Assignment 2 Solution

Introduction to Database Systems
Datalab
CS, NTHU

Outline

* UpdateltemPrice transaction (SP/JIDBC implementations)
* StatisticManager
* An example of Experiment Results

Outline

* UpdateltemPrice transaction (SP/JIDBC implementations)

Modified/Added Classes

e Shared class
— As2BenchTxnType
— As2BenchConstants

* Client-side classes
— As2BenchRte
— As2UpdateltemPriceParamGen
— As2BenchJdbcExecutor
— UpdateltemPriceTxnJdbcJob

 Server-side classes
— As2BenchStoredProcFactory

— UpdateltemPriceProcParamHelper
— UpdateltemPriceTxnProc

Modified/Added Classes

e Shared class

— As2BenchTxnType
— As2BenchConstants

New Transaction Type

public enum As2BenchTxnType implements BenchTransactionType {
'/ Loading procedures
TESTBED LOADER(false),

'/ Database checking procedures
CHECK DATABASE(false),

'/ Benchmarking procedures
READ ITEM(true),

UPDATE _ITEM PRICE(true);

public static As2BenchTxnType fromProcedureId(int pid) {
return As2BenchTxnType.values()[pid];

b

private boolean isBenchProc;

As2BenchTxnType(boolean isBenchProc) {
this.isBenchProc = isBenchProc;
b

@override

public int getProcedureld() {
return this.ordinal();

b

@rverride
public boolean isBenchmarkingProcedure() {
return isBenchProc;

b

READ_WRITE_TX_RATE

public class As2BenchConstants {

public static final int NUM _ITEMS;
public static final double READ WRITE TX RATE;

static {
NUM_ITEMS = BenchProperties.getlooder().getPropertyAsInteger(
As2BenchConstants.class.getName() + ".NUM_ITEMS", leeeea);
READ WRITE TX RATE = BenchProperties.getleoader().getPropertyAsDouble(
As2BenchConstants.class.getName() + “.READ WRITE_TX_RATE", 1l.@@);

¥
public static final int MIN IM = 1;
public static final int MAX IM = 18688;

public static final double MIN PRICE = 1.88;
public static final double MAX PRICE = 188.88;
public static final int MIN I NAME = 14;
public static final int MAX I NAME = 24;
public static final int MIN I DATA = 26;
public static final int MAX I DATA = 58;
public static final int MONEY DECIMALS = 2;

Modified/Added Classes

e Shared class
— As2BenchTxnType
— As2BenchConstants

* C(Client-side classes
— As2BenchRte
— As2UpdateltemPriceParamGen
— As2BenchJdbcExecutor
— UpdateltemPriceTxnJdbcJob

 Server-side classes
— As2BenchStoredProcFactory

— UpdateltemPriceProcParamHelper
— UpdateltemPriceTxnProc

Modified/Added Classes (Shared)

* (Client-side classes

— As2BenchRte
— As2UpdateltemPriceParamGen

Workflow of As2BenchRte

| | ! As2BenchTxExecutor

| As2BenchRte() : | |

: : : execute() :

I e e mm mm mm mm mm mm o mm mm mm mm o mm mm o e | | | I

:I | I :

: : generateParameter() <—:—:—I : executeTxn() :
|

: 1As2UpdateltemPriceParamGen : : L 1 _________ !
i e e e e e | I ______________

: getNextTxType() | | SP/IDBC Connection |

I ——————

| : _________ |

I < I

: getTxExecutor() :

' I

| As2BenchRte -

As2BenchRte

public class As2BenchRte extends RemoteTerminalEmulator<As2BenchTxnType> {

private As2BenchTxExecutor executor;
private static final int precision = 1ee;

public As2BenchRte(SutConnection conn, StatisticMgr statMgr) {
super(conn, statMgr);
h

protected As2BenchTxnType getNextTxType() {
RandomValueGenerator rvg = new RandomValueGenerator();

/f flag would be 186 if READ WRITE_TX_RATE is 1.8
int flag = (int) (As2BenchConstants.READ _WRITE TX RATE * precision);

if{rvg.number(®, precision - 1) < flag) {
return As2BenchTxnType.READ _ITEM;
telse {
return As2BenchTxnType.UPDATE_ITEM _PRICE;
¥

h
protected As2BenchTxExecutor getTxExeutor(As2BenchTxnType type) {

TxParamGenerator<As2BenchTxnType> paraGen;
switch (type) {
case READ ITEM:
paraGen = new As2ReadItemParamGen();
break;

case UPDATE_ITEM PRICE:
paraGen = new As2UpdateltemPriceTxnParamGen();
break;

default:
paraGen = new As2ReadItemParamGen();
break;
}
executor = new As2BenchTxExecutor(paraGen);
return executor;

1 11

Choose a Transaction

getNextTxType()

getTxExecutor()

As2BenchRte

Choose a Transaction

protected As2BenchTxnType getNextTxType() {
RandomValueGenerator rvg = new RandomValueGenerator();

// flag would be 18@ if READ WRITE_TX_RATE is 1.8
int flag = (int) (As2BenchConstants.READ WRITE TX RATE * precision);

if({rvg.number(@, precision - 1) < flag) {
return As2BenchTxnType.READ ITEM;
telse {
return As2BenchTxnType.UPDATE ITEM PRICE;
¥

13

Generate and Send Parameters

' As2BenchTxExecutor :

: |

: execute() :

____________________ |
A [|

generateParameter() I | '

I i executeTxn() :

AsZUpdateItemPnceParamGen | L 1{ _________ !
____________________ I e — _— e e e S e e e .

Generate Parameters

public class As2UpdateltemPriceTxnParamGen implements TxParamGenerator<As2BenchTxnType> {
private static fimal int WRITE COUNT = 18;
private static fimal int MAX RAISE = 58;

@override
public As2BenchTxnType getTxnType() {
return As2BenchTxnType.UPDATE _ITEM PRICE;

b

@override

public Object[] generateParameter() {
RandomValueGenerator rvg = new RandomValueGenerator();
LinkedList<Object> paramList = mew LinkedList<Object:();

paramList.add (WRITE_COUNT);

for (int 1 = 8; i < WRITE_COUNT; i++) 1
int itemId = rvg.number(l, As2BenchConstants.NUM ITEMS);
double raise = ((double) rvg.number(@, MAX RAISE)) / 18;

paramList.add({new UpdateItemPriceTxnParam{itemId, raise));

}

return paramList.tolArray();

15

Modified/Added Classes (SP)

* Server-side classes
— As2BenchStoredProcFactory
— UpdateltemPriceProcParamHelper
— UpdateltemPriceTxnProc

Inquiry via SP

| | | As2BenchTxExecutor
| As2BenchRte() : ,
|
: : : » execute()
e | |
: | | | \ 4

I generateParameter() <—|—|—| 1
:I || i executeTxn()

| - | |
'\As2UpdateltemPriceParamGen 1\ | _ - J-——— .-
| | i Sebuinia
|

|

: getNextTxType() | : callStoredProc()
| : |
! g 1|, Connection
I getTxExecutor() : _______________
' I
| L
|

As2BenchRte

Execute a Stored Procedure

o Em EE o EE EE EE EE EE O O EE EE EE EE e e e .

—-— s o e e e e o o - o - - e e e e e e

prepare()

execute()

— s s s s e e - e - - - - - - - - e
[— I — I — I — I — I — I N T — R — I — — R — I — I — I — I — I — I —)

Get the Specified SP

o Em EE o EE EE EE e S S EE D EE EE D e e .

Get the Specified SP

public class As2BenchStoredProcFactory implements StoredProcedureFactory {

@verride
public StoredProcedure<?> getStroredProcedure(int pid) {
StoredProcedure<?> sp;
switch (As2BenchTxnType.fromProcedureld(pid)) {
case TESTBED LOADER:
sp = new TestbedlLoaderProc();
break;
case CHECK _DATABASE:
sp = new As2CheckDatabaseProc();
break;
case READ ITEM:
sp = new ReadIltemTxnProc();
break;
case UPDATE ITEM PRICE:
sp = new UpdateItemPriceTxnProc();
break;
default:
sp = null;
¥

return sp;

20

Preprocess Parameters

prepare()

Preprocess Parameters

public double getUpdatedItemPrice(int idx) {
double updatedPrice = itemPrices[idx] + raises[idx];

return (Double) (updatedPrice > As2BenchConstants.MAX PRICE ? As2BenchConstants.MIN_PRICE :

b

@override
public void prepareParameters(Object... pars) {

'/ Show the contents of paramters
'/ System.out.println("Params: " + Arrays.toString(pars));

int indexCnt = @;

readCount = (Integer) pars[indexCnt++];
itemIds = new int[readCount];

itemNames = new String[readCount];
itemPrices = new double[readCount];
raises = new double[readCount];

for (int i = @; i < readCount; i++) {
itemIds[i] = (Integer) ({(UpdateItemPriceTxnParam)} pars[indexCnt]).itemId};
raises[i] = (Double) ((({UpdateltemPriceTxnParam) pars[indexCnt]).raise);
indexCnt+t;

updatedPrice};

22

Execute Queries

¥

execute()

executeSql()

@override

protected wvoid executesSql() {
UpdateIltemPriceProcParamHelper paramHelper = getParamHelper();
Transaction tx = getTransaction();

for (int idx = @; idx « paramHelper.getReadCount(); idx++) {
int iid = paramHelper.getItemId(idx);

Plan p = VanillaDb.newPlanner().createQueryPlan("SELECT i_name, i_price FROM item WHERE i_id = " + iid, tx);
Scan s = p.open();
s.beforeFirst();
if (s.next()) {
String name = (String) s.getVal("i_name").asJavaVal();
double price = (Double) s.getVal("i price").asJavaval();

paramHelper.setItemName(name, idx);
paramHelper.setItemPrice(price, idx);
} else

throw new RuntimeException("Cloud not find item record with i_id = " + iid);
s.close();
// Update part
int result = VanillaDb.newPlanner()
.executelUpdate("UPDATE item SET i price = " + paramHelper.getUpdatedItemPrice(idx) + " WHERE i_id = " + iid, tx);
if (result == @) {
throw new RuntimeException("Could not update item record with i_id = " + iid);

}

24

Modified/Added Classes (JDBC)

* (Client-side classes

— As2BenchJdbcExecutor
— UpdateltemPriceTxnJdbcJob

Inquiry via SP

| | | As2BenchTxExecutor
| As2BenchRte() : ,
|
: : : » execute()
e | |
: | | | \ 4

I generateParameter() <—|—|—| 1
:I || i executeTxn()

| - | |
'\As2UpdateltemPriceParamGen 1\ | _ - J-——— .-
| | i Sebuinia
|

|

: getNextTxType() | : callStoredProc()
| : |
! g 1|, Connection
I getTxExecutor() : _______________
' I
| L
|

As2BenchRte

Inquiry via JDBC

| | ! As2BenchTxExecutor
| As2BenchRte() : | |
: : : execute() :
I i e e B B e e e e e e i e e e i Ml | | | |
:I Pl | :
I

: : generateParameter() <—:—:—I : executeTxn() :
| 1As2UpdateltemPriceParamGen | : T ____ |
N — S it Salnieie ¥
I
I getNextTxType() : : execute() :
I , ; I
: : | |v _ __ _AR2JdbcExecutor,
: getTxExecutor() : I'_____ —
| | | t '
: As2BenchRte - | execute) :
______________________ | |

L _ _As2UpdateltemJob,

Inquiry via JDBC

Inquiry via JDBC

public class As2BenchldbcExecutor implements JdbcExecutor<As2BenchTxnType> 1

@verride
public SutResultSet execute(Connection conn, As2BenchTxnType txType, Object[] pars) throws SQLException {
switch (txType) {
case TESTBED LOADER:
return new TestbedlLoaderldbclob().execute(conn, pars);

case C(HECK _DATABASE:
return new CheckDatabaseldbclob().execute{conn, pars);

case READ TTEM:
return new ReadItemTxnldbclob().execute(conn, pars);

case UPDATE_ITEM PRICE:
return new UpdateIltemPriceTxnldbclob().execute(conn, pars);
default:
throw new UnsupportedOperationException(String. format("no JDCE implementaticn for "¥s'", txType));

29

@rverride
public SutResultSet execute(Connecticn conn, Object[] pars) throws SQLException {
// Parse parameters
int readCount = (Integer) pars[@];
int[] itemIds = new int[readCount];
double[] raises = new double[readCount];

for (int i =
itemIds[
raises[i

8; i < readCount; i++) {
i] = (Integer) (((UpdateltemPriceTxnParam) pars[i + 1]).itemId);
] = (Double) ({(UpdateItemPriceTxnParam) pars[i + 1]).raise);

Statement statement = conn.createStatement();
ResultSet r= = null;

for (int i = ®@; i < 18; i++) {
double price;

string sql = "SELECT i_name, i price FROM item WHERE i id = " + itemIds[i];
rs = statement.executeQuery(sql);
rs.beforefFirst();
if (rs.next()) {
outputMsg.append(String. format(" "%s',
price = rs.getDouble("i_price");
T else
throw new RuntimeException(“cannct find the record with 1_id = " + itemIds[i]);
rs.close();

, rs.getstring(”i_name™)));

Double updatedPrice = updatePrice(price, raises[i]);
sql = "UPDATE item SET i_price = " + updatedPrice + ™ WHERE i_id

+ itemIds[i];

int result = statement.executeUpdate(sql);
if (result == 8) {

throw new RuntimeException(“cannct update the record with i id = " + itemIds[i]);
h

}

conn.commit();

30

Outline

* StatisticManager

Modified Class

StatisticMgr

public synchronized woid outputReport() {

try {
SimpleDateFormat formatter = new SimpleDateFormat("yyyyMMdd-HHmmss™); // E.g. "2828@524-28@524"
String fileName = formatter.format(Calendar.getInstance().getTime()};

if (fileNamePostfix != null && !'fileNamePostfix.isEmpty())
fileName += "-" + fileNamePostfix; // E.g. "28280524-280824-postfix”

outputDetailReport(fileName + "-detail");

// output As2 regquired report
outputAs2Report(fileName);

b catch (IOException e) {
e.printstackTrace();
b

if {logger.isLoggable(Level.INFO))
Logger.info("Finnish creating tpcc benchmark report™);

32

Add Class

protected class As2ReportStatistic {
private List<TxnResultSet> resultSets = new Arraylist<TxnResultSet:();
private long timeSeg = @;
private long totallLatency = @;

public void SetTimeSeg(long timeSeg) {
this.timeSeg = timeSeg;
}

public void addResultSet(TxnResultSet resultSet) {
resultSets.add(resultSet);
totallatency += resultSet.getTxnResponseTime();

}

private void sortResultSet() {
Collections.sort(resultSets, new Comparator<TxnResultSet:() {
public int compare(TxnResultSet rl, TxnResultSet r2) {

if (rl.getTxnResponseTime() < r2.getTxnResponseTime()) {
return -1;

} else if (rl.getTxnResponseTime() > r2.getTxnResponseTime(}) {
return 1;

} else {
return 8;

}

- (0, [27, 145, 33, ...])

private String getMs(long num) {

return Integer.toString((int) Math.round(num / 1_8@@_seal));
} (5, [11, 23, 150, ...])
private String getMs(double num) {

return Integer.toString((int) Math.round(num / 1_8@@_geaL)); (1 0’ [1 6’ 28’ 50 ...])

}

public String dumpResult() {
sortResultSet(); eoe

int size = resultSets.size();

assert (size != @);
Legger.info(Long.teString(totallatency) + + size);
String dumpLine = timeSeg + "," + size + "," + getMs((double) (totallatency / size)) +
+ getMs(resultSets.get(@).getTxnResponseTime()) + ","
+ getMs(resultSets.get(size - 1).getTxnResponseTime()) +
+ getMs(resultSets.get((int) Math.ceil(size * 8.25) - 1).getTxnResponseTime()) + ","
+ (
(

wow
»

getMs(resultSets.get((int) Math.ceil(size * 8.5) - 1).getTxnResponseTime()) + ","
+ getMs(resultSets.get((int) Math.ceil(size * @.75) - 1).getTxnResponseTime());
return dumpline; 33

Add Method

private wvoid outputAs2Report(5tring fileName) throws I0Exception {
try (BufferedWriter writer = new BufferedWriter(new FileWriter(new File{OUTPUT DIR, fileName + ".csv"}))) {
writer.write(
"time(sec), throughput(txs), avg latency(ms), min{ms), max{ms), 25th_lat{ms), median_lat(ms), 75th_lat{ms)");
writer.newline();
long timeStart = @;
long timeSeg = 5;
boolean segFirst = true;
As2ReportStatistic as25t = new As2ReportStatistic();

for (TxnResultSet resultSet @ resultSets) {

if (segFirst) {
timeStart = resultSet.getTxnEndTime();
as25t.SetTimeSeg(timeSeg);
segFirst = false;
timeSeg += 5;

¥

as25t.addResultSet(resultset);

if (!(resultSet.getTxnEndTime() < (timeStart + 5_@@0 808 aseL))) |
writer.write(as25t.dumpResult());
writer.newline();
as25t = new As2ReportStatistic();
segFirst = true;

34

Outline

* An example of Experiment Results

An Example of Experiments

The Impact of Connection Mode

Throughput (txs/min)

350000

300000

250000

200000

150000

100000

20000

- JDBC

== StOred Procedures

0.25

0.5

The Ratio of Read-Write Txns

0.75

36

