
Introduction to Git

Database Systems

DataLab, CS, NTHU

Spring, 2020

1



Outline

• Version control system

• Git basics

• Git branch

• Remote repository

2



Outline

• Version control system

• Git basics

• Git branch

• Remote repository

3



Why Version Control ?

4



Students’ VCS

5



How to work with others?

6



Dropbox VCS in Reality

7



Version Control System

• Store the projects, keep your revision history

• Synchronization between modifications made by 

different developers 

8



https://memecrunch.com/meme/8QNIV/now-git

https://memecrunch.com/meme/8QNIV/now-git


Outline

• Version control system

• Git basics

• Git branch

• Remote repository

10



Git

• Git is a version control system which is 

• Fast

• Easy to use

• Distributed

• Able to handle large project 

(ex. Linux Kernel 27.8 million lines)

• A git repository is a mini database that tracks your files

11



Installation

• Please check this link

• http://git-scm.com/book/en/Getting-Started-

Installing-Git

12

http://git-scm.com/book/en/Getting-Started-Installing-Git


Configuration

• Modify ~/.gitconfig

• Or, type in following commands

git config --global user.name “your name”
git config --global user.email “your@email.com”

For more information, please refer this link

13

http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup


• Two ways to create a repository

• Initializing a Repository in an Existing Directory

• Cloning an Existing Repository

• We will talk about it later

• The repository information will be stored in the .git 

directory

Creating a new Repository

git init

14



Committing A Version

15



• Staging (adding) a file

• Staging all files in the current directory

• Committing

Committing A Version

git add [file name]

git add -A

git commit -m “[message]”

16



• Checking the current status and the current branch

Status

git status

17



A History Tree

A9D013

B259F1

91DCA1

95165E

13CD8E

HEAD

HEAD is a pointer pointing to

the version you are looking at now
The versions you committed

form a history tree

18



• Listing the log

• Listing each log in one line

Logs

git log

git log --oneline

19



Checking Out A Version

A9D013

B259F1

91DCA1

95165E

13CD8EHEAD

git checkout 91DCA1

20



Outline

• Version control system

• Git basics

• Git branch

• Remote repository

21



Branches

Develop

Master

Optimization

A New Menu

Branching Merging

22



The Master Branch

A9D013

B259F1

91DCA1

95165E

13CD8EHEAD Master

A branch in Git is actually

a label pointing to a version

Master branch is the default branch

created at the start time

23



Branching

91DCA1

95165E

13CD8EHEAD Master Feature

HEAD

24



Branching

91DCA1

95165E

13CD8EMaster

34F19D

Feature

HEAD

25



Branching

91DCA1

95165E

13CD8EMaster

34F19D Feature

HEAD

26



Branching

91DCA1

95165E

13CD8EMaster

34F19D Feature

HEAD

27



Branching

91DCA1

95165E

13CD8E

34F19D Feature

Master

HEAD

1F9D18

28



• Creating a new branch (label)

• Checking out the branch (move the HEAD)

• Combining the above commands (create & checkout)

Git Branching

git branch [branch name]

git checkout [branch name]

git checkout -b [branch name]

29



Merging

13CD8E

34F19D

Feature

Master

HEAD

1F9D18

84091E

3827FA

30



• Merging Steps

• Checking out a branch to merge

• Merging another branch

Git Merging

git checkout [branch 1 name]

git merge [branch 2 name]

31



Try Git!



1. Find current directory

2. Go to that directory

33



3. Add a new folder

5. Create a new file

4. Go to that folder

6. Put some contents and save

34



$ git config --global user.name "name"
$ git config --global user.email "email"

7. Setup user information

With --global: for all repositories in computer

Without --global: for current repository 

35



$ cd git-demo 
$ dir
$ git init

8. Go to “git-demo”

9. Show the files in “git-demo”

10. Initialize a Git repository

36



11. Add HelloGit.txt to staging files

12. Commit your changes

$ git add HelloGit.txt 

$ git commit -m "version 1"
37



14. Add it and commit again

13. Make some changes and save

38



15. View your versions

Version ID

Commit messages

$ git log

39



16. Go to a specific version

$ git checkout {version_id}

40



$ git log --oneline

15. Show versions with short version ID

Version ID

56% shorter!

41



16. Go to a specific version

$ git checkout {short_version_id}

42



17. Close and reopen HelloGit.txt

18. Back to the version 1!

43



Outline

• Version control system

• Git basics

• Git branch

• Remote repository

44



Collaboration with Git

• To work with others using git, you’ll need a server 

that store the repository.

• Git is distributed, which means

• Everyone can store a copy of the repository 

downloaded from the server 

• They can do their jobs independently

45



Collaboration workflow

Local A Local B

Clone Clone

46



Collaboration workflow

Local A Local B

Commit

New

47



Collaboration workflow

Local A Local B

Push

NewNew

48



Collaboration workflow

Local A Local B

Push

New

New

Pull

New

49



• Cloning the remote repositories

• The [Remote URL] is saved as Origin

• After committing a few versions, you can push the 

branch back to Origin

Cloning & Pushing

git clone [Remote URL]

git push -u origin [Branch Name]

50



• Updating a branch from the remote repository

• Fetching the remote repository to local

• Merging the remote branch

• Doing above commands in one command

Fetch & Pull

git fetch origin

git merge origin/[Branch Name]

git pull [Branch Name]

51



13CD8E

34F19D1F9D18

84091E

3827FA

Fork

13CD8E

34F19D1F9D18

84091E

3827FA

The Repo. Under TA’s Account

52



13CD8E

34F19D1F9D18

84091E

3827FA

Fork

13CD8E

34F19D1F9D18

84091E

3827FA

The Repo. Under TA’s Account The Repo. Under Your Account

53



13CD8E

34F19D1F9D18

84091E

3827FA

Pull (Merge) Request

13CD8E

34F19D1F9D18

84091E

3827FA

The Repo. Under TA’s Account The Repo. Under Your Account

528A03

Pull

Request

Accept

528A03

54



.gitignore File

• You can ignore some files that you don’t want them 

to be tracked by editing the .gitignore file

• Remember to track and commit your .gitignore file

• Don’t know what should be in .gitignore ?

• https://github.com/github/gitignore

• https://www.gitignore.io/

55

https://github.com/github/gitignore
https://www.gitignore.io/


How to Submit Your 

Code to Gitlab



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

57



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

58



59



60

1. Click to fork



61

2. Check if this repository is under your account

3. Go to settings



61

4. Set project to private 



62

5. Scroll down and save changes



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

64



65

1. Choose HTTPS

2. Copy the link



If You use Windows

66



3. Create a folder to put your repos

4. Type "git clone {URL}"

5. The repo has been successfully cloned

67



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

68



1. -A means all files

2. Check if your file is added to git

3. Commit your changes

69



If you see these message, type

git config --global user.name "{name}"

git config --global user.email "{email}" 

{email} is the email you use on gitlab

70



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

71



Type "git push -u origin master"

72



Workflow

• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template repository

73



74

1. Click Merge Requests



75

2. New merge request



76

3. Choose the branch you 

pushed in your repo

4. Choose the branch 

named after your ID

5. Compare branches



77

6. Set title to "{ID} Submission"



78

7. If everything is OK, 

submit your merge request





Reference

• Learn Git branching (interactive)

• http://pcottle.github.io/learnGitBranching/

• Pro Git

• http://git-scm.com/book/

• 寫給大家的 Git 教學

• http://www.slideshare.net/littlebtc/git-5528339

81

http://pcottle.github.io/learnGitBranching/
http://git-scm.com/book/
http://www.slideshare.net/littlebtc/git-5528339

