference

17

OS’s Disk Access APIs

• OS provides two disk access APIs:

• Block-level interface
– A disk is formatted and mounted as a raw disk

– Seen as a collection of blocks

• File-level interface
– A disk is formatted and accessed by following a

particular protocol
• E.g., FAT, NTFS, EXT, NFS, etc.

– Seen as a collection of files (and directories)

18

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

19

Block-Level Abstraction

• Disks may have different hardware
characteristics

– In particular, different sector sizes

• OS hides the sectors behind blocks

– The unit of I/O above OS

– Size determined by OS

20

Translation

• OS maintains the mapping between blocks
and sectors

• Single-layer translation:

– Upon each call, OS translates from the block
number (starting from 0) to the actual sector
address

21

Block-Level Interface

• The contents of a block cannot be accessed
directly from the disk

– May be mapped to more than one sectors

• Instead, the sectors comprising the block must
first be read into a memory page and
accessed from there

• Page: a block-size area
in main memory

Disk Main Memory

Client
Application

22

API

• readblock(n, p)

– reads the bytes at block n into page p of memory

• writeblock(n, p)

– writes the bytes in page p to block n of the disk

• OS also tracks of which blocks on disk are available for
allocation

• allocate(k, n)

– finds k contiguous unused blocks on disk and marks them as
used

– New blocks should be located as close to block n as possible

• deallocate(k, n)

– marks the k contiguous blocks starting with block n as unused

23

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

24

File-Level Abstraction

• OS provides another, higher-level interface to
the disk, called the file system

• A file is a sequence of bytes

• Clients can read/write any number of bytes
starting at any position in the file

• No notion of block at this level

25

File-Level Interface

• E.g., the Java class RandomAccessFile

• To increment 4 bytes stored in the file “file1”
at offset 700:

RandomAccessFile f = new RandomAccessFile("file1", "rws");

f.seek(700);
int n = f.readInt(); // after reading pointer moves to 704

f.seek(700);
f.writeInt(n + 1);

f.close();

26

Block Access?

• Yes!

– What does the “s” mode mean?

• OS hides the pages, called I/O buffers, for file
I/Os

• OS also hides the blocks of a file

27

RandomAccessFile f =

new RandomAccessFile("file1", "rws");

...

f.writeInt(...);

Hidden Blocks of a File

• OS treats a file as a sequence of logical blocks

– For example, if blocks are 4096 bytes long

– Byte 700 is in logical block 0

– Byte 7992 is in logical block 1

• Logical blocks ≠ physical blocks (that format a
disk)

• Why?

28

Continuous Allocation

• Stores each file in continuous
physical blocks

• Cons:
– Internal fragmentation

– External fragmentation

From Hussein M. Abdel-Wahab , CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/ 29

Extent-Based Allocation

• Stores a file as a fixed-length sequence of
extents

– An extent is a continuous chunk of physical blocks

• Reduces external fragmentation only

30

From Hussein M. Abdel-Wahab, CS 471 – Operating Systems Slides. http://www.cs.odu.edu/~cs471w/

Indexed Allocation

• Keeps a special index block for each file

– Which records of the physical blocks allocated to
the file

31

Translation

• OS maintains the mapping between logical
and physical blocks

– Specific to file system implementation

• When seek is called

• Layer 1: byte position  logical block

• Layer 2: logical block  physical block

• Layer 3: physical block  sectors

32

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

33

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

File Manager

34

Design Goal

• To access data in disks as fast as possible

• Two choices:

– Based on the low-level block API

– Based on the file system

• At which level?

35

Block-Level Based

• Pros:

– Full control of physical positions of data

• E.g., blocks accessed together can be stored nearby on
disk, or

• Most frequent blocks at middle tracks, etc.

– Avoids OS limitations

• E.g., larger files (even spanning multiple disks)

36

Block-Level Based

• Cons:
– Complex to implement

• Needs to manage the entire disk partitions and its free
space

– Inconvenient to some utilities such as (file)
backups

– “Raw disk” access is often OS-specific, which hurts
portability

• Adopted by some commercial database
systems that offer extreme performance

37

File-Level Based

• Pros:

– Easy and convenient

• Cons:

– Loses control to physical data placement

– Loses track of pages (and their replacement)

– Some implementations (e.g., postponed or
reordered writes) destroy correctness (e.g., WAL)

• DBMS must flush by itself to guarantee ACID

38

VanillaCore’s Choice

• A compromised strategy: at file-level, but access logical
blocks directly

• Pros:
– Simple
– Manageable locality within a block
– Manageable flush time (for correctness)

• Cons:
– Needs to assume random disk access

at all time
– Even in sequential scans

• Fast minimizing #I/Os
• Adopted by many DBMS too

– Microsoft Access, Oracle, etc.

39

Files

• A VanillaCore database is stored in several files
under the database directory

– One file for each table and index

• Including catalog files

• E.g., xxx.tbl, tblcat.tbl

– Log files

• E.g., vanilladb.log

40

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

41

File Management

• BlockId, Page and FileMgr

• In package:
org.vanilladb.core.storage.file

42

BlockId

• Immutable
• Identifies a specific logical block

– A file name + logical block number

• For example,
– BlockId blk = new BlockId("std.tbl", 23);

BlockId

+ BlockId(filename : String, blknum : long)

+ fileName() : String

+ number() : long

+ equals(Object : obj) : boolean

+ toString() : String

+ hachCode() : int

43

Page

• Holds the contents of a block
– Backed by an I/O buffer in OS

• Not tied to a specific block
• Read/write/append an entire block a time
• Set values are not flushed until write()

44

Page

<<final>> + BLOCK_SIZE : int

+ maxSize(type : Type) : int

+ size(val : Constant) : int

+ Page()

<<synchronized>> + read(blk : BlockId)

<<synchronized>> + write(blk : BlockId)

<<synchronized>> + append(filename : String) : BlockId

<<synchronized>> + getVal(offset : int, type : Type) : Constant

<<synchronized>> + setVal(offset : int, val : Constant)

+ close()

FileMgr

• Singleton, shared by all Page instances

• Handles the actual I/Os

• Keeps all opened files of a database
– Each file is opened once and shared by all worker threads

45

FileMgr

<<final>> + HOME_DIR : String

<<final>> + LOG_FILE_BASE_DIR : String

<<final>> + TMP_FILE_NAME_PREFIX : String

+ FileMgr(dbname : String)

~ read(blk : BlockId, bb : IoBuffer)

~ write(blk : BlockId, bb : IoBuffer)

~ append(filename : String, bb : IoBuffer) : BlockId

+ size(filename : String) : long

+ isNew() : boolean

Using the VanillaCore File Manager

VanillaDb.initFileMgr("studentdb");
FileMgr fm = VanillaDb.fileMgr();

BlockId blk1 = new BlockId("student.tbl", 0);
Page p1 = new Page();
p1.read(blk1);
Constant sid = p1.getVal(34, Type.INTEGER);
Type snameType = Type.VARCHAR(20);
Constant sname = p1.getVal(38, snameType);
System.out.println("student " + sid + " is " + sname);

Page p2 = new Page();
p2.setVal(34, new IntegerConstant(25));
Constant newName = new VarcharConstant("Rob").castTo(snameType);
p2.setVal(38, newName);
BlockId blk2 = p2.append("student.tbl");

46

Outline

• Storage engine and data access

• Disk access

– Block-level interface

– File-level interface

• File Management in VanillaCore

– BlockID, Page, and FileMgr

– I/O interfaces

47

I/O Interfaces

• Between VanillaCore and JVM/OS

• Two choices (both at file level):

– Java New I/O

– Jaydio (O_Direct, Linux only)

• To switch between these implementations,
change the value of USING_O_Direct
property in vanilladb.properties file

48

Java New I/O

• Each page wraps a ByteBuffer instance to
store bytes

• ByteBuffer has two factory methods:
allocate and allocateDirect
– allocateDirect tells JVM to use one of the OS’s

I/O buffers to hold the bytes

– Not in Java programmable buffer, no garbage
collection

– Eliminates the redundancy of double buffering

49

Jaydio

• Provides similar interfaces to Java New I/O

• But with O_Direct

– Some file systems (on Linux) cache file pages in its
buffers for better performance

– O_Direct tells those file systems not to cache
file pages as we will implement our own caching
policy (to be discussed in the next lecture)

– Only available on Linux

50

Assigned Reading

• Java new I/O

– In java.nio

• Classes:

–ByteBuffer

–FileChannel

51

http://docs.oracle.com/javase/tutorial/essential/io/file.html

References

• Ramakrishnan Gehrke, Database management
System 3/e, chapters 8 and 9

• Edward Sciore, Database Design and
Implementation, chapter 12

• Hellerstein, J. M., Stonebraker, M., and Hamilton,
J., Architecture of a database system, 2007

• Hussein M. Abdel-Wahab, CS 471 – Operating
Systems Slides, http://www.cs.odu.edu/~cs471w/

52

