Query Processing

Shan-Hung Wu & Datalab
CS, NTHU

VanillaCore

Query Engine

-~

N

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse }
Algebra
Storage Interface
Concu rrencyI Recovery Metadata Index Record Sql/util
Log I Buffer

File

A

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Scans and plans
Query planning

— Deterministic planners

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Scans and plans
Query planning

— Deterministic planners

Recap: Finding Major

 JDBC client

Connection conn = null;

try {
// Step 1: connect to database server
Driver d = new JdbcDriver();
conn = d.connect("jdbc:vanilladb://localhost"”, null);
conn.setAutoCommit(false);
conn.setReadOnly(true);

// Step 2: execute the query

Statement stmt = conn.createStatement();

String gqry = "SELECT s-name, d-name FROM departments, "
+ "students WHERE major-id = d-id";

ResultSet rs = stmt.executeQuery(qry);

// Step 3: loop through the result set

rs.beforeFirst();

System.out.println("name\tmajor");

System.out.println("------- \t------- ");

while (rs.next()) {
String sName = rs.getString("s-name");
String dName = rs.getString("d-name");
System.out.println(sName + "\t" + dName);

}

rs.close();

} catch (SQLException e) {

e.printStackTrace();
} finally {
try { // Step 4: close the connection
if (conn != null) conn.close();

} catch (SQLException e) {
e.printStackTrace();

}

* Native (server side)

VanillaDb.init("studentdb");

// Step 1 correspondence
Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION _SERIALIZABLE, true);

// Step 2 correspondence

Planner planner = VanillaDb.newPlanner();

String query = "SELECT s-name, d-name FROM departments,
+ "students WHERE major-id = d-id";

Plan plan = planner.createQueryPlan(query, tx);

Scan scan = plan.open();

// Step 3 correspondence

System.out.println("name\tmajor");

System.out.println("------- \t------- ")

while (scan.next()) {
String sName = (String) scan.getVal("s-name").asJavaVal()
String dName = (String) scan.getVal("d-name").asJavaVal()
System.out.println(sName + "\t" + dName);

}

scan.close();

// Step 4 correspondence
tx.commit();

Query Evaluation: Input and Output

* |nput:
— A SQL command (string)
e Qutput for SELECT:
— Scan (iterator of records) of the output table
— By planner.createQuervyPlan () .open ()
e Output for others commands (CREATE,
INSERT, UPDATE, DELETE):

— #records affected
— By planner.executeUpdate ()

N =

What doesa Planner do?

Parses the SQL command
Verifies the SQL command
Finds a good plan for the SQL command

a. Returns the plan (createQueryPlan ())
b. Executes the plan by iterating through the
corresponding scan and returns #records
affected (executeUpdate ())

Outline

e Parsing and Validating SQL commands
— Syntax vs. Semantics

What doesa Planner do?

1. Parses the SQL command
2. Verifies the SQL command

SQL Statement Processing

* |nput:
— A SQL statement
* Output:

— Internal SQL data object that can be fed to the
constructors of various plans/scans

* Two stages:
— Parsing (syntax-based)
— Verification (semantic-based)

Syntax vs. Semantics

 The syntax of a language is a set of rules that
describes the strings that could possibly be
meaningful statements

* |s this statement syntactically legal?
SELECT FROM TABLES tl1 AND t2 WHERE b - 3
* NoO
— SELECT clause must refer to some field
— TABLES is not a keyword

— AND should separate predicates not tables
— b-3is not a predicate

Syntax vs. Semantics

Is this statement syntactically legal?

SELECT a FROM tl, t2 WHERE b = 3

— Yes, we can infer that this statement is a query
— But is it actually meaningful?

The semantics of a languages specifies the actual
meaning of a syntactically correct string
Whether it is semantically legal depends on

— |s a a field name?

— Are t1, £t2 the names of tables?

— Is b the name of a numeric field?

Semantic information is stored in the database’s
metadata (catalog)

Syntax vs. Semantics in VanillaCore

e Parser converts a SQL statement to SQL data
based on the syntax
— Exceptions are thrown upon syntax error

— QOutputs SQL data, e.g., QueryData, InsertData,
ModifyData, CreatTableData, etc.

— All defined in query.parse package

e Verifier examines the metadata to validate
the semantics of SQL data

— Defined in query.planner package

Outline

Overview
Scans and plans

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Query planning

— Deterministic planners

14

Parsing SQL Commands

e Parser uses a parsing algorithm to convert
a SQL string to SQL data
— To be detailed later

e Uses a lexical analyzer (also called lexer or
tokenizer) that splits the SQL string into tokens

when reading

[SELECT][a] [FROM [t 1[] WHERH [0l H

15

Tokens

Keyword SELECT
* Each token has a type and a value

Identifier a

* VanillaCore lexical analyzer supports Keyword FROM
five token types: PV E—
— Single-character delimiters, such as Selimiter | .
the comma 4 |dentifier t2

— Numeric constants, suchas 123.6 Keyword WHERE

(scientific notation is not supported)

) Identifier b
— String constants, such as ‘netdb’ By E—
— Keywords, such as SELECT, FROU, Numeric 3

and WHERE Constant
— Identifiers, such as t1, a,and b
e E.g., SELECT a FROM tl, t2 WHERE b = 3

16

Whitespace

 ASQL command is split at whitespace
characters

— E.g., spaces, tabs, new lines, etc.

* The only exception are those inside “...

* Reads a SQL string only once

Stream-based API

* matchXXX

— Returns whether the next
token is of the specified type

eat XXX

— Returns the value of the next
token if the token is of the
specified type

— Otherwise throws
BadSyntaxException

Lexer

- keywords : Collection<String>
- tok : StreamTokenizer

+ Lexer(s : String)

+ matchDelim(delimiter : char) : boolean

+ matchNumericConstant() : boolean

+ matchStringConstant() : boolean

+ matchKeyword(keyword : String) : boolean
+ matchld() : boolean

+ eatDelim(delimiter : char)

+ eatNumericConstant() : double
+ eateStringConstant() : String

+ eatKeyword(keyword : String)
+ eatld() : String

Implementing the Lexical Analyzer

e Java SE offers 2 built-in tokenizers

* Jjava.util.StringTokenizer

— Supports only two kinds of token: delimiters and
words

* jJjava.io.StreamTokenizer

— Has an extensive set of token types, including all
five types used by VanillaCore

— Wrapped by Lexer in VanillaDB

Lexer

public class Lexer {
private Collection<String> keywords;
private StreamTokenizer tok;

public Lexer(String s) {
initKeywords();
tok = new StreamTokenizer(new StringReader(s));
tok.wordChars(' ', ' ");
tok.ordinaryChar('.");
// ids and keywords are converted into lower case
tok.lowerCaseMode(true); // TT _WORD
nextToken();

}

public boolean matchDelim(char delimiter) {
return delimiter == (char) tok.ttype;

}

public boolean matchNumericConstant() {
return tok.ttype == StreamTokenizer.TT_NUMBER;

}

20

Lexer

public boolean matchStringConstant() {
return '\'' == (char) tok.ttype; // 'string’
}

public boolean matchKeyword(String keyword) {
return tok.ttype == StreamTokenizer.TT_WORD
&& tok.sval.equals(keyword) && keywords.contains(tok.sval);

}

public double eatNumericConstant() {
if (!matchNumericConstant())
throw new BadSyntaxException();
double d = tok.nval;
nextToken();
return d;

}

public void eatKeyword(String keyword) {
if (!matchKeyword(keyword))
throw new BadSyntaxException();
nextToken();

21

Setting Up StreamTokenizer

* The constructor for Lexer sets up a stream
tokenizer as follows:

— tok.ordinaryChar ('.”) tells the tokenizer
to interpret the period character as a delimiter

— tok.lowerCaseMode (true) tells the
tokenizer to convert all string tokens (but not
quoted strings) to lower case

Outline

Overview
Scans and plans

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Query planning

— Deterministic planners

23

Grammar

* Agrammar is a set of rules that describe how
tokens can be legally combined

— We have already seen the supported SQL
grammar by VanillaCore

° Eg’ <Field> = IdTok
<Constant> = StrTok | NumericTok
<Expression> = <Field> | <Constant>
<Term> = <Expression> = <Expression>
<Predicate> = <Term> [AND <Predicate>]

— Each grammar rule specifies the syntactic
category and its content

24

Grammar

* Syntactic category is the left side of a
grammar rule, and it denotes a particular
concept in the language

— <Field> as field name

e The content of a category is the right side of a
grammar rule, and it is the set of strings that
satisfy the rule

— IdTok matches any identifier token

Parse Tree

 We can draw a parse tree to depict how a string
belongs to a particular syntactic category

— Syntactic categories as its internal nodes, and tokens
as its leaf nodes

— The children of a category node correspond to the
application of a grammar rule

* Used by a parsing algorithm to verify if a given
string is syntactically legal

— An exception is fired if the tree cannot be constructed
following the grammar

Parse Tree

* Parse tree for a predicate string:

dname = 'math' AND gradyear = sname
Predicate
Predicate
Term |
Term
Expression Expression Expression Expression
| | | |
Field Constant Field Field
| | | |
IdTok _| | StrTok AND ldTok _ ldTok
dname ‘math’ gradyear sname

27

Parsing Algorithm

* The complexity of the parsing algorithm is

usually in proportion to the complexity of
supported grammar

* VanillaCore has simple SQL grammar, and so
we will use the simplest parsing algorithm,
known as recursive descent

Recursive-Descent Parser

* Arecursive-descent parser has a method for
each grammar rule, and calls these methods

recursively to traverse the parse tree in prefix
order

29

Recursive-Descent Parser

public class PredParser { <Field>

private Lexer lex; := IdTok
<Constant>

i . := StrTok | N i cTok
public PredParser(String s) { rTok | NumericTo

lex = new Lexer(s);

}

public void field() {
lex.eatId();

}

public Constant constant() {
if (lex.matchStringConstant())
return new VarcharConstant(lex.eatStringConstant());
else

return new DoubleConstant(lex.eatNumericConstant());

30

public Expression queryExpression() {

return lex.matchId() ? new FieldNameExpression(id()) :
new ConstantExpression(constant());

}

public Term term() {

Expression lhs = queryExpression();

Term.Operator op;

if (lex.matchDelim('=")) {
lex.eatDelim('=");
op = OP_EQ;

} else if (lex.matchDelim('>")) {
lex.eatDelim('>");
if (lex.matchDelim('=")) {

lex.eatDelim('=");

op = OP_GTE;
} else
op = OP_GT;

} else ...
Expression rhs = queryExpression();
return new Term(lhs, op, rhs);

}

public Predicate predicate() {
Predicate pred = new Predicate(term());
while (lex.matchKeyword("and")) {
lex.eatKeyword("and");
pred.conjunctWith(term());
}

return pred;

<Expression>

1= <Field> |
<Term>

:= <Expression> =
<Predicate>

1= <Term> |

<Constant>
<Expression>

AND <Predicate>]

* Prefix traversal
allows a SQL string
to be read just once

31

SQL Data

 Parser returns SQL data

— E.g., when the parsing the query statement
(syntactic category <Quervy>), parser will returns

a QueryData object

* All SQL data are defined in query.parse
package

Parser and QueryData

Parser

- lex : Lexer

QueryData

+ Parser(s : String)
+ updateCmd() : Object
+ query() : QueryData

- id() : String

- constant() : Constant

- queryExpression() : Expression
-term() : Term

- predicate() : Predicate

- create() : Object

- delete() : DeleteData

- insert() : InsertData

- modify() : ModifyData

- createTable() : CreateTableData
- createView() : CreateViewData
- createlndex() : CreatelndexData

+ QueryData(projFields : Set<String>, tables :
Set<String>, pred : Predicate, groupFields :
Set<String>, aggFn : Set<AggregationFn>,
sortFields : List<String>, sortDirs : List<Integer>)

+ projectFields() : Set<String>
+ tables() : Set<String>

+ pred() : Predicate

+ groupFields() : Set<String>

+ aggregationFn() : Set<String>
+ sortFields() : List<String>

+ sortDirs() : List<Integer>

+ toString() : String

Other SQL data

InsertData

+ InsertData(tblname : String, flds : List<String>,
vals : List<Constant>)

+ tableName() : String

+ fields() : List<String>

+ val() : List<Constant>

CreateTableData

+ InsertData(tblname : String, sch : Schema)
+ tableName() : String
+ newSchema : Schema

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Scans and plans

Query planning

— Deterministic planners

35

Predicate

<Field> := IdTok

<Constant> := StrTok | NumericTok
<Expression> := <Field> | <Constant>

<Term> := <Expression> = <Expression>
<Predicate> := <Term> [AND <Predicate>]

* Classes defined in sgl .predicates in VanillaCore
* For example,

Predicate

gradyear |> 2012]| OR gradyear <= 2015) AND majorid = did

Expression

36

Expression

VanillaCore has three Expression implementations
— ConstanExpression

— FieldNameExpression

— BilinaryArithmeticExpression

<<interface>>
Expression

+ isConstant() : boolean

+ isFieldName() : boolean

+ asConstant() : Constant

+ asFieldName() : String

+ hasField(fldName : String) : boolean

+ evaluate(rec : Record) : Constant

+ isApplicableTo(sch : Schema) : boolean

Methods of Expression

* The method evaluate (rec) returns the value
(of type Constant) of the expression with
respect to the passed record

— Used by, e.g., SelectScan during query evaluation

Methods of Expression

* FieldNameExpression

public class FieldNameExpression implements Expression {
private String fldName;

public FieldNameExpression(String fldName) {
this.fldName = fldName;

}

public Constant evaluate(Record rec) {
return rec.getVal(fldName);

}

public boolean isApplicableTo(Schema sch) {
return sch.hasField(f1ldName);

}

39

Term

« Term supports five operators

—OP EQ(=),0P LT (<),0P LTE (<=),
OP GE (>),and OP GTE (>=)

Term

<<final>> + OP EQ : Operator

<<final>> + OP_LT : Operator <<gbztr;a;(c:)tr>>
<<final>> + OP_LTE : Operator =peraiol
<<final>> + OP_GE : Operator
<<final>> + OP_GTE : Operator
+ Term(lhs : Expression, op : Operator, rhs:
Expression) | _ > <<abstract>> complement() : Operator
+ operator(fldname : String) : Operator <<abstract>> isSatisfied(lhs : Expression,
+ oppositeConstant(fldname : String) : Constant rhs : Expression, rec : Record) : boolean
+ oppositeField(fldname : String) : String
+ isApplicableTo(sch : Schema) : boolean
+ isSatisfied(rec : Record) : boolean
+ toString() : String

Methods of Term

* The method isSatisfied (rec) returns
true if given the specified record, the two
expressions evaluate to matching values

Termb5: created = 2012/11/15

blog_id url created author_id
X | 33981 . | 2009/10/31 729
O 33982 2012/11/15 730
X | 41770 .. | 2012/10/20 729

public boolean isSatisfied(Record rec) {
return op.isSatisfied(lhs, rhs, rec);

¥

41

Operator in Term

* Implement the supported operators of term
OP LTE

public static final Operator OP_LTE = new Operator() {
Operator complement() {
return OP_GTE;

¥

boolean isSatisfied(Expression lhs, Expression rhs, Record rec) {
return lhs.evaluate(rec).compareTo(rhs.evaluate(rec)) <= 0;

¥

public String toString() {
return "<=";
}
}s

Methods of Term

* The method oppositeConstant returnsa
constant if this term is of the form "F<OP>C"

where F is the specified field, <OP> is an operator,
and Cis some constant

* Examples:

Terml: majorid > 5
// the opposite constant of majorid is 5

Term2: 2012 <= gradyear
// the opposite constant of gradyear is 2012

Methods of Term

* The method oppositeConstant returnsa
constant if this term is of the form "F<OP>C"
where F is the specified field, <OP> is an operator,
and Cis some constant

public Constant oppositeConstant(String fldName) {
if (lhs.isFieldName() && lhs.asFieldName().equals(fldName)
&& rhs.isConstant())
return rhs.asConstant();
if (rhs.isFieldName() && rhs.asFieldName().equals(fldName)
&& lhs.isConstant())
return lhs.asConstant();
return null;

Methods of Term

* The method oppositeField returns a field
name if this term is of the form "F1<OP>F2"
where F1 is the specified field, <OP> is an
operator, and F2 is another field

* Examples:

Terml: majorid > 5
// the opposite field of “majorid” is null

Term3: since = gradyear

// the opposite field of gradyear is since
// the opposite field of since is gradyear

Methods of Term

* The method isApplicableTo tells the
planner whether both expressions of this term
apply to the specified schema

 Examples:

Table s with schema (sid, sname, majorid)
Table d with schema (did, dname)

Terml: majorid > 5

// it is not applicable to d.schema
// it is applicable to s.schema

Termd4: majorid = did
// it is not applicable to d.schema
// it is not applicable to s.schema

Predicate

* A predicate in VanillaCore is a conjunct of
terms, e.g., term1 AND term2 AND ...

Predicate

+ Predicate()
+ Predicate(t : Term)

// used by the parser
+ conjunctWith(t : Term)

/[used by a scan
+ isSatisfied(rec : Record) : boolean

/l used by the query planner

+ selectPredicate(sch : Schema) : Predicate

+ joinPredicate(schl : Schema, sch2 : Schema) : Predicate
+ constantRange(fldname : String) : ConstantRange

+ joinFields(fldname : String) : Set<String>

+ toString() : String

Methods of Predicate

* The methods of Predicate address the
needs of several parts of the database system:

— A select scan evaluates a predicate by calling
1sSatisfied

— The parser construct a predicate as it processes
the WHERE clause, and it calls conjoinWith to
conjoin another term

Methods of Predicate

e The method selectPredicate returns a sub-

predicate that applies only to the specified
schema

 Example:

Table s with schema (sid, sname, majorid)
Table d with schema (did, dname)

Predicatel:

majorid = did AND majorid > 5 AND sid >= 100

// the select predicate for table s: majorid > 5
AND sid >= 100

// the select predicate for table d: null

Methods of Predicate

* The method selectPredicate returns a sub-
predicate that applies only to the specified
schema

public Predicate selectPredicate(Schema sch) {
Predicate result = new Predicate();
for (Term t : terms)
if (t.isApplicableTo(sch))
result.terms.add(t);
if (result.terms.size() == 0)
return null;
else
return result;

Methods of Predicate

* The method joinPredicate returns a sub-
predicate that applies to the union of the two
specified schemas, but not to either schema

individually

Table s with schema(sid, sname, majorid)
Table d with schema (did, dname)

Predicatel:

majorid = did AND majorid > 5 AND sid >= 100
// the join predicate for tables s, d: majorid = did

Methods of Predicate

* The method joinPredicate returns a sub-
predicate that applies to the union of the two
specified schemas, but not to either schema
separately

public Predicate joinPredicate(Schema schl, Schema sch2) {
Predicate result = new Predicate();
Schema newsch = new Schema();
newsch.addAll(schl);
newsch.addAll(sch2);
for (Term t : terms)
if (!t.isApplicableTo(schl) && !t.isApplicableTo(sch2)
&& t.isApplicableTo(newsch))
result.terms.add(t);
return result.terms.size() == 0 ? null : result;

Methods of Predicate

* The method constantRange determines if
the specified field is constrained by a constant

range in this predicate. If so, the method
returns that range

Predicate2?2: sid > 5 AND sid <= 100
// the constant range of sid is (5, 100]

Methods of Predicate

* The method joinFields determines if there
are terms of the form "F1=F2" or result in
"F1=F2" via equal transitivity, where F1 is the
specified field and F2 is another field. If so, the
method returns the names of all join fields

Predicate3: sid = did AND did = tid
// the join fields of sid are {did, tid}

Creating a Predicate in a Query Parser

// majorid <=30 AND majorid=did
Expression expl = new FieldNameExpression("majorid");
Expression exp2 = new ConstantExpression(
new IntegerConstant(30));
Term t1 = new Term(expl, OP_LTE, exp2);

Expression exp3 = new FieldNameExpression("majorid");
Expression exp4 = new FieldNameExpression("did");
Term t2 = new Term(exp3, OP_EQ, exp4);

Predicate pred = new Predicate(tl);
pred.conjunctWith(t2);

55

Outline

Overview
Scans and plans

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Query planning

— Deterministic planners

56

Things that Parser Cannot Ensure

 The parser cannot enforce type compatibility,
because it doesn’t know the types of the
identifiers it sees

dname = 'math' AND gradyear = sname

* The parser also cannot enforce compatible list
size

INSERT INTO dept (did, dname) VALUES ('math')

Verification

* Before feeding the SQL data into the
plans/scans, the planner asks the Verifier

to verify the semantics correctness of the data

Verification

e The Verifier checks whether:

— The mentioned tables and fields actually exist in
the catalog

— The mentioned fields are not ambiguous
— The actions on fields are type-correct

— All constants are of correct type and size to their
corresponding fields

Verifying the INSERT Statement

public static void verifylInsertData(InsertData data, Transaction tx) {
// examine table name
TableInfo ti = VanillaDb.catalogMgr().getTableInfo(data.tableName(), tx);
if (ti == null)
throw new BadSemanticException("table " + data.tableName() + " does not exist");

Schema sch = ti.schema();
List<String> fields = data.fields();
List<Constant> vals = data.vals();

// examine whether values have the same size with fields
if (fields.size() != vals.size())
throw new BadSemanticException("#fields and #values does not match");

// verify field existence and type
for (int i = @; i < fields.size(); i++) {
String field = fields.get(i);
Constant val = vals.get(i);
// check field existence
if (!sch.hasField(field))
throw new BadSemanticException("field " + field+ " does not exist");
// check whether field matches value type
if (!verifyConstantType(sch, field, val))
throw new BadSemanticException("field " + field
+ " doesn't match corresponding value in type");

60

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Predicates

— Lexer, parser, and SQL data

— Verifier

Scans and plans
Query planning

— Deterministic planners

61

What doesa Planner do?

3. Finds a good plan for the SQL command

4. a. Returns the plan (createQueryPlan())

b. Executes the plan by iterating through the
scan and returns #records affected

(executeUpdate ())

What’s the difference between scans
and plans?

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Predicates

— Lexer, parser, and SQL data

— Verifier

Scans and plans
Query planning

— Deterministic planners

64

SQL and Relational Algebra (1/2)

Recall that a SQL command can be expressed

as at-least one tree in relational algebra

SELECT b.

FRON

blog id

blog pages b

users u

WHERE b.author id=u.user 1d

AND u.name='Steven Sinofsky'
AND b.created >= 2011/1/1;

!

s = select(p, where...)

!
7N

b u

65

Why this translation?

SQL and Relational Algebra (2/2)

e SQL is difficult to implement directly

— A single SQL command can embody several tasks

* Relational algebra is relatively easy to
implement

— Each operator denotes a 1‘
small, well-defined task s = select(p, where...)

b u

Operators

Single-table operators
— select, project, sort, rename, extend, groupby, etc.

Two-table operators
— product, join, semijoin, etc.

Operands 1‘
— Tables, views, output s = select(p, where...)
of other operators, 1‘

predicates, etc.

Output / N

— Always a table b u
— To be returned or used as a param of the next op

Scans

* A scan represents the output of an operator in
a relational algebra tree

— |.e., output of a subtree (partial query)

 All scans in VanillaCore

implement the 1

Scan interface s = SelectScan(p, where...)
* Inquery.algebra T

package 7 N

TableScan of b TableScan of u

69

The Scan Interface

* An iterator of output

<<interface>>

. Record
records of a partial
u e r + getVal(fldName : String) : Constant
query
AN
* Not to confuse with i
RecordFile e

— ARecordFileisan

+ beforeFirst()

iterator of records in a * nex ; boolean
table file + hasField(fldname : String) : boolean

— Storage-specific

Using a Scan

public static void printNameAndGradyear(Scan s) {
s.beforeFirst();
while (s.next()) {
Constant sname = s.getVal("sname");
Constant gradyear = s.getVal("gradyear");
System.out.println(sname + "\t" + gradyear);

}

s.close();

71

Basic Scans

public SelectScan(Scan s, Predicate pred);

public ProjectScan(Scan s,
Collection<String> fieldlList);

public ProductScan(Scan sl1, Scan s2);

public TableScan(TableInfo ti, Transaction tx);

72

Building a Scan Tree

VanillaDb.init("studentdb");

Transaction tx =
VanillaDb.txMgr().transaction(
Connection.TRANSACTION SERIALIZABLE, true);

TableInfo ti =
VanillaDb.catalogMgr().getTableInfo("b", tx);

Scan ts = new TableScan(ti, tx);
Predicate pred = new Predicate("..."); // sid =5

Scan ss = new SelectScan(ts, pred);
Collection<String> projectFld =

Arrays.asList("sname"); s = SelectScan
Scan ps = new ProjectScan(ss, projectFld); .
(b, where sid = 5)

ps.beforeFirst();
while (ps.next())

System.out.println(ps.getVal("sname")); TableScan of b
ps.close();

73

Updatable Scans

* Ascan is read-only by default

e We need the TableScan and SelectScan

to be updatable to support UPDATE and
DELETE commands:

UPDATE student

SET major-id = 10, grad-year = grad-year - 1
WHERE major-1d=20;

DELETE FROM student
WHERE major-1d=20;

UpdateScan

Provides setters

Implemented by
TableScan and
SelectScan

Not every scan is updatable

— A scan is updatable only if
every record r in the scan has a
corresponding record r’ in
underlying database table

<<interface>>
Record

+ getVal(fldName : String) : Constant

A
I
I

<<interface>>
Scan

+ beforeFirst()

+ next() : boolean

+ close()

+ hasField(fldname : String) : boolean

|

<<interface>>
UpdateScan

+ setVal(fldname : String, val : Constant)
+ insert()

+ delete()

+ getRecordId() : Recordld

+ moveToRecordld(rid : RecordId)

Using Updatable Scans

o SQL command: UPDATE enroll SET grade = ‘A+’
WHERE section-id = 53;
* Code:

VanillaDb.1init("studentdb");

Transaction tx = VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION SERIALIZABLE, false);

TableInfo ti = VanillaDb.catalogMgr().getTableInfo("enroll", tx);

Scan ts = new TableScan(ti, tx);

Predicate pred = new Predicate(...); // section-id = 53
UpdateScan us = new SelectScan(ts, pred);
us.beforeFirst();

while (us.next())

us.setVal("grade", new VarcharConstant("A+"));
us.close();

76

public class TableScan implements UpdateScan {
private RecordFile rf;
private Schema schema;

public TableScan(TableInfo ti, Transaction tx) {
rf = ti.open(tx);
schema = ti.schema();

}

public void beforeFirst() {
rf.beforeFirst();

}

public boolean next() {
return rf.next();

}

public void close() {
rf.close();

}

public Constant getVal(String fldName) {
return rf.getVal(fldName);

}

public boolean hasField(String fldName) {
return schema.hasField(fldName);

}

public void setVal(String fldName, Constant val) {
rf.setVal(fldName, val);

}

TableScan

e Basically, tasks are
delegated to a
RecordFile

77

SelectScan

public class SelectScan implements UpdateScan {
private Scan s;
private Predicate pred;

public SelectScan(Scan s, Predicate pred) {
this.s = s;
this.pred = pred;

}

public boolean next() {
while (s.next())
// if current record satisfied the predicate
if (pred.isSatisfied(s))
return true;
return false;

}

public void setVal(String fldname, Constant val) {
UpdateScan us = (UpdateScan) s;
us.setVal(fldname, val);

public class ProductScan implements Scan {

private Scan s1, s2; P r O dU. C t S C a. n

private boolean isLhsEmpty;

public ProductScan(Scan s1, Scan s2) {
this.sl = s1;
this.s2 = s2;

sLbeforefinst(; o * Iterates through
records following the
public boolean next() {
if (isLhsEmpty) nested IOOpS

return false;
if (s2.next())
return true;
else if (!(isLhsEmpty = !sl.next())) {
s2.beforeFirst();
return s2.next();
} else
return false;

}

}

public Constant getVal(String fldName) {
if (sl.hasField(fldName))

return sl.getVal(fldName);
else

return s2.getVal(fldName);

79

ProjectScan

public class ProjectScan implements Scan {
private Scan s;
private Collection<String> fieldList;

public ProjectScan(Scan s, Collection<String> fieldList) {

this.s = s;
this.fieldList = fieldList;
}

public boolean next() {
return s.next();

}

public Constant getVal(String fldName) {
if (hasField(fldName))
return s.getVal(fldName);
else
throw new RuntimeException("field

" + fldName + " not found.");

80

Example

project(s, select blog_id) SELECT blog id FROM b, u
WHERE name = “Picachu”

lbeforeFirst () . .
AND author 1d = user 1id;

select(p, where name = ‘Picachu’
and author_id = user_id)
l beforeFirst()

product(b, u)

beforeFirst() beforeFirst()

|:> blog_id url created author_id

so2 | .. | 201211/15 pcachs

81

Example

project(s, select blog_id)

l next()

select(p, where name = ‘Picachu’
and aT thor_id = user_id)

next

blog_id url created author_id user_id name balance

product(b u) . oyt ms o [Sewensnoy

next

blog_id url created author_id user_id name

o2 | . | 20121115 pcachs

82

Example

project(s, select blog_id)

l next()

select(p, where name = ‘Picachu’
and aT thor_id = user_id)

next

blog_id url created author_id user_id name balance

| 2009/10/31

product(b u)

next

blog_id url created author_id user_id name

o2 | . | 20121115 pcachs

83

Example

project(s, select blog_id)

l next()

select(p, where name = ‘Picachu’
land author_id = user _id)

next()

product(b, u)

blog_id url created author_id

so2 | .. | 201211/15

user_id

- 730

name

Picachu

NULL

84

Example

project(s, select blog_id)

l next()

select(p, where name = ‘Picachu’
and aT thor_id = user_id)

next

blog_id url created author_id user_id name balance

prOdUCt(b u) . 2012/11/15

next

blog_id url created author_id

|| s

user_id name

Picachu

85

Example

project(s, select blog_id)

select(p, where name = ‘Picachu’
and a|Tthor id = user_id)

next

blog_id url created author_id user_id name balance

prOdUCt(b; u) . 2012/11/15

next

blog_id url created author_id

|| s

user_id name

Picachu

86

Example

blog_id

project(s, select...)
getVal() 1‘

select(p, where I .
name 4 ‘Picachu’)
getVal()

created author_id user_id balance

p ro d u Ct(b’ u) 33981 2009/10/31 729 729 Steven Sinofsky 10,235
ge tVa (33981 2009/10/31 729 730 Picachu NULL
33982 2012/11/15 730 729 Steven Sinofsky 10,235
33982 2012/11/15 730 730 Picachu NULL
41770 2012/10/20 729 729 Steven Sinofsky 10,235
41770 2012/10/20 729 730 Picachu NULL

blog_id url created author_id

)| 33982 - 2012/11/15 | 730 Picachu

87

Pipelined Scanning

 The above operators
implement pipelined

scanning getVal()ll 1‘ val

— Calling a method of a node
results in recursively calling

the same methods of child getval()i Tval
nodes on-the-fly

— Records are computed one getval(z//‘val '\\

?t atime as needed---no TableScan of b TableScan of u
intermediate records are

saved

s = SelectScan(p, where...)

88

Pipelined vs. Materialized

* Despite its simplicity, pipelined scanning is inefficient in
some cases
— E.g., when implementing SortScan (for ORDER BY)
— Needs to iterate the entire child to find the next record

* Later, we will see materialized scanning in some scans
— Intermediate records are materialized to a temp table (file)

— E.g., the SortScan can use an external sorting algorithm
to sort all records at once, save them, and return each
record upon next () is called

* Pipelined or materialized?
— Saving in scanning cost vs. materialization overhead

Outline

Overview

Parsing and Validating SQL commands
— Syntax vs. Semantics

— Lexer, parser, and SQL data

— Predicates

— Verifier

Scans and plans
Query planning

— Deterministic planners

90

Scan Tree for SQL Command?

 Given the scans:

* Can you build a scan tree for this query:

SELECT sname FROM student, dept

WHERE major-id
AND s-id

d-id
5 AND major-id

4;

91

Which One is Better?

SELECT sname FROM student, dept
WHERE major-id = d-id
AND s-id = 5 AND major-id = 4;

ProjectScan

ProjectScan

SelectScan
major-id=d-id

SelectScan

ProductScan
ProductScan

SelectScan
TableScan TableScan s-id=5 and major-id=4

student dept

TableScan TableScan
student dept

92

Why Does It Matter?

A good scan tree can be faster than a bad one for
orders of magnitude

Consider the product scan at middle

— Let R(student)=10000, B(student)=1000, B(dept)= 500,
and selectivity(s-id=5&major-id=4)=0.01

— Each block access requires 10ms
Left: (1000+10000*500)*10ms = 13.9 hours
Right: (1000+10000*0.01*500)*10ms = 8.4 mins

We need a way to estimate the cost of a scan tree
without actual scanning

— As we just did above

Which Cost to Estimate?

* CPU delay, memory delay, or I/O delay?

 The number of block accesses performed by a
scan is usually the most important factor in
determining running time of a query

e Usually needs other estimates, such as the
number of output records and value
histogram

94

Estimating Block Access (1/2)

* E.g., SELECT(T1, WHERE f1<10)

e Statistics metadata for T1:
— VH(T1, f1), R(T1), B(T1) fL#recs?

— Updated by a full table scan
every, say, 100 table updates

* #blocks accessed? .

. B(Tl) * (1.0 fl.values
VH(T1, f1).predHistogram(WHERE...).recordsOutput()
/ R(T1))

95

Estimating Block Access (2/2)

* Complications
— Multiple fields in SELECT (e.g., f1=f2)
— Multiple tables, etc.

* Topics of query optimization

The P1an Interface

* A cost estimator for a partial query

* Each plan instance corresponds to an operator
in relational algebra

— Also to a subtree ProjectPlan

<<interface>>
Plan SelectPlan

+ open() : Scan

+ blocksAccessed() : int
+ schema() : Schema

+ histogram() : Histogram TablePlan TablePlan
+ recordsOutput() : int

student dept

97

Using a Query Plan

VanillaDb.init("studentdb");
Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION SERIALIZABLE, true);

Plan pb = new TablePlan("b", tx);
Plan pu = new TablePlan("u", tx);
Plan pp = new ProductPlan(pb, pu);
Predicate pred = new Predicate(...);

Plan sp = new SelectPlan(pp, pred);
sp.blockAccessed(); // estimate #blocks accessed

// open corresponding scan only if sp has low cost
Scan s = sp.open();

s.beforeFirst();

while (s.next())

s.getVal("bid");

s.close();

select(p, where...)

f

1

\

98

Plan before Scan

* Aplan (tree) is a blueprint for evaluating a
query

e Estimates cost by accessing statistics metadata
only

— No actual I/Os

— Memory access only, very efficient

* Once a good plan is decided, we then create a
scan following the blueprint

public class TablePlan implements Plan {

Opening a Scan i sen om0
Tree

}
}

public class SelectPlan implements Plan {
public SelectPlan(Plan p, Predicate pred) {
this.p = p;
this.pred = pred;
}

public Scan open() {

* The open ()
Scan s = p.open();
ConStrUCtS a Scan } return new SelectScan(s, pred);
tree with the b |
public class ProductPlan implements Plan {

Sa me StrUCtu re aS publictizcs)(-j;:cltPlzszlan pl, Plan p2) {
the current plan

this.p2 = p2;
}

public Scan open() {
Scan s1 = pl.open();
Scan s2 = p2.open();
return new ProductScan(sl, s2);

How to Find a Good Plan Tree?

* The planner can create multiple trees first,
and then pick the one having the lowest cost

* Determining the best plan tree for a SQL
command is call planning

Outline

* Query planning

— Deterministic planners

S

What doesa Planner do?

Parses the SQL command
Verifies the SQL command
Finds a good plan for the SQL command

a. Returns the plan (createQueryPlan ())
b. Executes the plan by iterating through the
scan and returns #records affected
(executeUpdate ())

103

Planning

* |nput:
— SQL data
* Output:
— A good plan tree

* Done by the planner

Using the VanillaCore Planner

VanillaDb.init("studentdb");

Planner planner = VanillaDb.planner();
Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION SERIALIZABLE, false);
// part 1: Process a query

String qry = "SELECT sname FROM student”;
Plan p = planner.createQueryPlan(gry, tx);
Scan s = p.open();

s.beforeFirst();

while (s.next())
System.out.println(s.getVal("sname"));
s.close();

// part 2: Process an update command

String cmd = "DELETE FROM student WHERE majorid = 30";
int numRecs = planner.executeUpdate(cmd, tx);
System.out.println(numRecs + " students were deleted");
tx.commit();

105

Planner

* |[n VanillaCore, all planner implementations
are placed in query.planner package

* Aclient can obtain a P1anner object by
calling server.VanillaDb.planner ()

Planner

+ Planner(gPlanner : QueryPlanner, uPlanner :
UpdatePlanner)

+ createQueryPlan(gry : String, tx : Transaction) : Plan

+ executeUpdate(cmd : String, tx : Transaction) : int

Query and Update Planners

* After verifying the parsed SQL data, the
Planner delegates the planning tasks to

— QueryPlanner

— UpdatePlanner
implementations

* |Interfaces defined in query.planner
package

Planner

public class Planner {
private QueryPlanner gPlanner;
private UpdatePlanner uPlanner;

public Planner(QueryPlanner gPlanner, UpdatePlanner uPlanner)
{

this.gPlanner = gPlanner;

this.uPlanner = uPlanner;

}

public Plan createQueryPlan(String gry, Transaction tx) {
Parser parser = new Parser(qry);
QueryData data = parser.query();
Verifier.verifyQueryData(data, tx);
return gPlanner.createPlan(data, tx);

108

Planner

public int executeUpdate(String cmd, Transaction tx) {

if (tx.isReadOnly())
throw new UnsupportedOperationException();

Parser parser = new Parser(cmd);

Object obj = parser.updateCommand();

if (obj instanceof InsertData) {
Verifier.verifyInsertData((InsertData) obj, tx);
return uPlanner.executeInsert((InsertData) obj, tx);

} else if (obj instanceof DeleteData) {
Verifier.verifyDeleteData((DeleteData) obj, tx);
return uPlanner.executeDelete((DeleteData) obj, tx);

} else if (obj instanceof ModifyData) {
Verifier.verifyModifyData((ModifyData) obj, tx);
return uPlanner.executeModify((ModifyData) obj, tx);

} else if (obj instanceof CreateTableData) {
Verifier.verifyCreateTableData((CreateTableData) obj, tx);
return uPlanner.executeCreateTable((CreateTableData) obj, tx);

} else if (obj instanceof CreateViewData) {
Verifier.verifyCreateViewData((CreateViewData) obj, tx);
return uPlanner.executeCreateView((CreateViewData) obj, tx);

} else if (obj instanceof CreateIndexData) {
Verifier.verifyCreateIndexData((CreateIndexData) obj, tx);
return uPlanner.executeCreateIndex((CreateIndexData) obj, tx);

} else
throw new UnsupportedOperationException();

109

Query Planning

SELECT sname FROM student, dept

e Plan tree? WHERE majorid = did
AND sid = 5 AND majorid = 4

ProjectPlan

ProjectPlan

SelectPlan
majorid=did

SelectPlan

ProductPlan
ProductPlan

SelectPlan
TablePlan TablePlan sid=5 and major=4

student dept

TablePlan TablePlan
student dept

110

Deterministic Query Planning
Algorithm

1. Construct a plan for each table T in the FROM
clause

a. If Tisatable, then the planis a table plan for T

b. If Tis aview, then the plan is the result of calling this
algorithm recursively on the definition of T

2. Take the product of plans from Step 1 if needed

3. A Select on predicate in the WHERE clause if
needed

4. Project on the fields in the SELECT clause

QueryPlanner

* The BasicQueryPlanner implements the
deterministic planning algorithm

—Iln query.planner

<<interface>>
QueryPlanner

+ createPlan(data : QueryData, tx : Transaction) :
Plan

JAN

BasicQueryPlanner

+ createPlan(data : QueryData, tx : Transaction) :
Plan

BasicQueryPlanner

 The simplified code:

public Plan createPlan(QueryData data, Transaction tx) {
// Step 1: Create a plan for each mentioned table or view
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {

String viewdef = VanillaDb.catalogMgr().getViewDef(tblname, tx);

if (viewdef != null)

plans.add(VanillaDb.planner().createQueryPlan(viewdef, tx));

else
plans.add(new TablePlan(tblname, tx));
}
// Step 2: Create the product of all table plans
Plan p = plans.remove(9);
for (Plan nextplan : plans)
p = new ProductPlan(p, nextplan);

// Step 3: Add a selection plan for the predicate
p = new SelectPlan(p, data.pred());

// Step 4: Project onto the specified fields
p = new ProjectPlan(p, data.projectFields());
return p;

113

students

s-id: int
s-name: varchar(10)
grad-year: int

departments

d-id: int

d-name: varchar(8)

major-id: int

1

* *

enroll sections courses

e-id: int sect-id: int c-id: int
student-id: int 1 course-id: int title: varchar(20)
section-id: int = prof: int dept-id: int
grade: double year-offered: int

Where to place GROUP BY, HAVING,
and ORDER BY?

SELECT major-id, AVG(grade)
FROM students, enroll
WHERE s-id = student-id AND sec-id =
GROUP BY major-id
HAVING AVG (grade) >= 60

ORDER BY AVG (grade) DESC;
114

Logical Planning Order (Bottom Up)

. Table plans (FROM)
Product plan (FROM)
Select plan (WHERE)
Group-by plan (GROUP BY)
Project (SELECT)

Having plan (HAVING)
Sort plan (ORDER BY)

* Fields mentioned in HAVING and ORDER BY
clauses must appear in the project list

NS R WN PR

115

Update Planning

 DDLs and update commands are usually
simpler than SELECTs
— Single table
— WHERE only, no GROUP BY, HAVING, SORT BY, etc.

* Deterministic planning algorithm is often
sufficient

* BasicUpdatePlanner implements
deterministic planning algorithm for updates

BasicUpdatePlanner

<<interface>>
UpdatePlanner

+ executelnsert(data : InsertData, tx : Transaction) : int

+ executeDelete(data : DeleteData, tx : Transaction) : int

+ executeModify(data : ModifyData, tx : Transaction) : int

+ executeCreateTable(data : CreateTableData, tx : Transaction) : int
+ executeCreateView(data : CreateViewData, tx : Transaction) : int
+ executeCreatelndex(data : CreatelndexData, tx : Transaction) : int

JAN

BasicUpdatePlanner

+ executelnsert(data : InsertData, tx : Transaction) : int

+ executeDelete(data : DeleteData, tx : Transaction) : int

+ executeModify(data : ModifyData, tx : Transaction) : int

+ executeCreateTable(data : CreateTableData, tx : Transaction) : int
+ executeCreateView(data : CreateViewData, tx : Transaction) : int
+ executeCreatelndex(data : CreatelndexData, tx : Transaction) : int

executeModify

 The modification statement are processed by the
method executeModify

public int executeModify(ModifyData data, Transaction tx) {
Plan p = new TablePlan(data.tableName(), tx);
p = new SelectPlan(p, data.pred());
UpdateScan us = (UpdateScan) p.open();
us.beforeFirst();
int count = 0;
while (us.next()) {
Collection<String> targetflds = data.targetFields();
for (String f1ld : targetflds)
us.setVal(fld, data.newValue(fld).evaluate(us));
count++;
}
us.close();
VanillaDb.statMgr().countRecordUpdates(data.tableName(), count);

return count;

118

executelnsert

 The insertion statement are processed by the
method executeInsert

public int executelnsert(InsertData data, Transaction tx) {
Plan p = new TablePlan(data.tableName(), tx);
UpdateScan us = (UpdateScan) p.open();
us.insert();
Iterator<Constant> iter = data.vals().iterator();
for (String fldname : data.fields())
us.setVal(fldname, iter.next());

us.close();

VanillaDb.statMgr().countRecordUpdates(data.tableName(), 1);
return 1;

119

Methods for DDL Statements

public int executeCreateTable(CreateTableData data, Transaction tx) {
VanillaDb.catalogMgr().createTable(data.tableName(), data.newSchema(), tx);
return 0;

}

public int executeCreateView(CreateViewData data, Transaction tx) {
VanillaDb.catalogMgr().createView(data.viewName(), data.viewDef(), tx);
return 0;

}

public int executeCreateIndex(CreateIndexData data, Transaction tx) {
VanillaDb.catalogMgr().createIndex(data.indexName(), data.tableName(),
data.fieldName(), data.indexType(), tx);
return 0;

120

References

 Ramakrishnan Gehrke., chapters 4, 12, 14 and
15, Database management System, 3ed

 Edward Sciore., chapters 17, 18 and 19,
Database Design and Implementation

* Hellerstein, J. M., Stonebraker, M., and
Hamilton, J., Architecture of a database
system, Foundations and Trends in Databases,
1, 2, 2007

You Have Assignment!

Assignment: Explain Query Plan

Implement EXPLAIN SELECT

— Shows how a SQL statement is executed by dumping the execution
plan chosen by the planner

E.g.,, EXPLAIN SELECT w-1d FROM warehouses, dist
WHERE w-i1id=d-id GROUP By w-1id

Output: a table with one record of one field query-plan of type
varchar (500):

ProjectPlan (#blks=1, #recs=30)
-> GroupByPlan (#blks=1, #recs=30)
-> SortPlan (#blks=1, #recs=30)
-> SelectPlan pred(w-id=d-id) (#blks=62, #recs=30)
-> ProductPlan (#blks=62, #recs=900)
-> TablePlan on(dist) (#blks=2, #recs=30)
-> TablePlan on(warehouses) (#blks=2, #recs=30)

Actual #recs: 30

A JDBC client can get the result through
RemoteResultSet.getString (“query-plan”)

Assignment: Explain Query Plan

e Format for each node:

— S{PLAN TYPE} [optional information]
(#b1ks=$ {BLOCKS ACCESSED}, #recs=${OUTPUT RECORDS})

e Actual #recs

— The actual number of records output from the
corresponding scan

Assignment: Explain Query Plan

Report

— How you implement explain operation
* APl changes and/or new classes

— We provide the TPC-C testbed to test this
assignment

* Show the output of at least 4 different types of queries
(print screen)
— Single table query
— Multiple tables query
— Query with group by and order by
— Query with group by and an aggregation function

Hint

Related packages:

— query.algebra, query.parse, query.planner

Better start from parser and lexer
— SQL data for explain

Implement a new plan for explain and modify
existing plans

Implement a new scan for explain

Hint

* To use and modify the BasicQueryPlaner,
change the default query planner type in
properties file
— At

src/main/resources/org/vanilladb/core/vanilladb.
properties
— To

org.vanilladb.core.server.VanillaDb.QUERYPLANNE

R=org.vanilladb.core.query.planner.
BasicQueryPlanner

