
Using a DBMS

Shan-Hung Wu & DataLab

CS, NTHU

DBMS ≠ Database

• A database is a collection of your data stored
in a computer

• A DBMS (DataBase Management System) is a
software that manages databases

2

Outline

• Main Features of a DBMS

• Data Models

3

Outline

• Main Features of a DBMS

• Data Models

4

Why not file systems?

5

Advantages of a Database System

• It answers queries fast
– E.g., among all posts, find those written by Bob

and contain word “db”

• Groups modifications into transactions such
that either all or nothing happens
– E.g., money transfer

• Recovers from crash
– Modifications are logged

– No corrupt data after recovery

6

Advantages of a Database System

• It answers queries fast
– E.g., among all posts, find those written by Bob

and contain word “db”

• Groups modifications into transactions such
that either all or nothing happens
– E.g., money transfer

• Recovers from crash
– Modifications are logged

– No corrupt data after recovery

7

Queries

Step1: structure data using tables

8

id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493854323 812

posts

Row/record

Q: find ID and text of all pages written by Bob
and containing word “db”

id name karma

729 Bob 35

730 John 0

users

Column/field

Queries

Step2:

9

id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

Q: find ID and text of all pages written by Bob
and containing word “db”

users

SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';
id name karma

729 Bob 35

730 John 0

How Is a Query Answered?

10

SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

id text ts authorId

33981 ‘Hello DB!’ ... 729

33982 ‘Show me code’ … 812

id name karma

729 Bob 35

730 John 0

(p, u)

p

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

33981 ‘Hello DB!’ ... 729 730 John 0

33982 ‘Show me code’ … 812 729 Bob 35

33982 ‘Show me code’ … 812 730 John 0

u

How Is a Query Answered?

11

SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

(p, u)
p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

33981 ‘Hello DB!’ ... 729 730 John 0

33982 ‘Show me code’ … 812 729 Bob 35

33982 ‘Show me code’ … 812 730 John 0

where(p, u)

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

How Is a Query Answered?

12

SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

where(p, u)

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

select(where(p, u)) p.id p.text

33981 ‘Hello DB!’

Why fast?

13

Query Optimization

• Planning: DBMS finds the best plan tree for
each query

14

where(u.id = p.authorId
AND u.name='Bob')

select(…)

p u

(p, u)

where(u.name='Bob')

select(…)

u

p

(p, u)

where(u.id = p.authorId)

Query Optimization

• Indexing: creates a search tree for column(s)

15

SELECT text

FROM posts

WHERE ts > 1493897220;

id text ts authorId

1 ‘Good day’ 1493880220 664

… … … …

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

idx_ts

ts
(ordered)

Advantages of a Database System

• It answers queries fast
– E.g., among all posts, find those written by Bob

and contain word “db”

• Groups modifications into transactions such
that either all or nothing happens
– E.g., money transfer

• Recovers from crash
– Modifications are logged

– No corrupt data after recovery

16

Transactions I

• Each query, by default, is placed in a
transaction (tx for short) automatically

17

BEGIN;

SELECT ...; -- query

COMMIT;

Transactions II

• Can group multiple queries in a tx

– All or nothing takes effect

• E.g., karma transfer

18

BEGIN;

UPDATE users

SET karma = karma - 10

WHERE name='Bob';

UPDATE users

SET karma = karma + 10

WHERE name='John';

COMMIT;

users

id name karma

729 Bob 35

730 John 0

ACID Guarantees

• Atomicity
– Operation are all or none in effect

• Consistency
– Data are correct after each tx commits

– E.g., posts.authorId must be a valid users.id

• Isolation
– Concurrent txs = serial txs (in some order)

• Durability
– Changes will not be lost after a tx commits (even after

crashes)

19

Outline

• Main Features of a DBMS

• Data Models

20

Why model data as tables?

21

id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

users

id name karma

729 Bob 35

730 John 0

Storing Data

• Let’s say, you have data/states in memory to store

• What do states look like?
– Objects

– References to objects

• Objects formatted by classes you defined

• Can we store these objects and references directly?

22

Client
(Stateful)

DB Server
(Stateful)

Web Server
(Stateless)

HTTP SQL

Data Models

• Definition: A data model is a framework for
describing the structure of databases in a
DBMS

• Common data models at client side:
– Tree model

• Common data models at server side:
– ER model and relational model

• A DBMS supporting the relational model is
called the relational DBMS

23

Tree Model

• At client side, data are usually stored as trees

24

{ // state of client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 32

}, {

name: 'John',

karma: 17

}, ...],

...

}

Problems at Server Side

• Space complexity: large redundancy

25

{ // state of a client 1

name: 'Bob',

karma: 35,

posts: [...],

friends: [{

name: 'Alice',

karma: 10

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of a client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 35

}, {

name: 'John',

karma: 17

}, ...],

...

}

Data Modeling at Server Side

1. Identify entity groups/classes

– Each class represents an “atomic” part of the data

2. Store entities of the same class in a table

– A rows/record denotes an entity

– A column/field denote an attribute (e.g., “name”)

3. Define primary keys for each table

– Special column(s) that uniquely identifies an entity

– E.g., “ID”

26

Identifying Entity
Classes

27

{ // state of a client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of a client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 32

}, {

name: 'John',

karma: 17

}, ...],

...

}

postsusers

One Table per Entity Class

• No redundancy

• No repeated update

28

id text

33981 ‘Hello DB!’

33982 ‘Show me code’

posts

id name karma

729 Bob 35

730 John 0posts

users

Wait, relationship is missing!

29

Step1
(ER Model)

30

{ // state of a client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10

}, {

name: 'John',

karma: 17

}, ...],

...

}

postsusers

friend

write

friend (N-N)

write (1-N)

• Identify relationships
between entities

Step 2 (Relational Model)

31

id text authorId ts

33981 ‘Hello DB!’ 729 1493897351

33982 ‘Show me code’ 729 1493854323

posts

id name karma

729 Bob 35

730 John 0

posts

users

friend (N-N)

uId1 uId2 since

729 730 14928063

729 882 14827432

write (1-N)

friend

write

foreign keys

• Relationships as foreign keys

Recap on Terminology

• Columns = fields = attributes
• Rows = records = tuples
• Tables = relations

• Relational database: a collection of tables
≠ Relational DBMS

• Schema: column definitions of tables in a
database
– Basically, the “look” of a database
– Schema of a relation/table is fields and field types

32

Why ER Model?

• Allows thinking your data in OOP way
• Entity

– An object (or instance of a class)
– With attributes

• Entity group/class
– A class
– Must define the ID attribute for each entity

• Relationship between entities
– References (“has-a” relationship)
– Could be 1-1, 1-N, or N-N

33

Why Relational Model?

• Simplifies data management and query
processing

• Table/relations for all kinds of entity classes

• Primary/foreign keys for all kinds of
relationships between entities

• Relational schema is logical

– Not how your data stored physically

– Vs. physical schema

34

Exercise: Student DB

• Storing course-enrollment info in a school
– Each department has many students and offers

different courses

– Each courses can have multiple sections (e.g.,
2018 spring, 2019 fall, etc.)

– Each students can enroll in different sections

• Can you model data and draw a relational
schema?

35

Exercise: Student DB

• Relation (table)
– Realization of 1) an entity group via table; or 2) a relationship
– Fields/attributes as columns
– Records/tuples as rows

36

students

 s-id: int

 s-name: varchar(10)

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8)

courses

 c-id: int

 title: varchar(20)

 dept-id: int

enroll

 e-id: int

 student-id: int

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*

Exercise: Student DB

• Primary Key

– Realization of ID via a group of fields

37

students

 s-id: int

 s-name: varchar(10)

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8)

courses

 c-id: int

 title: varchar(20)

 dept-id: int

enroll

 e-id: int

 student-id: int

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*

Exercise: Student DB

• Foreign key
– Realization of relationship
– A record can point to the primary key of the other record
– Only 1-1 and 1-many
– Intermediate relation is needed for many-many 38

students

 s-id: int

 s-name: varchar(10)

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8)

courses

 c-id: int

 title: varchar(20)

 dept-id: int

enroll

 e-id: int

 student-id: int

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*

Assigned Reading

• A nice SQL Tutorial

• We will have a quiz on SQL next Wed!

39

https://www.codecademy.com/learn/learn-sql

