
Query Processing

Shan-Hung Wu & DataLab

CS, NTHU

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Query Engine

2

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

3

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

4

Recap: Finding Major

5

• JDBC client • Native (server side)
Connection conn = null;
try {

// Step 1: connect to database server
Driver d = new JdbcDriver();
conn = d.connect("jdbc:vanilladb://localhost", null);
conn.setAutoCommit(false);
conn.setReadOnly(true);

// Step 2: execute the query
Statement stmt = conn.createStatement();
String qry = "SELECT s-name, d-name FROM departments, "

+ "students WHERE major-id = d-id";
ResultSet rs = stmt.executeQuery(qry);
// Step 3: loop through the result set
rs.beforeFirst();
System.out.println("name\tmajor");
System.out.println("-------\t-------");
while (rs.next()) {

String sName = rs.getString("s-name");
String dName = rs.getString("d-name");
System.out.println(sName + "\t" + dName);

}
rs.close();

} catch (SQLException e) {
e.printStackTrace();

} finally {
try { // Step 4: close the connection

if (conn != null) conn.close();
} catch (SQLException e) {

e.printStackTrace();
}

}

VanillaDb.init("studentdb");

// Step 1 correspondence
Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, true);

// Step 2 correspondence
Planner planner = VanillaDb.newPlanner();
String query = "SELECT s-name, d-name FROM departments, "

+ "students WHERE major-id = d-id";
Plan plan = planner.createQueryPlan(query, tx);
Scan scan = plan.open();

// Step 3 correspondence
System.out.println("name\tmajor");
System.out.println("-------\t-------");
while (scan.next()) {

String sName = (String) scan.getVal("s-name").asJavaVal();
String dName = (String) scan.getVal("d-name").asJavaVal();
System.out.println(sName + "\t" + dName);

}
scan.close();

// Step 4 correspondence
tx.commit();

Query Evaluation: Input and Output

• Input:
– A SQL command (string)

• Output for SELECT:
– Scan (iterator of records) of the output table

– By planner.createQueryPlan().open()

• Output for others commands (CREATE,
INSERT, UPDATE, DELETE):
– #records affected

– By planner.executeUpdate()

6

What does a Planner do?

1. Parses the SQL command

2. Verifies the SQL command

3. Finds a good plan for the SQL command

4. a. Returns the plan (createQueryPlan())
b. Executes the plan by iterating through the
corresponding scan and returns #records
affected (executeUpdate())

7

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

8

What does a Planner do?

1. Parses the SQL command

2. Verifies the SQL command

3. Finds a good plan for the SQL command

4. a. Returns the plan (createQueryPlan())
b. Executes the plan by iterating through the
scan and returns #records affected
(executeUpdate())

9

SQL Statement Processing

• Input:

– A SQL statement

• Output:

– Internal SQL data object that can be fed to the
constructors of various plans/scans

• Two stages:

– Parsing (syntax-based)

– Verification (semantic-based)

10

SELECT FROM TABLES t1 AND t2 WHERE b - 3

Syntax vs. Semantics

• The syntax of a language is a set of rules that
describes the strings that could possibly be
meaningful statements

• Is this statement syntactically legal?

• No
– SELECT clause must refer to some field
– TABLES is not a keyword
– AND should separate predicates not tables
– b-3 is not a predicate

11

Syntax vs. Semantics

• Is this statement syntactically legal?

– Yes, we can infer that this statement is a query
– But is it actually meaningful?

• The semantics of a languages specifies the actual
meaning of a syntactically correct string

• Whether it is semantically legal depends on
– Is a a field name?
– Are t1, t2 the names of tables?
– Is b the name of a numeric field?

• Semantic information is stored in the database’s
metadata (catalog)

12

SELECT a FROM t1, t2 WHERE b = 3

Syntax vs. Semantics in VanillaCore

• Parser converts a SQL statement to SQL data
based on the syntax

– Exceptions are thrown upon syntax error

– Outputs SQL data, e.g., QueryData, InsertData,
ModifyData, CreatTableData, etc.

– All defined in query.parse package

• Verifier examines the metadata to validate
the semantics of SQL data
– Defined in query.planner package

13

Outline

• Overview

• Scans and plans

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Query planning
– Deterministic planners

14

Parsing SQL Commands

• Parser uses a parsing algorithm to convert
a SQL string to SQL data

– To be detailed later

• Uses a lexical analyzer (also called lexer or
tokenizer) that splits the SQL string into tokens
when reading

15

SELECT a FROM t1, t2 WHERE b = 3

Tokens

• Each token has a type and a value
• VanillaCore lexical analyzer supports

five token types:
– Single-character delimiters, such as

the comma ,

– Numeric constants, such as 123.6
(scientific notation is not supported)

– String constants, such as ‘netdb’

– Keywords, such as SELECT, FROM,
and WHERE

– Identifiers, such as t1, a, and b

• E.g.,

16

SELECT a FROM t1, t2 WHERE b = 3

Type Value

Keyword SELECT

Identifier a

Keyword FROM

Identifier t1

Delimiter ,

Identifier t2

Keyword WHERE

Identifier b

Delimiter =

Numeric
Constant

3

Whitespace

• A SQL command is split at whitespace
characters

– E.g., spaces, tabs, new lines, etc.

• The only exception are those inside ‘...’

17

Stream-based API

• Reads a SQL string only once

• matchXXX

– Returns whether the next
token is of the specified type

• eatXXX

– Returns the value of the next
token if the token is of the
specified type

– Otherwise throws
BadSyntaxException

18

Lexer

- keywords : Collection<String>

- tok : StreamTokenizer

+ Lexer(s : String)

+ matchDelim(delimiter : char) : boolean

+ matchNumericConstant() : boolean

+ matchStringConstant() : boolean

+ matchKeyword(keyword : String) : boolean

+ matchId() : boolean

+ eatDelim(delimiter : char)

+ eatNumericConstant() : double

+ eateStringConstant() : String

+ eatKeyword(keyword : String)

+ eatId() : String

Implementing the Lexical Analyzer

• Java SE offers 2 built-in tokenizers

• java.util.StringTokenizer

– Supports only two kinds of token: delimiters and
words

• java.io.StreamTokenizer

– Has an extensive set of token types, including all
five types used by VanillaCore

– Wrapped by Lexer in VanillaDB

19

Lexer

20

public class Lexer {
private Collection<String> keywords;
private StreamTokenizer tok;

public Lexer(String s) {
initKeywords();
tok = new StreamTokenizer(new StringReader(s));
tok.wordChars('_', '_');
tok.ordinaryChar('.');
// ids and keywords are converted into lower case
tok.lowerCaseMode(true); // TT_WORD
nextToken();

}

public boolean matchDelim(char delimiter) {
return delimiter == (char) tok.ttype;

}

public boolean matchNumericConstant() {
return tok.ttype == StreamTokenizer.TT_NUMBER;

}

Lexer

21

public boolean matchStringConstant() {
return '\'' == (char) tok.ttype; // 'string'

}

public boolean matchKeyword(String keyword) {
return tok.ttype == StreamTokenizer.TT_WORD
&& tok.sval.equals(keyword) && keywords.contains(tok.sval);

}

public double eatNumericConstant() {
if (!matchNumericConstant())

throw new BadSyntaxException();
double d = tok.nval;
nextToken();
return d;

}

public void eatKeyword(String keyword) {
if (!matchKeyword(keyword))

throw new BadSyntaxException();
nextToken();

}

Setting Up StreamTokenizer

• The constructor for Lexer sets up a stream
tokenizer as follows:

– tok.ordinaryChar(‘.’) tells the tokenizer
to interpret the period character as a delimiter

– tok.lowerCaseMode(true) tells the
tokenizer to convert all string tokens (but not
quoted strings) to lower case

22

Outline

• Overview

• Scans and plans

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Query planning
– Deterministic planners

23

Grammar

• A grammar is a set of rules that describe how
tokens can be legally combined

– We have already seen the supported SQL
grammar by VanillaCore

• E.g.,

– Each grammar rule specifies the syntactic
category and its content

24

<Field> := IdTok

<Constant> := StrTok | NumericTok

<Expression> := <Field> | <Constant>

<Term> := <Expression> = <Expression>

<Predicate> := <Term> [AND <Predicate>]

Grammar

• Syntactic category is the left side of a
grammar rule, and it denotes a particular
concept in the language

– <Field> as field name

• The content of a category is the right side of a
grammar rule, and it is the set of strings that
satisfy the rule

– IdTok matches any identifier token

25

Parse Tree

• We can draw a parse tree to depict how a string
belongs to a particular syntactic category
– Syntactic categories as its internal nodes, and tokens

as its leaf nodes

– The children of a category node correspond to the
application of a grammar rule

• Used by a parsing algorithm to verify if a given
string is syntactically legal
– An exception is fired if the tree cannot be constructed

following the grammar

26

Parse Tree

• Parse tree for a predicate string:

27

dname = 'math' AND gradyear = sname

Predicate

Term

Predicate

Term

Expression Expression Expression Expression

Field Field FieldConstant

IdTok StrTok IdTok IdTok

dname ‘math’ gradyear sname
AND= =

Parsing Algorithm

• The complexity of the parsing algorithm is
usually in proportion to the complexity of
supported grammar

• VanillaCore has simple SQL grammar, and so
we will use the simplest parsing algorithm,
known as recursive descent

28

Recursive-Descent Parser

• A recursive-descent parser has a method for
each grammar rule, and calls these methods
recursively to traverse the parse tree in prefix
order

29

Recursive-Descent Parser

30

<Field>

:= IdTok

<Constant>

:= StrTok | NumericTok

public class PredParser {
private Lexer lex;

public PredParser(String s) {
lex = new Lexer(s);

}

public void field() {
lex.eatId();

}

public Constant constant() {
if (lex.matchStringConstant())

return new VarcharConstant(lex.eatStringConstant());
else

return new DoubleConstant(lex.eatNumericConstant());
}

31

<Expression>

:= <Field> | <Constant>

<Term>

:= <Expression> = <Expression>

<Predicate>

:= <Term> [AND <Predicate>]

public Expression queryExpression() {
return lex.matchId() ? new FieldNameExpression(id()) :

new ConstantExpression(constant());
}

public Term term() {
Expression lhs = queryExpression();
Term.Operator op;
if (lex.matchDelim('=')) {

lex.eatDelim('=');
op = OP_EQ;

} else if (lex.matchDelim('>')) {
lex.eatDelim('>');
if (lex.matchDelim('=')) {

lex.eatDelim('=');
op = OP_GTE;

} else
op = OP_GT;

} else ...
Expression rhs = queryExpression();
return new Term(lhs, op, rhs);

}

public Predicate predicate() {
Predicate pred = new Predicate(term());
while (lex.matchKeyword("and")) {

lex.eatKeyword("and");
pred.conjunctWith(term());

}
return pred;

}
}

• Prefix traversal
allows a SQL string
to be read just once

SQL Data

• Parser returns SQL data

– E.g., when the parsing the query statement
(syntactic category <Query>), parser will returns
a QueryData object

• All SQL data are defined in query.parse
package

32

Parser and QueryData

33

QueryData

+ QueryData(projFields : Set<String>, tables :

Set<String>, pred : Predicate, groupFields :

Set<String>, aggFn : Set<AggregationFn>,

sortFields : List<String>, sortDirs : List<Integer>)

+ projectFields() : Set<String>

+ tables() : Set<String>

+ pred() : Predicate

+ groupFields() : Set<String>

+ aggregationFn() : Set<String>

+ sortFields() : List<String>

+ sortDirs() : List<Integer>

+ toString() : String

Parser

- lex : Lexer

+ Parser(s : String)

+ updateCmd() : Object

+ query() : QueryData

- id() : String

- constant() : Constant

- queryExpression() : Expression

- term() : Term

- predicate() : Predicate

...

- create() : Object

- delete() : DeleteData

- insert() : InsertData

- modify() : ModifyData

- createTable() : CreateTableData

- createView() : CreateViewData

- createIndex() : CreateIndexData

Other SQL data

34

InsertData

+ InsertData(tblname : String, flds : List<String>,

vals : List<Constant>)

+ tableName() : String

+ fields() : List<String>

+ val() : List<Constant>

CreateTableData

+ InsertData(tblname : String, sch : Schema)

+ tableName() : String

+ newSchema : Schema

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

35

Predicate

• Classes defined in sql.predicates in VanillaCore

• For example,

36

(gradyear > 2012 OR gradyear <= 2015) AND majorid = did

TermExpression

Predicate

<Field> := IdTok

<Constant> := StrTok | NumericTok

<Expression> := <Field> | <Constant>

<Term> := <Expression> = <Expression>

<Predicate> := <Term> [AND <Predicate>]

<<interface>>

Expression

+ isConstant() : boolean

+ isFieldName() : boolean

+ asConstant() : Constant

+ asFieldName() : String

+ hasField(fldName : String) : boolean

+ evaluate(rec : Record) : Constant

+ isApplicableTo(sch : Schema) : boolean

Expression

• VanillaCore has three Expression implementations
– ConstanExpression

– FieldNameExpression

– BinaryArithmeticExpression

37

Methods of Expression

• The method evaluate(rec) returns the value
(of type Constant) of the expression with
respect to the passed record
– Used by, e.g., SelectScan during query evaluation

• The methods isConstant, isFieldName,
asConstant, and asFieldName allow clients
to get the contents of the expression, and are
used by planner in analyzing a query

• The method isApplicableTo tells the
planner whether the expression mentions fields
only in the specified schema

38

Methods of Expression

• FieldNameExpression

39

public class FieldNameExpression implements Expression {
private String fldName;

public FieldNameExpression(String fldName) {
this.fldName = fldName;
}
...

public Constant evaluate(Record rec) {
return rec.getVal(fldName);
}

public boolean isApplicableTo(Schema sch) {
return sch.hasField(fldName);
}
...

Term

• Term supports five operators

– OP_EQ(=),OP_LT(<), OP_LTE(<=),
OP_GE(>), and OP_GTE(>=)

40

Term

<<final>> + OP_EQ : Operator

<<final>> + OP_LT : Operator

<<final>> + OP_LTE : Operator

<<final>> + OP_GE : Operator

<<final>> + OP_GTE : Operator

+ Term(lhs : Expression, op : Operator, rhs :

Expression)

+ operator(fldname : String) : Operator

+ oppositeConstant(fldname : String) : Constant

+ oppositeField(fldname : String) : String

+ isApplicableTo(sch : Schema) : boolean

+ isSatisfied(rec : Record) : boolean

+ toString() : String

<<abstract>>

Operator

<<abstract>> complement() : Operator

<<abstract>> isSatisfied(lhs : Expression,

 rhs : Expression, rec : Record) : boolean

Methods of Term

• The method isSatisfied(rec) returns
true if given the specified record, the two
expressions evaluate to matching values

41

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

Term5: created = 2012/11/15

O
X

X

public boolean isSatisfied(Record rec) {
return op.isSatisfied(lhs, rhs, rec);

}

Operator in Term

• Implement the supported operators of term

• OP_LTE

42

public static final Operator OP_LTE = new Operator() {
Operator complement() {

return OP_GTE;
}

boolean isSatisfied(Expression lhs, Expression rhs, Record rec) {
return lhs.evaluate(rec).compareTo(rhs.evaluate(rec)) <= 0;

}

public String toString() {
return "<=";

}
};

Methods of Term

• The method oppositeConstant returns a
constant if this term is of the form "F<OP>C"
where F is the specified field, <OP> is an operator,
and C is some constant

• Examples:

43

Term1: majorid > 5

// the opposite constant of majorid is 5

Term2: 2012 <= gradyear

// the opposite constant of gradyear is 2012

Methods of Term

• The method oppositeConstant returns a
constant if this term is of the form "F<OP>C"
where F is the specified field, <OP> is an operator,
and C is some constant

44

public Constant oppositeConstant(String fldName) {
if (lhs.isFieldName() && lhs.asFieldName().equals(fldName)

&& rhs.isConstant())
return rhs.asConstant();

if (rhs.isFieldName() && rhs.asFieldName().equals(fldName)
&& lhs.isConstant())

return lhs.asConstant();
return null;

}

Methods of Term

• The method oppositeField returns a field
name if this term is of the form "F1<OP>F2"
where F1 is the specified field, <OP> is an
operator, and F2 is another field

• Examples:

45

Term1: majorid > 5

// the opposite field of “majorid” is null

Term3: since = gradyear

// the opposite field of gradyear is since

// the opposite field of since is gradyear

Methods of Term

• The method isApplicableTo tells the
planner whether both expressions of this term
apply to the specified schema

• Examples:

46

Table s with schema(sid, sname, majorid)

Table d with schema(did, dname)

Term1: majorid > 5

// it is not applicable to d.schema

// it is applicable to s.schema

Term4: majorid = did

// it is not applicable to d.schema

// it is not applicable to s.schema

Predicate
• A predicate in VanillaCore is a conjunct of

terms, e.g., term1 AND term2 AND ...

47

Predicate

+ Predicate()

+ Predicate(t : Term)

// used by the parser

+ conjunctWith(t : Term)

// used by a scan

+ isSatisfied(rec : Record) : boolean

// used by the query planner

+ selectPredicate(sch : Schema) : Predicate

+ joinPredicate(sch1 : Schema, sch2 : Schema) : Predicate

+ constantRange(fldname : String) : ConstantRange

+ joinFields(fldname : String) : Set<String>

+ toString() : String

Methods of Predicate

• The methods of Predicate address the
needs of several parts of the database system:
– A select scan evaluates a predicate by calling
isSatisfied

– The parser construct a predicate as it processes
the WHERE clause, and it calls conjoinWith to
conjoin another term

– The rest of the methods help the query planner to
analyze the scope of a predicate and to break it
into smaller pieces

48

Methods of Predicate

• The method selectPredicate returns a sub-
predicate that applies only to the specified
schema

• Example:

49

Table s with schema(sid, sname, majorid)

Table d with schema(did, dname)

Predicate1:

majorid = did AND majorid > 5 AND sid >= 100

// the select predicate for table s: majorid > 5

AND sid >= 100

// the select predicate for table d: null

Methods of Predicate

• The method selectPredicate returns a sub-
predicate that applies only to the specified
schema

50

public Predicate selectPredicate(Schema sch) {
Predicate result = new Predicate();
for (Term t : terms)

if (t.isApplicableTo(sch))
result.terms.add(t);

if (result.terms.size() == 0)
return null;

else
return result;

}

Methods of Predicate

51

Table s with schema(sid, sname, majorid)

Table d with schema(did, dname)

Predicate1:

majorid = did AND majorid > 5 AND sid >= 100

// the join predicate for tables s, d: majorid = did

• The method joinPredicate returns a sub-
predicate that applies to the union of the two
specified schemas, but not to either schema
individually

Methods of Predicate

52

• The method joinPredicate returns a sub-
predicate that applies to the union of the two
specified schemas, but not to either schema
separately
public Predicate joinPredicate(Schema sch1, Schema sch2) {

Predicate result = new Predicate();
Schema newsch = new Schema();
newsch.addAll(sch1);
newsch.addAll(sch2);
for (Term t : terms)

if (!t.isApplicableTo(sch1) && !t.isApplicableTo(sch2)
&& t.isApplicableTo(newsch))

result.terms.add(t);
return result.terms.size() == 0 ? null : result;

}

Methods of Predicate

• The method constantRange determines if
the specified field is constrained by a constant
range in this predicate. If so, the method
returns that range

53

Predicate2: sid > 5 AND sid <= 100

// the constant range of sid is (5, 100]

Methods of Predicate

• The method joinFields determines if there
are terms of the form "F1=F2" or result in
"F1=F2" via equal transitivity, where F1 is the
specified field and F2 is another field. If so, the
method returns the names of all join fields

54

Predicate3: sid = did AND did = tid

// the join fields of sid are {did, tid}

Creating a Predicate in a Query Parser

55

// majorid <=30 AND majorid=did
Expression exp1 = new FieldNameExpression("majorid");
Expression exp2 = new ConstantExpression(

new IntegerConstant(30));
Term t1 = new Term(exp1, OP_LTE, exp2);

Expression exp3 = new FieldNameExpression("majorid");
Expression exp4 = new FieldNameExpression("did");
Term t2 = new Term(exp3, OP_EQ, exp4);

Predicate pred = new Predicate(t1);
pred.conjunctWith(t2);

Outline

• Overview

• Scans and plans

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Query planning
– Deterministic planners

56

Things that Parser Cannot Ensure

• The parser cannot enforce type compatibility,
because it doesn’t know the types of the
identifiers it sees

• The parser also cannot enforce compatible list
size

57

dname = 'math' AND gradyear = sname

INSERT INTO dept (did, dname) VALUES ('math')

Verification

• Before feeding the SQL data into the
plans/scans, the planner asks the Verifier
to verify the semantics correctness of the data

58

Verification

• The Verifier checks whether:

– The mentioned tables and fields actually exist in
the catalog

– The mentioned fields are not ambiguous

– The actions on fields are type-correct

– All constants are of correct type and size to their
corresponding fields

59

Verifying the INSERT Statement

60

public static void verifyInsertData(InsertData data, Transaction tx) {
// examine table name
TableInfo ti = VanillaDb.catalogMgr().getTableInfo(data.tableName(), tx);
if (ti == null)

throw new BadSemanticException("table " + data.tableName() + " does not exist");

Schema sch = ti.schema();
List<String> fields = data.fields();
List<Constant> vals = data.vals();

// examine whether values have the same size with fields
if (fields.size() != vals.size())

throw new BadSemanticException("#fields and #values does not match");

// verify field existence and type
for (int i = 0; i < fields.size(); i++) {

String field = fields.get(i);
Constant val = vals.get(i);
// check field existence
if (!sch.hasField(field))

throw new BadSemanticException("field " + field+ " does not exist");
// check whether field matches value type
if (!verifyConstantType(sch, field, val))

throw new BadSemanticException("field " + field
+ " doesn't match corresponding value in type");

}
}

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Predicates

– Lexer, parser, and SQL data

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

61

What does a Planner do?

1. Parses the SQL command

2. Verifies the SQL command

3. Finds a good plan for the SQL command

4. a. Returns the plan (createQueryPlan())
b. Executes the plan by iterating through the
scan and returns #records affected
(executeUpdate())

62

What’s the difference between scans
and plans?

63

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Predicates

– Lexer, parser, and SQL data

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

64

SQL and Relational Algebra (1/2)

SELECT b.blog_id

FROM blog_pages b, users u

WHERE b.author_id=u.user_id

AND u.name='Steven Sinofsky'

AND b.created >= 2011/1/1;

65

s = select(p, where…)

project(s, select…)

b u

p = product(b, u)

• Recall that a SQL command can be expressed
as at-least one tree in relational algebra

Why this translation?

66

SQL and Relational Algebra (2/2)

• SQL is difficult to implement directly

– A single SQL command can embody several tasks

• Relational algebra is relatively easy to
implement

– Each operator denotes a
small, well-defined task

67

s = select(p, where…)

project(s, select…)

b u

p = product(b, u)

Operators

• Single-table operators
– select, project, sort, rename, extend, groupby, etc.

• Two-table operators
– product, join, semijoin, etc.

• Operands
– Tables, views, output

of other operators,
predicates, etc.

• Output
– Always a table

– To be returned or used as a param of the next op
68

s = select(p, where…)

project(s, select…)

b u

p = product(b, u)

Scans

• A scan represents the output of an operator in
a relational algebra tree

– I.e., output of a subtree (partial query)

• All scans in VanillaCore
implement the
Scan interface

• In query.algebra
package

69

s = SelectScan(p, where…)

ProjectScan(s, select…)

TableScan of b TableScan of u

p = ProductScan(b, u)

The Scan Interface

• An iterator of output
records of a partial
query

• Not to confuse with
RecordFile

– A RecordFile is an
iterator of records in a
table file

– Storage-specific

70

<<interface>>

Record

+ getVal(fldName : String) : Constant

<<interface>>

Scan

+ beforeFirst()

+ next() : boolean

+ close()

+ hasField(fldname : String) : boolean

Using a Scan

71

public static void printNameAndGradyear(Scan s) {
s.beforeFirst();
while (s.next()) {

Constant sname = s.getVal("sname");
Constant gradyear = s.getVal("gradyear");
System.out.println(sname + "\t" + gradyear);

}
s.close();

}

Basic Scans

72

public SelectScan(Scan s, Predicate pred);

public ProjectScan(Scan s,
Collection<String> fieldList);

public ProductScan(Scan s1, Scan s2);

public TableScan(TableInfo ti, Transaction tx);

Building a Scan Tree

73

s = SelectScan
(b, where sid = 5)

ProjectScan
(s, select sname)

TableScan of b

VanillaDb.init("studentdb");
Transaction tx =

VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, true);

TableInfo ti =
VanillaDb.catalogMgr().getTableInfo("b", tx);

Scan ts = new TableScan(ti, tx);
Predicate pred = new Predicate("..."); // sid = 5

Scan ss = new SelectScan(ts, pred);
Collection<String> projectFld =

Arrays.asList("sname");
Scan ps = new ProjectScan(ss, projectFld);

ps.beforeFirst();
while (ps.next())

System.out.println(ps.getVal("sname"));
ps.close();

Updatable Scans

• A scan is read-only by default

• We need the TableScan and SelectScan
to be updatable to support UPDATE and
DELETE commands:

74

UPDATE student

SET major-id = 10, grad-year = grad-year - 1

WHERE major-id=20;

DELETE FROM student

WHERE major-id=20;

UpdateScan

• Provides setters
• Allows random access

– Useful to indices

• Implemented by
TableScan and
SelectScan

• Not every scan is updatable
– A scan is updatable only if

every record r in the scan has a
corresponding record r’ in
underlying database table

75

<<interface>>

UpdateScan

+ setVal(fldname : String, val : Constant)

+ insert()

+ delete()

+ getRecordId() : RecordId

+ moveToRecordId(rid : RecordId)

<<interface>>

Scan

+ beforeFirst()

+ next() : boolean

+ close()

+ hasField(fldname : String) : boolean

<<interface>>

Record

+ getVal(fldName : String) : Constant

Using Updatable Scans

• SQL command:

• Code:

76

UPDATE enroll SET grade = ‘A+’

WHERE section-id = 53;

VanillaDb.init("studentdb");
Transaction tx = VanillaDb.txMgr().newTransaction(

Connection.TRANSACTION_SERIALIZABLE, false);
TableInfo ti = VanillaDb.catalogMgr().getTableInfo("enroll", tx);

Scan ts = new TableScan(ti, tx);
Predicate pred = new Predicate(...); // section-id = 53
UpdateScan us = new SelectScan(ts, pred);
us.beforeFirst();
while (us.next())

us.setVal("grade", new VarcharConstant("A+"));
us.close();

TableScan

77

• Basically, tasks are
delegated to a
RecordFile

public class TableScan implements UpdateScan {
private RecordFile rf;
private Schema schema;

public TableScan(TableInfo ti, Transaction tx) {
rf = ti.open(tx);
schema = ti.schema();

}

public void beforeFirst() {
rf.beforeFirst();

}

public boolean next() {
return rf.next();

}

public void close() {
rf.close();

}

public Constant getVal(String fldName) {
return rf.getVal(fldName);

}

public boolean hasField(String fldName) {
return schema.hasField(fldName);

}

public void setVal(String fldName, Constant val) {
rf.setVal(fldName, val);

}
...

}

SelectScan

78

public class SelectScan implements UpdateScan {
private Scan s;
private Predicate pred;

public SelectScan(Scan s, Predicate pred) {
this.s = s;
this.pred = pred;

}

public boolean next() {
while (s.next())

// if current record satisfied the predicate
if (pred.isSatisfied(s))

return true;
return false;

}

public void setVal(String fldname, Constant val) {
UpdateScan us = (UpdateScan) s;
us.setVal(fldname, val);

}
...

}

ProductScan

79

• Iterates through
records following the
nested loops

public class ProductScan implements Scan {
private Scan s1, s2;
private boolean isLhsEmpty;

public ProductScan(Scan s1, Scan s2) {
this.s1 = s1;
this.s2 = s2;
s1.beforeFirst();
isLhsEmpty = !s1.next();

}

public boolean next() {
if (isLhsEmpty)

return false;
if (s2.next())

return true;
else if (!(isLhsEmpty = !s1.next())) {

s2.beforeFirst();
return s2.next();

} else
return false;

}

public Constant getVal(String fldName) {
if (s1.hasField(fldName))

return s1.getVal(fldName);
else

return s2.getVal(fldName);
}
...

}

ProjectScan

80

public class ProjectScan implements Scan {
private Scan s;
private Collection<String> fieldList;

public ProjectScan(Scan s, Collection<String> fieldList) {
this.s = s;
this.fieldList = fieldList;

}

public boolean next() {
return s.next();

}

public Constant getVal(String fldName) {
if (hasField(fldName))

return s.getVal(fldName);
else

throw new RuntimeException("field " + fldName + " not found.");
}
...

}

Example

81

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

beforeFirst()

beforeFirst()

beforeFirst() beforeFirst()

project(s, select blog_id)

select(p, where name = ‘Picachu’
and author_id = user_id)

SELECT blog_id FROM b, u

WHERE name = “Picachu”

AND author_id = user_id;

Example

82

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

project(s, select blog_id)

next()

next()

next()

blog_id url created author_id user_id name balance

33981 … 2009/10/31 729 729 Steven Sinofsky 10,235

select(p, where name = ‘Picachu’
and author_id = user_id)

Example

83

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

project(s, select blog_id)

next()

next()

next()

blog_id url created author_id user_id name balance

33981 … 2009/10/31 729 730 Picachu NULL

select(p, where name = ‘Picachu’
and author_id = user_id)

Example

84

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

project(s, select blog_id)

next()

next()

next()

select(p, where name = ‘Picachu’
and author_id = user_id)

next() false

beforeFirst()

Example

85

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

project(s, select blog_id)

next()

next()

next()

blog_id url created author_id user_id name balance

33982 … 2012/11/15 730 729 Steven Sinofsky 10,235

select(p, where name = ‘Picachu’
and author_id = user_id)

Example

86

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b u

project(s, select blog_id)

next()

next()

next()

blog_id url created author_id user_id name balance

33982 … 2012/11/15 730 730 Picachu NULL

select(p, where name = ‘Picachu’
and author_id = user_id)

blog_id

33982

blog_id url created author_id user_id name balance

33982 … 2012/11/15 730 730 Picachu NULL

Example

87

blog_id url created author_id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 729

user_id name balance

729 Steven Sinofsky 10,235

730 Picachu NULL

product(b, u)

b

blog_id url created author_id user_id name balance

33981 … 2009/10/31 729 729 Steven Sinofsky 10,235

33981 … 2009/10/31 729 730 Picachu NULL

33982 … 2012/11/15 730 729 Steven Sinofsky 10,235

33982 … 2012/11/15 730 730 Picachu NULL

41770 … 2012/10/20 729 729 Steven Sinofsky 10,235

41770 … 2012/10/20 729 730 Picachu NULL

u

blog_id url created author_id user_id name balance

33982 … 2012/11/15 730 730 Picachu NULL

project(s, select…)
blog_id

33982

getVal()

getVal()

getVal()

select(p, where
name = ‘Picachu’)

Pipelined Scanning

• The above operators
implement pipelined
scanning
– Calling a method of a node

results in recursively calling
the same methods of child
nodes on-the-fly

– Records are computed one
at a time as needed---no
intermediate records are
saved

88

s = SelectScan(p, where…)

ProjectScan(s, select…)

TableScan of b TableScan of u

p = ProductScan(b, u)

getVal()

getVal()

getVal() val

val

val

Pipelined vs. Materialized

• Despite its simplicity, pipelined scanning is inefficient in
some cases
– E.g., when implementing SortScan (for ORDER BY)
– Needs to iterate the entire child to find the next record

• Later, we will see materialized scanning in some scans
– Intermediate records are materialized to a temp table (file)
– E.g., the SortScan can use an external sorting algorithm

to sort all records at once, save them, and return each
record upon next() is called

• Pipelined or materialized?
– Saving in scanning cost vs. materialization overhead

89

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

90

Scan Tree for SQL Command?

• Given the scans:

• Can you build a scan tree for this query:

91

SELECT sname FROM student, dept

WHERE major-id = d-id

AND s-id = 5 AND major-id = 4;

Which One is Better?

92

SelectScan

ProjectScan

ProductScan

TableScan
dept

TableScan
student

ProjectScan

ProductScan

TableScan
dept

TableScan
student

SelectScan
s-id=5 and major-id=4

SelectScan
major-id=d-id

SELECT sname FROM student, dept

WHERE major-id = d-id

AND s-id = 5 AND major-id = 4;

Why Does It Matter?

• A good scan tree can be faster than a bad one for
orders of magnitude

• Consider the product scan at middle
– Let R(student)=10000, B(student)=1000, B(dept)= 500,

and selectivity(s-id=5&major-id=4)=0.01
– Each block access requires 10ms

• Left: (1000+10000*500)*10ms = 13.9 hours
• Right: (1000+10000*0.01*500)*10ms = 8.4 mins
• We need a way to estimate the cost of a scan tree

without actual scanning
– As we just did above

93

Which Cost to Estimate?

• CPU delay, memory delay, or I/O delay?

• The number of block accesses performed by a
scan is usually the most important factor in
determining running time of a query

• Usually needs other estimates, such as the
number of output records and value
histogram

94

Estimating Block Access (1/2)

• E.g., SELECT(T1, WHERE f1<10)

• Statistics metadata for T1:

– VH(T1, f1), R(T1), B(T1)

– Updated by a full table scan
every, say, 100 table updates

• #blocks accessed?

– B(T1) * (
VH(T1, f1).predHistogram(WHERE…).recordsOutput()
/ R(T1))

95

f1.values

f1.#recs

10

Estimating Block Access (2/2)

• Complications

– Multiple fields in SELECT (e.g., f1=f2)

– Multiple tables, etc.

• Topics of query optimization

96

The Plan Interface

• A cost estimator for a partial query

• Each plan instance corresponds to an operator
in relational algebra

– Also to a subtree

97

<<interface>>

Plan

+ open() : Scan

+ blocksAccessed() : int

+ schema() : Schema

+ histogram() : Histogram

+ recordsOutput() : int

SelectPlan

ProjectPlan

ProductPlan

TablePlan
dept

TablePlan
student

Using a Query Plan

98

select(p, where…)

b u

p = product(b, u)

VanillaDb.init("studentdb");
Transaction tx = VanillaDb.txMgr().transaction(

Connection.TRANSACTION_SERIALIZABLE, true);

Plan pb = new TablePlan("b", tx);
Plan pu = new TablePlan("u", tx);
Plan pp = new ProductPlan(pb, pu);
Predicate pred = new Predicate(...);
Plan sp = new SelectPlan(pp, pred);

sp.blockAccessed(); // estimate #blocks accessed

// open corresponding scan only if sp has low cost
Scan s = sp.open();
s.beforeFirst();
while (s.next())
s.getVal("bid");
s.close();

Plan before Scan

• A plan (tree) is a blueprint for evaluating a
query

• Estimates cost by accessing statistics metadata
only

– No actual I/Os

– Memory access only, very efficient

• Once a good plan is decided, we then create a
scan following the blueprint

99

Opening a Scan
Tree

• The open()
constructs a scan
tree with the
same structure as
the current plan

100

public class TablePlan implements Plan {

public Scan open() {
return new TableScan(ti, tx);
}
...

}

public class SelectPlan implements Plan {

public SelectPlan(Plan p, Predicate pred) {
this.p = p;
this.pred = pred;
...

}

public Scan open() {
Scan s = p.open();
return new SelectScan(s, pred);

}
...

}

public class ProductPlan implements Plan {

public ProductPlan(Plan p1, Plan p2) {
this.p1 = p1;
this.p2 = p2;
...

}

public Scan open() {
Scan s1 = p1.open();
Scan s2 = p2.open();
return new ProductScan(s1, s2);

}
...

}

How to Find a Good Plan Tree?

• The planner can create multiple trees first,
and then pick the one having the lowest cost

• Determining the best plan tree for a SQL
command is call planning

101

Outline

• Overview

• Parsing and Validating SQL commands
– Syntax vs. Semantics

– Lexer, parser, and SQL data

– Predicates

– Verifier

• Scans and plans

• Query planning
– Deterministic planners

102

What does a Planner do?

1. Parses the SQL command

2. Verifies the SQL command

3. Finds a good plan for the SQL command

4. a. Returns the plan (createQueryPlan())
b. Executes the plan by iterating through the
scan and returns #records affected
(executeUpdate())

103

Planning

• Input:

– SQL data

• Output:

– A good plan tree

• Done by the planner

104

Using the VanillaCore Planner

105

VanillaDb.init("studentdb");
Planner planner = VanillaDb.planner();
Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);
// part 1: Process a query
String qry = "SELECT sname FROM student";
Plan p = planner.createQueryPlan(qry, tx);
Scan s = p.open();
s.beforeFirst();
while (s.next())
System.out.println(s.getVal("sname"));
s.close();

// part 2: Process an update command
String cmd = "DELETE FROM student WHERE majorid = 30";
int numRecs = planner.executeUpdate(cmd, tx);
System.out.println(numRecs + " students were deleted");
tx.commit();

Planner

• In VanillaCore, all planner implementations
are placed in query.planner package

• A client can obtain a Planner object by
calling server.VanillaDb.planner()

106

Planner

+ Planner(qPlanner : QueryPlanner, uPlanner :

UpdatePlanner)

+ createQueryPlan(qry : String, tx : Transaction) : Plan

+ executeUpdate(cmd : String, tx : Transaction) : int

Query and Update Planners

• After verifying the parsed SQL data, the
Planner delegates the planning tasks to

– QueryPlanner

– UpdatePlanner

implementations

• Interfaces defined in query.planner
package

107

Planner

108

public class Planner {
private QueryPlanner qPlanner;
private UpdatePlanner uPlanner;

public Planner(QueryPlanner qPlanner, UpdatePlanner uPlanner)
{

this.qPlanner = qPlanner;
this.uPlanner = uPlanner;

}

public Plan createQueryPlan(String qry, Transaction tx) {
Parser parser = new Parser(qry);
QueryData data = parser.query();
Verifier.verifyQueryData(data, tx);
return qPlanner.createPlan(data, tx);

}

109

Planner

public int executeUpdate(String cmd, Transaction tx) {
if (tx.isReadOnly())

throw new UnsupportedOperationException();
Parser parser = new Parser(cmd);
Object obj = parser.updateCommand();
if (obj instanceof InsertData) {

Verifier.verifyInsertData((InsertData) obj, tx);
return uPlanner.executeInsert((InsertData) obj, tx);

} else if (obj instanceof DeleteData) {
Verifier.verifyDeleteData((DeleteData) obj, tx);
return uPlanner.executeDelete((DeleteData) obj, tx);

} else if (obj instanceof ModifyData) {
Verifier.verifyModifyData((ModifyData) obj, tx);
return uPlanner.executeModify((ModifyData) obj, tx);

} else if (obj instanceof CreateTableData) {
Verifier.verifyCreateTableData((CreateTableData) obj, tx);
return uPlanner.executeCreateTable((CreateTableData) obj, tx);

} else if (obj instanceof CreateViewData) {
Verifier.verifyCreateViewData((CreateViewData) obj, tx);
return uPlanner.executeCreateView((CreateViewData) obj, tx);

} else if (obj instanceof CreateIndexData) {
Verifier.verifyCreateIndexData((CreateIndexData) obj, tx);
return uPlanner.executeCreateIndex((CreateIndexData) obj, tx);

} else
throw new UnsupportedOperationException();

}
}

Query Planning

• Plan tree?

110

SELECT sname FROM student, dept

WHERE majorid = did

AND sid = 5 AND majorid = 4

SelectPlan

ProjectPlan

ProductPlan

TablePlan
dept

TablePlan
student

ProjectPlan

ProductPlan

TablePlan
dept

TablePlan
student

SelectPlan
sid=5 and major=4

SelectPlan
majorid=did

Deterministic Query Planning
Algorithm

1. Construct a plan for each table T in the FROM
clause

a. If T is a table, then the plan is a table plan for T

b. If T is a view, then the plan is the result of calling this
algorithm recursively on the definition of T

2. Take the product of plans from Step 1 if needed

3. A Select on predicate in the WHERE clause if
needed

4. Project on the fields in the SELECT clause

111

QueryPlanner

• The BasicQueryPlanner implements the
deterministic planning algorithm

– In query.planner

112

<<interface>>

QueryPlanner

+ createPlan(data : QueryData, tx : Transaction) :

Plan

BasicQueryPlanner

+ createPlan(data : QueryData, tx : Transaction) :

Plan

BasicQueryPlanner

• The simplified code:

113

public Plan createPlan(QueryData data, Transaction tx) {
// Step 1: Create a plan for each mentioned table or view
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);
if (viewdef != null)

plans.add(VanillaDb.planner().createQueryPlan(viewdef, tx));
else

plans.add(new TablePlan(tblname, tx));
}
// Step 2: Create the product of all table plans
Plan p = plans.remove(0);
for (Plan nextplan : plans)

p = new ProductPlan(p, nextplan);

// Step 3: Add a selection plan for the predicate
p = new SelectPlan(p, data.pred());

// Step 4: Project onto the specified fields
p = new ProjectPlan(p, data.projectFields());
return p;

}

Where to place GROUP BY, HAVING,
and ORDER BY?

114

students

 s-id: int

 s-name: varchar(10)

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8)

courses

 c-id: int

 title: varchar(20)

 dept-id: int

enroll

 e-id: int

 student-id: int

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*

SELECT major-id, AVG(grade)

FROM students, enroll

WHERE s-id = student-id AND sec-id = ...

GROUP BY major-id

HAVING AVG(grade) >= 60

ORDER BY AVG(grade) DESC;

Logical Planning Order (Bottom Up)

1. Table plans (FROM)

2. Product plan (FROM)

3. Select plan (WHERE)

4. Group-by plan (GROUP BY)

5. Project (SELECT)

6. Having plan (HAVING)

7. Sort plan (ORDER BY)

• Fields mentioned in HAVING and ORDER BY
clauses must appear in the project list

115

Update Planning

• DDLs and update commands are usually
simpler than SELECTs

– Single table

– WHERE only, no GROUP BY, HAVING, SORT BY, etc.

• Deterministic planning algorithm is often
sufficient

• BasicUpdatePlanner implements
deterministic planning algorithm for updates

116

BasicUpdatePlanner

117

<<interface>>

UpdatePlanner

+ executeInsert(data : InsertData, tx : Transaction) : int

+ executeDelete(data : DeleteData, tx : Transaction) : int

+ executeModify(data : ModifyData, tx : Transaction) : int

+ executeCreateTable(data : CreateTableData, tx : Transaction) : int

+ executeCreateView(data : CreateViewData, tx : Transaction) : int

+ executeCreateIndex(data : CreateIndexData, tx : Transaction) : int

BasicUpdatePlanner

+ executeInsert(data : InsertData, tx : Transaction) : int

+ executeDelete(data : DeleteData, tx : Transaction) : int

+ executeModify(data : ModifyData, tx : Transaction) : int

+ executeCreateTable(data : CreateTableData, tx : Transaction) : int

+ executeCreateView(data : CreateViewData, tx : Transaction) : int

+ executeCreateIndex(data : CreateIndexData, tx : Transaction) : int

executeModify

• The modification statement are processed by the
method executeModify

118

public int executeModify(ModifyData data, Transaction tx) {
Plan p = new TablePlan(data.tableName(), tx);
p = new SelectPlan(p, data.pred());
UpdateScan us = (UpdateScan) p.open();
us.beforeFirst();
int count = 0;
while (us.next()) {

Collection<String> targetflds = data.targetFields();
for (String fld : targetflds)

us.setVal(fld, data.newValue(fld).evaluate(us));
count++;

}
us.close();
VanillaDb.statMgr().countRecordUpdates(data.tableName(), count);
return count;

}

executeInsert

• The insertion statement are processed by the
method executeInsert

119

public int executeInsert(InsertData data, Transaction tx) {
Plan p = new TablePlan(data.tableName(), tx);
UpdateScan us = (UpdateScan) p.open();
us.insert();
Iterator<Constant> iter = data.vals().iterator();
for (String fldname : data.fields())

us.setVal(fldname, iter.next());

us.close();
VanillaDb.statMgr().countRecordUpdates(data.tableName(), 1);
return 1;

}

Methods for DDL Statements

120

public int executeCreateTable(CreateTableData data, Transaction tx) {
VanillaDb.catalogMgr().createTable(data.tableName(), data.newSchema(), tx);

return 0;
}

public int executeCreateView(CreateViewData data, Transaction tx) {
VanillaDb.catalogMgr().createView(data.viewName(), data.viewDef(), tx);
return 0;

}

public int executeCreateIndex(CreateIndexData data, Transaction tx) {
VanillaDb.catalogMgr().createIndex(data.indexName(), data.tableName(),

data.fieldName(), data.indexType(), tx);
return 0;

}

References

• Ramakrishnan Gehrke., chapters 4, 12, 14 and
15, Database management System, 3ed

• Edward Sciore., chapters 17, 18 and 19,
Database Design and Implementation

• Hellerstein, J. M., Stonebraker, M., and
Hamilton, J., Architecture of a database
system, Foundations and Trends in Databases,
1, 2, 2007

121

You Have Assignment!

122

Assignment: Explain Query Plan

• Implement EXPLAIN SELECT
– Shows how a SQL statement is executed by dumping the execution

plan chosen by the planner

• E.g., EXPLAIN SELECT w-id FROM warehouses, dist
WHERE w-id=d-id GROUP By w-id

• Output: a table with one record of one field query-plan of type
varchar(500):

• A JDBC client can get the result through
RemoteResultSet.getString(“query-plan”)

ProjectPlan (#blks=1, #recs=30)

-> GroupByPlan (#blks=1, #recs=30)

-> SortPlan (#blks=1, #recs=30)

-> SelectPlan pred(w-id=d-id) (#blks=62, #recs=30)

-> ProductPlan (#blks=62, #recs=900)

-> TablePlan on(dist) (#blks=2, #recs=30)

-> TablePlan on(warehouses) (#blks=2, #recs=30)

Actual #recs: 30

Assignment: Explain Query Plan

• Format for each node:
– ${PLAN_TYPE} [optional information]

(#blks=${BLOCKS_ACCESSED}, #recs=${OUTPUT_RECORDS})

• Actual #recs

– The actual number of records output from the
corresponding scan

Assignment: Explain Query Plan

• Report
– How you implement explain operation

• API changes and/or new classes

– We provide the TPC-C testbed to test this
assignment
• Show the output of at least 4 different types of queries

(print screen)
– Single table query

– Multiple tables query

– Query with group by and order by

– Query with group by and an aggregation function

Hint

• Related packages:

– query.algebra, query.parse, query.planner

• Better start from parser and lexer

– SQL data for explain

• Implement a new plan for explain and modify
existing plans

• Implement a new scan for explain

Hint

• To use and modify the BasicQueryPlaner,
change the default query planner type in
properties file

– At
src/main/resources/org/vanilladb/core/vanilladb.
properties

– To
org.vanilladb.core.server.VanillaDb.QUERYPLANNE

R=org.vanilladb.core.query.planner.

BasicQueryPlanner

