Java Concurrency

Shan-Hung Wu & Datalab
CS, NTHU

Staring a New Thread

public class HelloRunnable implements Runnable {
@Override

public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();
}

or

public class HelloThread extends Thread {
@Override

public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new HelloThread()).start();
}

What Happened?

public class HelloRunnable implements Runnable {
@Override
public void run() {
System.out.println("Hello from a thread!");

}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}
A new stack is allocated for run (), in
addition to that of main ()

* Your CPU spends time on executing run () in
parallel with main ()

Memory Scheme in a Process

Process Thread Thread Thread

Multiple Stacks, Single Heap

* The heap in memory scheme?
— Stores objects
— Shared by all threads

* Can two threads access the same object? Yes

* How? Passing the same object to their
constructors

public static void main(String args[]) {

Counter counter = ...;

(new Thread(new HelloRunnableA(counter))).start(); // thread A
(new Thread(new HelloRunnableB(counter))).start(); // thread B

Concurrent Access

Given the same object counter ciass counter {

Suppose both threads private int c = @;

. Public void set(int c) {
execute in run () : This.c = c;

. }

int ¢ = counter.get(); public int get() {
c++; // c--; return c;
counter.set(c); } ,

Thread A’s result will be lost if

Thread A: Get c

Thread B: Get ¢

Thread A: Increment retrieved value; result is 1
Thread B: Increment retrieved value; result is 1
Thread A: Set result in c; cis now 1.

Thread B: Set result in c; c is still 1.

ok wnNE

Synchronization

public class SynchronizedCounter {
private int ¢ = 0;
public synchronized void set(int c) {

, e e e Same as...
public synchronized int get() {
return c; public class SynchronizedCounter {
} private int ¢ = 0;
} public void set(int c) {
synchronized (this) {
* Only one thread } this.c = ¢
can enter sync. Yoo
) public int get() {
bIOCk Qf an QbJ synchronized (this) {
. return c;
at a time }
}

e Problem solved? }

Still Wrong!

e Two threadsin run ():

. // counter is a SynchronizedCounter instance
int ¢ = counter.get();
c++; // c--;
counter.set(c);

 Thread A’s result will still be lost if

Thread A: Get c

Thread B: Get c

Thread A: Increment retrieved value; result is 1
Thread B: Increment retrieved value; resultis 1
Thread A: Set result in c; cis now 1.

Thread B: Set resultin c; cis still 1.

oOunsEwNE

Synchronization at Right Place

* Solutionl: callers lock counter during the
entire increment/decrement period:

synchronized(counter){
int ¢ = counter.get();
c++; // or c--;
counter.set(c);

}
e Solution2: callee provides atomic methods

public class SynchronizedCounter {
private int ¢ = 0;
public void synchronized increment() {

C++;

}

public int get() {
return c;

}

Synchronization

Make it short!
- WE NEED TO GETIN TOO!

I'll notify them and get back M
IT WILL TAKE JUST ONE MOMENT {vo ;& Qk‘ 2
V' OouJ

‘ THREAD *l‘ o9 U2
- =

S)’N
o0 CRO/V,ZED
B

-

LS

.

Source

10

https://www.techyourchance.com/thread-safe-observer-design-pattern-in-java/

Blocking and Waiting States

e Threads are blocked outside a critical section
if someone s in

 Thread A in a critical section of o can stop and
enter the waiting state by calling o.wait ()

— Gives up the lock, so some other blocking thread B
can enter the critical section

—IfBcallso.notifyAll (), Acompetes for the
lock again and resume

Wrap wait () ina Loop

* |t’s a good practice to warp wait () inaloop
to prevent bugs

* Queue length: 10

Threads A, B: Threads C, D:
// enqueue // dequeue
synchronized (queue) { synchronized (queue) {
while (queue.size () == 10) { while (queue.size() == 0) {
queue.wait () ; queue.wait () ;
} }
queue.add (...) ... = queue.remove () ;

queue.notifyAll (), queue.notifyAll (),

Assigned Reading

* Java Concurrency Tutorial

https://docs.oracle.com/javase/tutorial/essential/concurrency/

