
Server and Threads

Shan Hung Wu & DataLab

CS, NTHU

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Where are we?

2

Before Diving into Engines…

• How does the an RDBMS run?

– How many processes?

– How many threads?

– Thread-local or thread-safe components?

– Difference between running embedded clients
and remote clients?

• Answers may influence the software
architecture as well as performance

3

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

4

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

5

What’s difference between a process
and a thread?

6

Process vs. Thread (1/2)

• Thread = a unit of CPU execution + local
resources

– E.g., program counter, registers, function call stack,
etc.

• Process = threads (at least one) + global
resources

– E.g., memory space/heap, opened files, etc.

7

Process vs. Thread (2/2)

8

What’s difference between a kernel
thread and a user thread?

9

Kernel Threads

• Scheduled by OS

– On signel-core machines:

– On multi-core machines:

– Examples: POSIX Pthreads (UNIX), Win32 threads

10

User Threads

• Scheduled by user applications (in user space
above the kernel)

– Lightweight -> faster to create/destroy

– Examples: POSIX Pthreads (UNIX), Java threads

• Eventually mapped to kernel threads

– How?

11

Many-to-One

• Pros:
– Simple
– Efficient thread mgr.

• Cons:
– One blocking system call

makes all threads halt
– Cannot run across multiple

CPU cores (each kernel
thread runs on only one core)

• Examples:
– Green threads in Solaris,

seldom used in modern OS

12

One-to-One

• Pros:

– Avoid the blocking
problem

• Cons:

– Slower thread mgr.

• Most OSs limit the number of kernel threads
to be mapped for a process

• Examples: Linux and Windows (from 95)

13

Many-to-Many

• Combining the best
features of the one-to-one
and many-to-one

• Allowing more kernel
threads for a heavy user
thread

• Examples: IRIX, HP-UX,
ru64, and Solaris (prior to 9)
– Downgradable to one-to-

one

14

How about Java threads?

15

Java Threads

• Scheduled by JVM

• Mapping depends on the JVM implementation

– But normally one-to-one mapped to
Pthreads/Win32 threads on UNIX/Windows

• Pros over POSIX (one2one) threads:

– System independent (if there’s a JVM)

16

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

17

Why does an RDBMS support
concurrent statements/txs?

18

Serialized or interleaved operations?

19

Throughput via Pipelining

• Interleaving ops increases throughput by
pipelining CPU and I/O

20

Tx1 Tx2

R(A)

CPU R(A)

CPU

R(A)

W(A) CPU

W(B)

Tx1 Tx2

R(A)

CPU

R(A)

CPU

W(B)

R(A)

CPU

W(A)

=>idle

Statements run by processes or
threads?

21

Processes vs. Threads

• DBMS is about resource management

• If statements are run by process, then we need
inter-process communications
– When, e.g., two statements access the same table (file)

– System dependent

• Threads allows global resources to be shared
directly
– E.g., through argument passing or static variables

22

What Resources to Share?

• Opened files

• Buffers (to cache pages)

• Logs

• Locks of objects (incl. files/blocks/record locks)

• Metadata

• Example: VanillaCore

23

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Architecture of VanillaCore

24

VanillaDb (1/2)

• Provides access to
global resources:
– FileMgr,
BufferMgr,
LogMgr,
CatalogMgr

• Creates the new
objects that access
global resources:
– Planner and
Transaction

25

VanillaDb

+ init(dirName : String)

+ init(dirName : String, bufferMgrType : BufferMgrType)

+ isInited() : boolean

+ initFileMgr(dirname : String)

+ initFileAndLogMgr(dirname : String)

+ initFileLogAndBufferMgr(dirname : String, bufferMgrType : BufferMgrType)

+ initTaskMgr()

+ initTxMgr()

+ initCatalogMgr(isnew : boolean, tx : Transaction)

+ initStatMgr(tx : Transaction)

+ initSPFactory()

+ initCheckpointingTask()

+ fileMgr() : FileMgr

+ bufferMgr() : BufferMgr

+ logMgr() : LogMgr

+ catalogMgr() : CatalogMgr

+ statMgr() : StatMgr

+ taskMgr() : TaskMgr

+ txMgr() : TransactionMgr

+ spFactory() : StoredProcedureFactory

+ newPlanner() : Planner

+ initAndStartProfiler()

+ stopProfilerAndReport()

VanillaDb (2/2)

• Before using the VanillaCore, the
VanillaDb.init(name) must be called

– Initialize file, log, buffer, metadata, and tx mgrs

– Create or recover the specified database

26

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

27

Embedded Clients

• Running on the same machine as RDBMS

• Usually single-threaded
– E.g., sensor nodes, dictionaries, phone apps, etc.

• If you need high throughput, manage threads
yourself
– Identify causal relationship between statements

– Run each group of causal statements in a thread

– No causal relationship between the results
outputted by different groups

28

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

29

Remote Clients

• Server (thread) creates worker threads

• One worker thread per request
• Each client can be multi-threaded

– E.g., a web/application server

30

server/dispatcher thread

worker threadsclient threads

What is a request?

• An I/O operation?

• A statement?

• A transaction?

• A connection?

31

Request = Connection

• In VanillaDB, a worker thread handles all
statements issued by the same user

• Rationale:
– Statements issued by a user are usually in a causal

order  ensure casualty in a session
– A user may re-examine the data he/shed accessed 

easier caching

• Implications:
– All statements issued in a JDBC connection is run by a

single thread at server
– #connections = #threads

32

Thread Pooling

• Creating/destroying a thread each time upon
connection/disconnection leads to large
overhead

• To reduce this overhead, a worker thread pool is
commonly used
– Threads are allocated from the pool as needed, and

returned to the pool when no longer needed
– When no threads are available in the pool, the client

may have to wait until one becomes available

• Other benefit?
• Graceful performance degradation by limiting the

pool size
33

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

34

Sql/UtilMetadataConcurrency

Remote.JDBC (Client/Server)

Algebra

Record

Buffer

Recovery

Log

File

Query Interface

Storage Interface

VanillaCore

Parse

Server

Planner

Index

Tx

JDBC Interface (at Client Side)

Architecture of VanillaCore

35

JDBC Programming

1. Connect to the server

2. Execute the desired query

3. Loop through the result set (for SELECT only)

4. Close the connection
• A result set ties up valuable resources on the server,

such as buffers and locks

• Client should close its connection as soon as the
database is no longer needed

36

java.sql (1/2)

• Makes connections
to the server

37

<<interface>>

Driver

+ connect(url : String, info : Properties) : Connection

<<interface>>

Connection

+ createStatement() : Statement

+ close()

+ setAutoCommit(autoCommit : boolean)

+ setReadOnly(readOnly : boolean)

+ setTransactionIsolation(level : int)

+ getAutoCommit() : boolean

+ getTransactionIsolation() : int

+ commit()

+ rollback()

java.sql (2/2)

38

• An iterator of output
records

<<interface>>

Statement

+ executeQuery(gry : String) : ResultSet

+ executeUpdate(cmd : String) : int

...

<<interface>>

ResultSet

+ next() : boolean

+ getInt(fldname : String) : int

+ getString(fldname : String) : String

+ getLong(fldname : String) : Long

+ getDouble(fldname : String) : Double

+ getMetaData() : ResultSetMetaData

+ beforeFirst()

+ close()

...

<<interface>>

ResultSetMetaData

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

...

Implementing JDBC in VanillaCore

• JDBC API is defined at client side

• Needs both client- and server-side implementations
– In org.vanilladb.core.remote.jdbc package

– JdbcXxx are client-side classes

– RemoteXxx are server-side classes

• Based on Java RMI
– Handles server threading: dispatcher thread, worker

threads, and thread pool

– But no control to pool size

– Synchronizes a client thread with a worker thread
• Blocking method calls at clients

39

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

40

Java RMI

• Java RMI allows methods of an object at
server VM to be invoked remotely at a client
VM

– We call this object a remote object

• How?

41

The Stub and Skeleton

1. The skeleton (run by a server thread) binds the interface of the
remote object

2. A client thread looks up and obtain a stub of the skeleton
3. When a client thread invokes a method, it is blocked and the call is

first forwarded to the stub
4. The stub marshals the parameters and sends the call to the

skeleton through the network
5. The skeleton receives the call, unmarshals the parameters,

allocates from pool a worker thread that runs the remote object’s
method on behalf of the client

6. When the method returns, the worker thread returns the result to
skeleton and returns to pool

7. The skeleton marshals the results and send it to stub
8. The stub unmarshals the results and continues the client thread

42

S
tu

b

RMI Client RMI Server

s
k

e
le

to
n

return

call

RMI registry

• The server must first
bind the remote obj’s
interface to the
registry with a name
– The interface must

extend the
java.rml.Remote

interface

• The client lookup the
name in the registry to
obtain a stub

RMI Server

skeleton

stub

RMI Client

Registry

bind

lookupreturn call

Cilent-side Machine

Server-side Machine

43

Things to Note

• A client thread and a worker thread is synchronized
• The same remote object is run by multiple worker

threads (each per client)
– Remote objects bound to registry must be thread-safe

• If the return of a remote method is another remote
object, the stub of that object is created automatically
and sent back to the client
– That object can be either thread-local or thread-safe,

depending on whether it is created or reused during each
method call

• A remote object will not be garbage collected if there’s
a client holding its stub
– Destroy stub (e.g., closing connection) at client side ASAP

44

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

45

Server-Side JDBC Impl.

• RemoteXxx classes that mirror their
corresponding JDBC interfaces at client-side
– Implement the most essential JDBC methods only

• Interfaces: RemoteDriver,
RemoteConnection, RemoteStatement,
RemoteResultSet and RemoteMetaData
– To be bound to registry

– Extend java.rml.Remote

– Throw RemoteException instead of
SQLException

46

RemoteDriver

• Corresponds to the JDBC Driver interface

47

<<interface>>

RemoteDriver

+ connect() : RemoteConnection

RemoteDriverImpl

+ RemoteDriverImpl()

+ connect() : RemoteConnection

RemoteConnection

• Corresponds to JDBC Connection interface

48

<<interface>>

RemoteConnection

+ createStatement() : RemoteStatement

+ close()

+ setAutoCommit(autoCommit : boolean)

+ setReadOnly(readOnly : boolean)

+ setTransactionIsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionIsolation() : int

+ commit()

+ rollback()

RemoteConnectionImpl

~ RemoteConnectionImpl()

+ createStatement() : RemoteStatement

+ close()

+ setAutoCommit(autoCommit : boolean)

+ setReadOnly(readOnly : boolean)

+ setTransactionIsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionIsolation() : int

+ commit()

+ rollback()

~ getTransaction() : Transaction

~ endStatement()

RemoteStatement

• Corresponds to JDBC Statement interface

49

<<interface>>

RemoteStatement

+ executeQuery(qry : String) :

RemoteResultSet

+ executeUpdate(cmd : String) : int

RemoteStatementImpl

+ RemoteStatementImpl(rconn :

RemoteConnectionImpl)

+ executeQuery(qry : String) :

RemoteResultSet

+ executeUpdate(cmd : String) : int

RemoteResultSet

• Corresponds to JDBC ResultSet interface

50

RemoteResultSetImpl

+ RemoteResultSetImpl(plan : Plan, rconn :

RemoteConnectionImpl)

+ next() : boolean

+ getInt(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double

+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

<<interface>>

RemoteResultSet

+ next() : boolean

+ getInt(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double

+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteMetaData

• Corresponds to JDBC ResultSetMetaData
interface

51

<<interface>>

RemoteMetaData

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

RemoteMetaDataImpl

+ RemoteMetaDataImpl(sch : Schema)

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

Registering Remote Objects

• Only the RemoteDriver need to be bound to
registry
– Stubs of others can be obtained by method returns

• Done by JdbcStartUp:

/* create a registry specific for the server on
the default port 1099 */

Registry reg = LocateRegistry.createRegistry(1099);

// post the server entry in it
RemoteDriver d = new RemoteDriverImpl();

/* create a stub for the remote implementation object d,
save it in the RMI registry */

reg.rebind("vanilladb-jdbc", d);
52

Obtaining Stubs

• To obtain the stubs at client-side:

• Directly through registry or indirectly through
method returns

53

// url = "jdbc:vanilladb://xxx.xxx.xxx.xxx:1099"
String host = url.replace("jdbc:vanilladb://", "");
Registry reg = LocateRegistry.getRegistry(host);
RemoteDriver rdvr = (RemoteDriver)

reg.lookup("vanilladb-jdbc");
// creates connection
RemoteConnection rconn = rdvr.connect();
// creates statement
RemoteStatement rstmt = rconn.createStatement();

JDBC Client-Side Impl.

• Implement java.sql interfaces using the
client-side wrappers of stubs

– E.g., JdbcDriver wraps the stub of
RemoteDriver

54

<<interface>>

java.sql.Driver

+ connect(url : String, info : Properties) :

Connection

+ acceptsURL(url : String) : boolean

+ getMajorVersion() : int

+ getMinorVersion() : int

+ getPropertyInfo(url : String, info :

Properties) : DriverPropertyInfo[]

+ jdbcCompliant() : boolean

<<abstract>>

DriverAdapter

// throws exceptions for

unimplemented methods

JdbcDriver

+ connect(url : String, prop : Properties) :

Connection

DriverAdapter and JdbcDriver

55

• DriverAdapter

• Dummy impl. of the Driver interface (by throwing exceptions)

• JdbcDriver:
public class JdbcDriver extends DriverAdapter {

public Connection connect(String url, Properties prop) throws SQLException
{

try {
// assumes no port specified
String host = url.replace("jdbc:vanilladb://", "");
Registry reg = LocateRegistry.getRegistry(host);
RemoteDriver rdvr = (RemoteDriver) reg.lookup("vanilladb-jdbc");
RemoteConnection rconn = rdvr.connect();

return new JdbcConnection(rconn);
} catch (Exception e) {

throw new SQLException(e);
}

}
}

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

56

Remote Class Implementation
in RMI Layers

TCP
Remote Reference Layer

Transport Layer

Java Virtual Machine

Client
Object

Remote Reference Layer

Transport Layer

Java Virtual Machine

Stub

Remote
Object

Skeleton

57

RemoteDriverImpl

• RemoteDriverImpl is the entry point into the
server

• Each time its connect method is called (via the stub), it
creates a new RemoteConnectionImpl on the
server
– RMI creates the corresponding stub and returns back it to

the client

• Run by multiple threads, must be thread-safe

58

<<interface>>

RemoteDriver

+ connect() : RemoteConnection

RemoteDriverImpl

+ RemoteDriverImpl()

+ connect() : RemoteConnection

RemoteConnectionImpl

• Manages client connections on the server
– Associated with a tx
– commit() commits the current tx and starts a new one

immediately

• Thread local

59

<<interface>>

RemoteConnection

+ createStatement() : RemoteStatement

+ close()

+ setAutoCommit(autoCommit : boolean)

+ setReadOnly(readOnly : boolean)

+ setTransactionIsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionIsolation() : int

+ commit()

+ rollback()

RemoteConnectionImpl

~ RemoteConnectionImpl()

+ createStatement() : RemoteStatement

+ close()

+ setAutoCommit(autoCommit : boolean)

+ setReadOnly(readOnly : boolean)

+ setTransactionIsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionIsolation() : int

+ commit()

+ rollback()

~ getTransaction() : Transaction

~ endStatement()

RemoteStatementImpl

• Executes SQL statements
– Creates a planner that finds the best plan tree

• If the connection is set to be auto commit, the
executeUpdate() method will call
connection.commit() in the end

• Thread local

60

<<interface>>

RemoteStatement

+ executeQuery(qry : String) :

RemoteResultSet

+ executeUpdate(cmd : String) : int

RemoteStatementImpl

+ RemoteStatementImpl(rconn :

RemoteConnectionImpl)

+ executeQuery(qry : String) :

RemoteResultSet

+ executeUpdate(cmd : String) : int

RemoteResultSetImpl

• Provides methods for iterating the output records
– The scan opened from the best plan tree

• Tx spans through the iteration
– Avoid doing heavy jobs during the iteration

• Thread local

61

RemoteResultSetImpl

+ RemoteResultSetImpl(plan : Plan, rconn :

RemoteConnectionImpl)

+ next() : boolean

+ getInt(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double

+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

<<interface>>

RemoteResultSet

+ next() : boolean

+ getInt(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double

+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteMetaDataImpl

• Provides the schema information about the query
results
– Contains the Schema object of the output table

• Thread local

62

<<interface>>

RemoteMetaData

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

RemoteMetaDataImpl

+ RemoteMetaDataImpl(sch : Schema)

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

Outline

• Processes, threads, and resource management
– Processes and threads

– Supporting concurrent clients

– Embedded clients

– Remote clients

• Implementing JDBC
– RMI

– Remote Interfaces and client-side wrappers

– Remote Implementations

– StartUp

63

Staring Up

• StartUp provides main() that runs
VanillaCore as a JDBC server

– Calls VanillaDB.init()

• Sharing global resources through static variables

– Binds RemoteDriver to RMI registry

• One thread per connection

64

Threading in Engines

• Generally,

• Classes in the query engine are thread-local

• Classes in the storage engine are thread-safe

65

Assignment Reading

• The following packages in VanillaCore

– org.vanilladb.core.server

– org.vanilladb.core.remote.jdbc

66

References

• Java Threads and Concurrency

• Java RMI

67

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/rmi/index.html

