SQL Queries

Shan-Hung Wu & Datalab
CS, NTHU

PostgreSQL

e Download and install

* For Mac users, try PostgreSQL.app

https://www.postgresql.org/download/
http://postgresapp.com/

Today’s Example Code

* You can find the example we use today from
here:

— https://shwul0.cs.nthu.edu.tw/courses/databases

/2020-spring/sql_query/blob/master/01-
postgresql-example.md

https://shwu10.cs.nthu.edu.tw/courses/databases/2020-spring/sql_query/blob/master/01-postgresql-example.md

Using PostgreSQL

$ createdb <db>

S psgl <db> [user]

> \h or \?

> SELECT now(); —-- SQL commands

Default schema: public
— \dn for listing all schemas

Multiple lines until ‘;’
‘.- for comments

Case insensitive

— Use “” to distinguish lower and upper cases
— E.g., SELECT "authorId" FROM posts;

Structured Query Language (SQL)

e Data Definition Language (DDL) on schema
— CREATE TABLE ...
— ALTER TABLE ...
— DROP TABLE ...

 Data Manipulation Language (DML) on records
— INSERT INTO ... VALUES ...
— SELECT ... FROM ... WHERE ...
— UPDATE ... SET ... WHERE ...
— DELETE FROM ... WHERE ...

Schema

friend

uldl uld2 since

729 882 14827432 |

Creating Tables/Relations

CREATE TABLE posts (

id serial PRIMARY KEY NOT NULL,
text text NOT NULL,
"authorId" integer NOT NULL
REFERENCES users ON DELETE CASCADE,
ts bigint NOT NULL
DEFAULT (extract (epoch from now())),

) ;

 Column types:
— Integer, bigint, real, double, etc.
— varchar(10), text, etc.

* Non-null constraint
e Default values

Creating Tables/Relations

CREATE TABLE posts (

1d serial PRIMARY KEY NOT NULL,
text text NOT NULL,
"authorId" integer NOT NULL
REFERENCES users ON DELETE CASCADE,
ts bigint NOT NULL
DEFAULT (extract (epoch from now())),

) ;

* Primary key:
— Unique (no duplicate values among rows)
— Usually of type “serial” (auto-filled integer)

— Index automatically created

Creating Tables/Relations

CREATE TABLE posts (

id serial PRIMARY KEY NOT NULL,
text text NOT NULL,
"authorId" integer NOT NULL
REFERENCES users ON DELETE CASCADE,
ts bigint NOT NULL
DEFAULT (extract (epoch from now())),

) ;

* Foreign key: post.authorld must be a valid user.id

 When deleting a user (row):
— NO ACTION (default): user not deleted, error raised
— CASCADE: user and all referencing posts deleted

Inserting Rows

INSERT INTO posts (text, "authorId", ...)
VALUES ('Today i1s a good day!’, 5, ...);

e String values should be single quoted
* [nserting dummy rows:

INSERT INTO posts (text, "authorId")
SELECT

'"Dummy word ' || 1 || '."',

round (random () * 10) + 1
FROM generate series(l, 20) AS s(1);

Queries

SELECT *

FROM posts

WHERE ts > 147988213 AND text ILIKE 'Sgood
ORDER BY ts DESC, id ASC

LIMIT 2;

o\©
-

* To see how a query is processed:

EXPLAIN ANALYZE -- show plan tree

SELECT *

FROM posts

WHERE ts > 147988213 AND text ILIKE '$good%'
ORDER BY ts DESC, 1id ASC

LIMIT 2;

(Batch) Updating Rows

UPDATE posts SET ts = ts + 3600 WHERE "authorId" = 10;

* All rows satisfying the WHERE clause will be
updated

* ts+ 3600 is an expression

— Can be evaluated to a single value

Handling “Big” Data

INSERT INTO posts (text, "authorId")

SELECT
'"Dummy word ' || 1 || '."',
rount (random () * 10) + 1

FROM generate series (1, 1000000) AS s (1)

 Some queries will be slow:

EXPLAIN ANALYZE SELECT * FROM posts
WHERE id > 500000 AND id < 501000; -- 1ms

EXPLAIN ANALYZE SELECT * FROM posts
WHERE ts > 1400000000 AND ts < 1403600000; -- 230ms

CREATE INDEX posts 1idx ts

Using Index o rosts

USING btree(ts);
\di -- list indices

EXPLAIN ANALYZE

SELECT * FROM posts

WHERE ts > 1400000000

AND ts < 1403600000; -- 2ms

posts_idx_ts

14

Index for ILIKE?

CREATE INDEX posts idx text ON posts
USING btree(text);

EXPLAIN ANALYZE SELECT * FROM posts
WHERE text ILIKE '% word 500000%'; -- 1.5s

* B-tree indices are not helpful for text searches
* Use GIN (generalized inverted index) instead:

CREATE EXTENSION pg trgm;
\dx -- list extensions

CREATE INDEX posts idx text trgm ON posts
USING gin(text gin trgm ops);

EXPLAIN ANALYZE SELECT * FROM posts
WHERE text ILIKE 'Sword 500000%'; -- 50ms

