
Java Concurrency

Shan-Hung Wu & DataLab

CS, NTHU

Staring a New Thread

or

2

public class HelloRunnable implements Runnable {
@Override
public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}

public class HelloThread extends Thread {
@Override
public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new HelloThread()).start();

}
}

What Happened?

• A new stack is allocated for run(), in
addition to that of main()

• Your CPU spends time on executing run() in
parallel with main()

3

public class HelloRunnable implements Runnable {
@Override
public void run() {

System.out.println("Hello from a thread!");
}

public static void main(String args[]) {
(new Thread(new HelloRunnable())).start();

}
}

Memory Scheme in a Process

4

Thread

Register

Stack

Thread

Register

Stack

Thread

Register

Stack

Static

Heap

Code

Memory

Process

Multiple Stacks, Single Heap

• The heap in memory scheme?

– Stores objects

– Shared by all threads

• Can two threads access the same object? Yes

• How? Passing the same object to their
constructors

5

public static void main(String args[]) {
Counter counter = ...;
(new Thread(new HelloRunnableA(counter))).start(); // thread A
(new Thread(new HelloRunnableB(counter))).start(); // thread B

}

Concurrent Access

• Given the same object counter
• Suppose both threads

execute in run():

• Thread A’s result will be lost if
1. Thread A: Get c
2. Thread B: Get c
3. Thread A: Increment retrieved value; result is 1
4. Thread B: Increment retrieved value; result is 1
5. Thread A: Set result in c; c is now 1.
6. Thread B: Set result in c; c is still 1.

6

class Counter {
private int c = 0;
Public void set(int c) {

This.c = c;
}
public int get() {

return c;
}

}

int c = counter.get();
c++; // c--;
counter.set(c);

Synchronization

• Only one thread
can enter sync.
block of an obj.
at a time

• Problem solved?

7

• Same as…

public class SynchronizedCounter {
private int c = 0;
public synchronized void set(int c) {

this.c = c;
}
public synchronized int get() {

return c;
}

}

public class SynchronizedCounter {
private int c = 0;
public void set(int c) {

synchronized (this) {
this.c = c;

}
}
public int get() {

synchronized (this) {
return c;

}
}

}

Still Wrong!

• Two threads in run():

• Thread A’s result will still be lost if
1. Thread A: Get c
2. Thread B: Get c
3. Thread A: Increment retrieved value; result is 1
4. Thread B: Increment retrieved value; result is 1
5. Thread A: Set result in c; c is now 1.
6. Thread B: Set result in c; c is still 1.

8

... // counter is a SynchronizedCounter instance
int c = counter.get();
c++; // c--;
counter.set(c);

Synchronization at Right Place

• Solution1: callers lock counter during the
entire increment/decrement period:

• Solution2: callee provides atomic methods

9

synchronized(counter){
int c = counter.get();
c++; // or c--;
counter.set(c);

}

public class SynchronizedCounter {
private int c = 0;
public void synchronized increment() {

c++;
}
public int get() {

return c;
}

}

Synchronization

10

Source

https://www.techyourchance.com/thread-safe-observer-design-pattern-in-java/

Blocking and Waiting States

• Threads are blocked outside a critical section
if someone is in

• Thread A in a critical section of o can stop and
enter the waiting state by calling o.wait()

– Gives up the lock, so some other blocking thread B
can enter the critical section

– If B calls o.notifyAll(), A competes for the
lock again and resume

11

Wrap wait() in a Loop

• It’s a good practice to warp wait() in a loop
to prevent bugs

• Queue length: 10

12

Threads A, B:
// enqueue

synchronized(queue) {

while(queue.size() == 10) {

queue.wait();

}

queue.add(...);

queue.notifyAll();

}

Threads C, D:
// dequeue

synchronized(queue) {

while (queue.size() == 0) {

queue.wait();

}

... = queue.remove();

queue.notifyAll();

}

Assigned Reading

• Java Concurrency Tutorial

13

https://docs.oracle.com/javase/tutorial/essential/concurrency/

