
SQL Queries

Shan-Hung Wu & DataLab

CS, NTHU

PostgreSQL

• Download and install

• For Mac users, try PostgreSQL.app

2

https://www.postgresql.org/download/
http://postgresapp.com/

Today’s Example Code

• You can find the example we use today from
here:

– https://shwu10.cs.nthu.edu.tw/courses/databases
/2020-spring/sql_query/blob/master/01-
postgresql-example.md

3

https://shwu10.cs.nthu.edu.tw/courses/databases/2020-spring/sql_query/blob/master/01-postgresql-example.md

Using PostgreSQL

• Default schema: public
– \dn for listing all schemas

• Multiple lines until ‘;’
• ‘--’ for comments
• Case insensitive

– Use “” to distinguish lower and upper cases
– E.g., SELECT "authorId" FROM posts;

4

$ createdb <db>

$ psql <db> [user]

> \h or \?

> SELECT now(); -- SQL commands

Structured Query Language (SQL)

• Data Definition Language (DDL) on schema
– CREATE TABLE …

– ALTER TABLE …

– DROP TABLE …

• Data Manipulation Language (DML) on records
– INSERT INTO … VALUES …

– SELECT … FROM … WHERE …

– UPDATE … SET … WHERE …

– DELETE FROM … WHERE …

5

Schema

6

id text authorId ts

33981 ‘Hello DB!’ 729 1493897351

33982 ‘Show me code’ 729 1493854323

id name karma

729 Bob 35

730 John 0

uId1 uId2 since

729 730 14928063

729 882 14827432

friend

foreign keys

users

posts

Creating Tables/Relations

• Column types:
– Integer, bigint, real, double, etc.
– varchar(10), text, etc.

• Non-null constraint
• Default values

7

CREATE TABLE posts (

id serial PRIMARY KEY NOT NULL,

text text NOT NULL,

"authorId" integer NOT NULL

REFERENCES users ON DELETE CASCADE,

ts bigint NOT NULL

DEFAULT (extract(epoch from now())),

...

);

Creating Tables/Relations

• Primary key:

– Unique (no duplicate values among rows)

– Usually of type “serial” (auto-filled integer)

– Index automatically created
8

CREATE TABLE posts (

id serial PRIMARY KEY NOT NULL,

text text NOT NULL,

"authorId" integer NOT NULL

REFERENCES users ON DELETE CASCADE,

ts bigint NOT NULL

DEFAULT (extract(epoch from now())),

...

);

Creating Tables/Relations

• Foreign key: post.authorId must be a valid user.id

• When deleting a user (row):

– NO ACTION (default): user not deleted, error raised

– CASCADE: user and all referencing posts deleted

9

CREATE TABLE posts (

id serial PRIMARY KEY NOT NULL,

text text NOT NULL,

"authorId" integer NOT NULL

REFERENCES users ON DELETE CASCADE,

ts bigint NOT NULL

DEFAULT (extract(epoch from now())),

...

);

Inserting Rows

• String values should be single quoted

• Inserting dummy rows:

10

INSERT INTO posts(text, "authorId", ...)

VALUES ('Today is a good day!’, 5, ...);

INSERT INTO posts(text, "authorId")

SELECT

'Dummy word ' || i || '.',

round(random() * 10) + 1

FROM generate_series(1, 20) AS s(i);

Queries

• To see how a query is processed:

11

SELECT *

FROM posts

WHERE ts > 147988213 AND text ILIKE '%good%'

ORDER BY ts DESC, id ASC

LIMIT 2;

EXPLAIN ANALYZE -- show plan tree

SELECT *

FROM posts

WHERE ts > 147988213 AND text ILIKE '%good%'

ORDER BY ts DESC, id ASC

LIMIT 2;

(Batch) Updating Rows

12

• All rows satisfying the WHERE clause will be
updated

• ts + 3600 is an expression

– Can be evaluated to a single value

UPDATE posts SET ts = ts + 3600 WHERE "authorId" = 10;

Handling “Big” Data

• Some queries will be slow:

13

INSERT INTO posts(text, "authorId")

SELECT

'Dummy word ' || i || '.',

rount(random() * 10) + 1

FROM generate_series(1, 1000000) AS s(i);

EXPLAIN ANALYZE SELECT * FROM posts

WHERE id > 500000 AND id < 501000; -- 1ms

EXPLAIN ANALYZE SELECT * FROM posts

WHERE ts > 1400000000 AND ts < 1403600000; -- 230ms

Using Index

14

CREATE INDEX posts_idx_ts

ON posts

USING btree(ts);

\di -- list indices

EXPLAIN ANALYZE

SELECT * FROM posts

WHERE ts > 1400000000

AND ts < 1403600000; -- 2ms

id text ts

1 ‘Good day’ 1493880220

… … …

33981 ‘Hello DB!’ 1493897351

33982 ‘Show me code’ 1493904323

posts

posts_idx_ts

ts
(ordered)

Index for ILIKE?

• B-tree indices are not helpful for text searches

• Use GIN (generalized inverted index) instead:

15

CREATE INDEX posts_idx_text ON posts

USING btree(text);

EXPLAIN ANALYZE SELECT * FROM posts

WHERE text ILIKE '% word 500000%'; -- 1.5s

CREATE EXTENSION pg_trgm;

\dx -- list extensions

CREATE INDEX posts_idx_text_trgm ON posts

USING gin(text gin_trgm_ops);

EXPLAIN ANALYZE SELECT * FROM posts

WHERE text ILIKE '%word 500000%'; -- 50ms

