Server and Threads

Shan Hung Wu & Datalab
CS, NTHU

Where are we?

VanillaCore

-~

Remote.JDBC (Client/Server) J { Server
uery Interface
Tx Planner { Parse }

Algebra

Storage Interface

ConcurrencyIRecovery Metadata I Index I Record Sql/util

Log I Buffer

File

Before Diving into Engines...

e How does the an RDBMS run?

— How many processes?
— How many threads?
— Thread-local or thread-safe components?

— Difference between running embedded clients
and remote clients?

* Answers may influence the software
architecture as well as performance

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

Outline

* Processes, threads, and resource management
— Processes and threads

What’s difference between a process
and a thread?

Process vs. Thread (1/2)

e Thread = a unit of CPU execution + local
resources

— E.g., program counter, registers, function call stack,
etc.

* Process = threads (at least one) + global
resources

— E.g., memory space/heap, opened files, etc.

Process vs. Thread (2/2)

code

data

files

registers

stack

thread —— ;

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
L

— thread

muliithreaded process

What’s difference between a kernel
thread and a user thread?

Kernel Threads

* Scheduled by OS

— On signel-core machines:

single core

T

T2

T3

T4

T,

time

— On multi-core machines:

core 1

core 2

— Examples: POSIX Pthreads'(UNIX), Win32 threads

T4

T3

T+

T3

T+

To

T4

T

T4

To

time

10

User Threads

e Scheduled by user applications (in user space
above the kernel)

— Lightweight -> faster to create/destroy
— Examples: POSIX Pthreads (UNIX), Java threads

* Eventually mapped to kernel threads

— How?

Many-to-One

«——— Lser thread

* Pros:
— Simple g §
— Efficient thread magr. ; %

e Cons:

— One blocking system call
makes all threads halt

— Cannot run across multiple
CPU cores (each kernel
thread runs on only one core)
 Examples:

vk /l <+—— kernel thread

— Green threads in Solaris, N
seldom used in modern OS

One-to-One

Pros:

— Avoid the blocking g ; é ; Srmimorihread
problem J

/ \ AT
/ \ \ {
| Uitk (k) \/'k /) =— Kernel thread

Cons: ()

——

— Slower thread magr.

Most OSs limit the number of kernel threads
to be mapped for a process

Examples: Linux and Windows (from 95)

Many-to-Many

 Combining the best
features of the one-to-one ; 3
and many-to-one

e Allowing more kernel
threads for a heavy user
thread

 Examples: IRIX, HP-UX,
ru64, and Solaris (prior to 9)

— Downgradable to one-to-
one

How about Java threads?

Java Threads

e Scheduled by JVM
* Mapping depends on the JVM implementation

— But normally one-to-one mapped to
Pthreads/Win32 threads on UNIX/Windows

* Pros over POSIX (one2one) threads:
— System independent (if there’s a JVM)

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

17

Why does an RDBMS support
concurrent statements/txs?

Serialized or interleaved operations?

Throughput via Pipelining

Tx1 ™2 ™1 T™x2
R(A) R(A)
CPU CPU | R(A)
R(A) CPU
idle cPU_| =2 el
~— | w(B) W(A) | CPU
R(A) W(B)
cPU v
W(A)
\ 4

* Interleaving ops increases throughput by
pipelining CPU and 1/0

Statements run by processes or
threads?

Processes vs. Threads

e DBMS is about resource management

* |f statements are run by process, then we need
Inter-process communications

— When, e.g., two statements access the same table (file)
— System dependent

* Threads allows global resources to be shared
directly
— E.g., through argument passing or static variables

What Resources to Share?

Opened files

Buffers (to cache pages)

Logs

Locks of objects (incl. files/blocks/record locks)
Metadata

Example: VanillaCore

VanillaCore

Architecture of VanillaCore

-~

Remote.JDBC (Client/Server) J { Server
Query Interface
Tx Planner { Parse

Algebra

Storage Interface

ConcurrencyIRecovery Metadata I Index I Record Sql/util

Log I Buffer

File

24

VanillaDb (1/2)

* Provides access to
global resources:
— F1leMgr,
BufferMgr,
LogMagr,
CatalogMgr
* Creates the new
objects that access
global resources:

— Planner and
Transaction

VanillaDb

+ init(dirName : String)

+ init(dirName : String. bufferMgrType : BufferMarType)
+ islnited() : boolean

+ initFileMgr(dirname : String)

+ initFileAndLogMar(dirname : String)

+ initFileLogAndBufferMgr(dirname : String, bufferMarType : BufferMgrType)
+ initTaskMar()

+ initTxMar()

+ initCatalogMar(isnew : boolean. tx : Transaction)

+ initStatMar(tx : Transaction)

+ initSPFactory()

+ initCheckpointingTask()

+ fileMar() : FileMgr

+ bufferMgr() : BufferMgr

+ logMar() : LogMgr

+ catalogMar() : CatalogMar

+ statMar() : StatMar

+ taskMagr() : TaskMar

+ txMar() : TransactionMagr

+ spFactory() : StoredProcedureFactory
+ newPlanner() : Planner

+ initAndStartProfiler()
+ stopProfilerAndReport()

VanillaDb (2/2)

* Before using the VanillaCore, the
VanillaDb.init (name) must be called

— Initialize file, log, buffer, metadata, and tx mgrs
— Create or recover the specified database

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

27

Embedded Clients

* Running on the same machine as RDBMS

e Usually single-threaded
— E.g., sensor nodes, dictionaries, phone apps, etc.
* |f you need high throughput, manage threads
yourself
— Identify causal relationship between statements
— Run each group of causal statements in a thread

— No causal relationship between the results
outputted by different groups

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

29

Remote Clients

* Server (thread) creates worker threads

. 2) create new
client threads (1) request thaad 10 sevice Worker threads
the request

client » server —» thread

server/dispckﬁ»er thread

(3) resume listening
for additional
client requests

* One worker thread per request

* Each client can be multi-threaded
— E.g., a web/application server

30

What is a request?

* An |/O operation?
* A statement?

* Atransaction?

* A connection?

Request = Connection

* In VanillaDB, a worker thread handles all
statements issued by the same user

e Rationale:

— Statements issued by a user are usually in a causal
order = ensure casualty in a session

— A user may re-examine the data he/shed accessed 2>
easier caching

* Implications:

— All statements issued in a JDBC connection is run by a
single thread at server

— Hconnections = #threads

Thread Pooling

Creating/destroying a thread each time upon
connection/disconnection leads to large
overhead

To reduce this overhead, a worker thread pool is
commonly used

— Threads are allocated from the pool as needed, and
returned to the pool when no longer needed

— When no threads are available in the pool, the client
may have to wait until one becomes available

Other benefit?

Graceful performance degradation by limiting the
pool size

Outline

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

Architecture of VanillaCore

VanillaCore
Remote.JDBC (Client/Server) J { Server
QUC|y :II.LCI:-U\.C
Tx Planner { Parse }
Algebra
Storage Interface
ConcurrencyIRecovery Metadata I Index I Record Sql/util
Log I Buffer
File

R W E

JDBC Programming

Connect to the server

Execute the desired query

Loop through the result set (for SELECT only)
Close the connection

* Aresult set ties up valuable resources on the server,
such as buffers and locks

* Client should close its connection as soon as the
database is no longer needed

java.sql (1/2)

<<interface>>
Driver

+ connect(url : String, info : Properties) : Connection

<<interface>>
Connection

 Makes connections

+ createStatement() : Statement

+ close()

+ setAutoCommit(autoCommit : boolean)
+ setReadOnly(readOnly : boolean)

+ setTransactionlsolation(level : int)

+ getAutoCommit() : boolean

+ getTransactionlsolation() : int

+ commit()

+ rollback()

to the server

e java.sql (2/2)

Statement

+ executeQuery(gry : String) : ResultSet
+ executeUpdate(cmd : String) : int

<Sineface>> * An iterator of output
records

+ next() : boolean

+ getint(fldname : String) : int

+ getString(fldname : String) : String

+ getLong(fldname : String) : Long

+ getDouble(fldname : String) : Double
+ getMetaData() : ResultSetMetaData
+ beforeFirst()

+ close()

<<interface>>
ResultSetMetaData

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

Implementing JDBC in VanillaCore

e JDBC APl is defined at client side

* Needs both client- and server-side implementations
— Inorg.vanilladb.core.remote. jdbc package
— JdbcXxx are client-side classes
— RemoteXxx are server-side classes

e Based on Java RMI

— Handles server threading: dispatcher thread, worker
threads, and thread pool

— But no control to pool size

— Synchronizes a client thread with a worker thread
* Blocking method calls at clients

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

40

Java RMI

e Java RMI allows methods of an object at

server VM to be invoked remotely at a client
VM

— We call this object a remote object
* How?

[EEY

> W

00 N

The Stub and Skeleton

call

RMI Client RMI Server

Stub
IEIENED

>l

return

The skeleton (run by a server thread) binds the interface of the
remote object

A client thread looks up and obtain a stub of the skeleton

When a client thread invokes a method, it is blocked and the call is
first forwarded to the stub

The stub marshals the parameters and sends the call to the
skeleton through the network

The skeleton receives the call, unmarshals the parameters,
allocates from pool a worker thread that runs the remote object’s
method on behalf of the client

When the method returns, the worker thread returns the result to
skeleton and returns to pool

The skeleton marshals the results and send it to stub
The stub unmarshals the results and continues the client thread

RMI registry

Server-side Machine

e The server must first

bind the remote obj’s RN Server “&V
interface to the , Registry
registry with a name skeleton
— The interface must]
extend the return call lookup
java.rml.Remote |
interface ' ”_
* The client lookup the ,
name in the registry to RMI Client

obtain a stub

Cilent-side Machine

Things to Note

A client thread and a worker thread is synchronized

The same remote object is run by multiple worker
threads (each per client)

— Remote objects bound to registry must be thread-safe

If the return of a remote method is another remote
object, the stub of that object is created automatically
and sent back to the client

— That object can be either thread-local or thread-safe,

depending on whether it is created or reused during each
method call

A remote object will not be garbage collected if there’s
a client holding its stub

— Destroy stub (e.g., closing connection) at client side ASAP

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

45

Server-Side JDBC Impl.

* RemoteXxx classes that mirror their
corresponding JDBC interfaces at client-side

— Implement the most essential JIDBC methods only
* |nterfaces: RemoteDriver,

RemoteConnection, RemoteStatement,
RemoteResultSet and RemoteMetaData

— To be bound to registry
— Extend java.rml.Remote

— Throw RemoteException instead of
SQLException

RemoteDriver

e Corresponds to the JDBC Driver interface

<<interface>>
RemoteDriver RemoteDriverimpl

+ RemoteDriverimpl()

+ conn : Rem nnection ,
connect() : RemoteConnectio + connect() : RemoteConnection

RemoteConnection

<<interface>>
RemoteConnection

+ createStatement() : RemoteStatement
+ close()

+ setAutoCommit(autoCommit : boolean)
+ setReadOnly(readOnly : boolean)

+ setTransactionlsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionlsolation() : int

+ commit()

+ rollback()

e Corresponds to JDBC Connection interface

RemoteConnectionimpl

~ RemoteConnectionimpl()

+ createStatement() : RemoteStatement
+ close()

+ setAutoCommit(autoCommit : boolean)
+ setReadOnly(readOnly : boolean)

+ setTransactionlsolation(level : int)

+ getAutoCommit() : boolean

+ isReadOnly() : boolean

+ getTransactionlsolation() : int

+ commit()

+ rollback()

~ getTransaction() : Transaction

~ endStatement()

RemoteStatement

e Corresponds to JDBC Statement interface

<<interface>>
RemoteStatement

+ executeQuery(qgry : String) :
RemoteResultSet
+ executeUpdate(cmd : String) : int

RemoteStatementimpl

+ RemoteStatementimpl(rconn :
RemoteConnectionimpl)

+ executeQuery(qry : String) :
RemoteResultSet

+ executeUpdate(cmd : String) : int

RemoteResultSet

e Corresponds to JDBC ResultSet interface

<<interface>>
RemoteResultSet

+ next() : boolean

+ getint(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double
+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteResultSetimpl

+ RemoteResultSetimpl(plan : Plan, rconn :

RemoteConnectionimpl)

+ next() : boolean

+ getint(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double
+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteMetaData

* Corresponds to JDBC ResultSetMetaData

interface

<<interface>>
RemoteMetaData

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

RemoteMetaDatalmpl

+ RemoteMetaDatalmpl(sch : Schema)

+ getColumnCount() : int

+ getColumnName(column : int) : String

+ getColumnType(column : int) : int

+ getColumnDisplaySize(column : int) : int

Registering Remote Objects

* Only the RemoteDriver need to be bound to
registry
— Stubs of others can be obtained by method returns

* Done by JdbcStartUp:

/* create a registry specific for the server on
the default port 1099 */
Registry reg = LocateRegistry.createRegistry(1099);

// post the server entry in it
RemoteDriver d = new RemoteDriverImpl();

/* create a stub for the remote implementation object d,
save it in the RMI registry */
reg.rebind("vanilladb-jdbc", d);

52

Obtaining Stubs

e To obtain the stubs at client-side:

// url = "jdbc:vanilladb://XXX.XXX.XXX.XXX:1099"

String host = url.replace("jdbc:vanilladb://", "");

Registry reg = LocateRegistry.getRegistry(host);

RemoteDriver rdvr = (RemoteDriver)
reg.lookup("vanilladb-jdbc");

// creates connection

RemoteConnection rconn = rdvr.connect();

// creates statement

RemoteStatement rstmt = rconn.createStatement();

Directly through registry or indirectly through
method returns

53

JDBC Client-Side Impl.

* Implement java.sqgl interfaces using the
client-side wrappers of stubs
— E.g., JdbcDriver wraps the stub of

RemoteDriver
<<interface>> — — — <<abstract>>
java.sql.Driver DriverAdapter
+ connect(url : String, info : Properties) : // throws exceptions for
Connection unimplemented methods
+ acceptsURL(url : String) : boolean
+ getMajorVersion() : int T
+ getMinorVersion() : int
+ getPropertylnfo(url : String, info : JdbcDriver
Properties) : DriverPropertyinfo[]
+ jdbcCompliant() : boolean

+ connect(url : String, prop : Properties) :
Connection

DriverAdapter and JdbcDriver

* DriverAdapter

« Dummy impl. of the Driver interface (by throwing exceptions)

JdbcDriver:

public class JdbcDriver extends DriverAdapter {

public Connection connect(String url, Properties prop) throws SQLException

{

try {
// assumes no port specified

String host = url.replace("jdbc:vanilladb://", "");

Registry reg = LocateRegistry.getRegistry(host);

RemoteDriver rdvr = (RemoteDriver) reg.lookup("vanilladb-jdbc");
RemoteConnection rconn = rdvr.connect();

return new JdbcConnection(rconn);
} catch (Exception e) {
throw new SQLException(e);

}

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

56

Remote Class Implementation
In RM| Layers

Client Remote
Object Object

Transport Layer Transport Layer

Remote Reference Layer Remote Reference Layer

57

RemoteDriverImpl

RemoteDriverImpl is the entry point into the
server

Each time its connect method is called (via the stub), it
creates a new RemoteConnectionImpl on the
server

— RMI creates the corresponding stub and returns back it to
the client

Run by multiple threads, must be thread-safe

<<interface>>
RemoteDriver RemoteDriverimpl

+ RemoteDriverimpl()

+ : [:
connect() : RemoteConnection + connect() : RemoteConnection

RemoteConnectionImpl

* Manages client connections on the server
— Associated with a tx

— commit () commits the current tx and starts a new one
immediately

e Thread local

<<interface>> RemoteConnectionimpl
RemoteConnection

~ RemoteConnectionimpl()

+ createStatement() : RemoteStatement + createStatement() : RemoteStatement
+ close() + close()

+ setAutoCommit(autoCommit : boolean) — + setAutoCommit(autoCommit : boolean)
+ setReadOnly(readOnly : boolean) 7 7]+ setReadOnly(readOnly : boolean)

+ setTransactionlsolation(level : int) + setTransactionlsolation(level : int)

+ getAutoCommit() : boolean + getAutoCommit() : boolean

+ isReadOnly() : boolean + isReadOnly() : boolean

+ getTransactionlsolation() : int + getTransactionlsolation() : int

+ commit() + commit()

+ rollback() + rollback()

~ getTransaction() : Transaction
~ endStatement()

RemoteStatementImpl

Executes SQL statements
— Creates a planner that finds the best plan tree
If the connection is set to be auto commit, the

executeUpdate () method will call
connection.commit () inthe end

Thread local

<<interface>> RemoteStatementimpl

RemoteStatement
N + RemoteStatementimpl(rconn :
+ executeQuery(qry : String) - RemoteConnectionimpl)
RemoteResultSet :
: : + executeQuery(qgry : String) :
+ executeUpdate(cmd : String) : int Rgm otzgegults ot 9)
+ executeUpdate(cmd : String) : int

RemoteResultSetImpl

* Provides methods for iterating the output records
— The scan opened from the best plan tree

* Tx spans through the iteration

— Avoid doing heavy jobs during the iteration

e Thread local

<<interface>>
RemoteResultSet

+ next() : boolean

+ getint(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double
+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteResultSetimpl

+ RemoteResultSetimpl(plan : Plan, rconn :
RemoteConnectionimpl)

+ next() : boolean

+ getint(fldname : String) : int

+ getLong(fldname : String) : long

+ getDouble(fldname : String) : double

+ getString(fldname : String) : String

+ getMetaData() : RemoteMetaData

+ beforeFirst()

+ close()

RemoteMetaDatalmpl

Provides the schema information about the query
results

— Contains the Schema object of the output table
Thread local

<<interface>> RemoteMetaDatalmpl
RemoteMetaData
- — — — — — — - + RemoteMetaDatalmpl(sch : Schema)
+ getColumnCount() : int + getColumnCount() : int
+ getColumnName(column : int) : String + getColumnName(column : int) : String
+ getColumnType(column : int) : int + getColumnType(column : int) : int
+ getColumnDisplaySize(column : int) : int + getColumnDisplaySize(column : int) : int

Outline

* Processes, threads, and resource management
— Processes and threads
— Supporting concurrent clients
— Embedded clients
— Remote clients

* Implementing JDBC
— RMI
— Remote Interfaces and client-side wrappers
— Remote Implementations
— StartUp

63

Staring Up

* StartUp providesmain () that runs
VanillaCore as a JDBC server

—CallsvanillaDB.init ()
* Sharing global resources through static variables

— Binds RemoteDriver to RMI registry

* One thread per connection

Threading in Engines

* Generally,
* Classes in the query engine are thread-local
* Classes in the storage engine are thread-safe

Assignment Reading

* The following packages in VanillaCore
—org.vanlilladb.core.server

—org.vanilladb.core.remote. jdbc

References

e Java Threads and Concurrency

 Java RMI

67

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/rmi/index.html

