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DBMS ≠ Database

• A database is a collection of your data stored 
in a computer

• A DBMS (DataBase Management System) is a 
software that manages databases 
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Outline

• Main Features of a DBMS

• Data Models
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Why not file systems? 
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Advantages of a Database System

• It answers queries fast
– E.g., among all posts, find those written by Bob 

and contain word “db”

• Groups modifications into transactions such 
that either all or nothing happens
– E.g., money transfer

• Recovers from crash
– Modifications are logged

– No corrupt data after recovery
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Queries

Step1: structure data using tables
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id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493854323 812

posts

Row/record

Q: find ID and text of all pages written by Bob 
and containing word “db”

id name karma

729 Bob 35

730 John 0

users

Column/field



Queries

Step2:
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id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

Q: find ID and text of all pages written by Bob 
and containing word “db”

users

SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';
id name karma

729 Bob 35

730 John 0



How Is a Query Answered?
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SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

id text ts authorId

33981 ‘Hello DB!’ ... 729

33982 ‘Show me code’ … 812

id name karma

729 Bob 35

730 John 0

(p, u)

p

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

33981 ‘Hello DB!’ ... 729 730 John 0

33982 ‘Show me code’ … 812 729 Bob 35

33982 ‘Show me code’ … 812 730 John 0

u



How Is a Query Answered?
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SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

(p, u)
p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

33981 ‘Hello DB!’ ... 729 730 John 0

33982 ‘Show me code’ … 812 729 Bob 35

33982 ‘Show me code’ … 812 730 John 0

where(p, u)

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35



How Is a Query Answered?
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SELECT p.id, p.text

FROM posts AS p, users AS u

WHERE u.id = p.authorId

AND u.name='Bob'

AND p.text ILIKE '%db%';

where(p, u)

p.id p.text p.ts p.authorId u.id u.name u.karma

33981 ‘Hello DB!’ ... 729 729 Bob 35

select(where(p, u)) p.id p.text

33981 ‘Hello DB!’



Why fast? 
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Query Optimization

• Planning: DBMS finds the best plan tree for 
each query
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where(u.id = p.authorId
AND u.name='Bob')

select(…)

p u

(p, u)

where(u.name='Bob')

select(…)

u

p

(p, u)

where(u.id = p.authorId)



Query Optimization

• Indexing: creates a search tree for column(s)
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SELECT text 

FROM posts

WHERE ts > 1493897220;

id text ts authorId

1 ‘Good day’ 1493880220 664

… … … …

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

idx_ts

ts
(ordered)



Advantages of a Database System

• It answers queries fast
– E.g., among all posts, find those written by Bob 

and contain word “db”

• Groups modifications into transactions such 
that either all or nothing happens
– E.g., money transfer

• Recovers from crash
– Modifications are logged

– No corrupt data after recovery
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Transactions I

• Each query, by default, is placed in a 
transaction (tx for short) automatically
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BEGIN;

SELECT ...; -- query

COMMIT;



Transactions II

• Can group multiple queries in a tx

– All or nothing takes effect

• E.g., karma transfer
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BEGIN;

UPDATE users 

SET karma = karma - 10

WHERE name='Bob';

UPDATE users 

SET karma = karma + 10

WHERE name='John';

COMMIT;

users

id name karma

729 Bob 35

730 John 0



ACID Guarantees

• Atomicity
– Operation are all or none in effect

• Consistency
– Data are correct after each tx commits

– E.g., posts.authorId must be a valid users.id

• Isolation
– Concurrent txs = serial txs (in some order)

• Durability
– Changes will not be lost after a tx commits (even after 

crashes)
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Outline

• Main Features of a DBMS

• Data Models
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Why model data as tables?
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id text ts authorId

33981 ‘Hello DB!’ 1493897351 729

33982 ‘Show me code’ 1493904323 812

posts

users

id name karma

729 Bob 35

730 John 0



Storing Data

• Let’s say, you have data/states in memory to store

• What do states look like?
– Objects

– References to objects

• Objects formatted by classes you defined

• Can we store these objects and references directly?
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Client
(Stateful)

DB Server
(Stateful)

Web Server
(Stateless)

HTTP SQL



Data Models

• Definition: A data model is a framework for 
describing the structure of databases in a 
DBMS

• Common data models at client side:
– Tree model

• Common data models at server side: 
– ER model and relational model

• A DBMS supporting the relational model is 
called the relational DBMS
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Tree Model

• At client side, data are usually stored as trees
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{ // state of client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10    

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 32    

}, {

name: 'John',

karma: 17

}, ...],

...

}



Problems at Server Side

• Space complexity: large redundancy
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{ // state of a client 1

name: 'Bob',

karma: 35,

posts: [...],

friends: [{

name: 'Alice',

karma: 10

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of a client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 35

}, {

name: 'John',

karma: 17

}, ...],

...

}



Data Modeling at Server Side

1. Identify entity groups/classes

– Each class represents an “atomic” part of the data

2. Store entities of the same class in a table

– A rows/record denotes an entity

– A column/field denote an attribute (e.g., “name”)

3. Define primary keys for each table

– Special column(s) that uniquely identifies an entity

– E.g., “ID”  
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Identifying Entity 
Classes
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{ // state of a client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10    

}, {

name: 'John',

karma: 17

}, ...],

...

}

{ // state of a client 2

name: 'Alice',

karma: 10,

posts: [...],

friends: [{

name: 'Bob',

karma: 32    

}, {

name: 'John',

karma: 17

}, ...],

...

}

postsusers



One Table per Entity Class

• No redundancy

• No repeated update
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id text

33981 ‘Hello DB!’

33982 ‘Show me code’

posts

id name karma

729 Bob 35

730 John 0posts

users



Wait, relationship is missing!
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Step1
(ER Model)
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{ // state of a client 1

name: 'Bob',

karma: 32,

posts: [...],

friends: [{

name: 'Alice',

karma: 10    

}, {

name: 'John',

karma: 17

}, ...],

...

}

postsusers

friend

write

friend (N-N)

write (1-N)

• Identify relationships 
between entities



Step 2 (Relational Model)
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id text authorId ts

33981 ‘Hello DB!’ 729 1493897351

33982 ‘Show me code’ 729 1493854323

posts

id name karma

729 Bob 35

730 John 0

posts

users

friend (N-N)

uId1 uId2 since

729 730 14928063

729 882 14827432

write (1-N)

friend

write

foreign keys

• Relationships as foreign keys



Recap on Terminology

• Columns = fields = attributes
• Rows = records = tuples
• Tables = relations

• Relational database: a collection of tables
≠ Relational DBMS

• Schema: column definitions of tables in a 
database
– Basically, the “look” of a database
– Schema of a relation/table is fields and field types
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Why ER Model?

• Allows thinking your data in OOP way
• Entity

– An object (or instance of a class)
– With attributes

• Entity group/class
– A class
– Must define the ID attribute for each entity

• Relationship between entities
– References (“has-a” relationship)
– Could be 1-1, 1-N, or N-N

33



Why Relational Model?

• Simplifies data management and query 
processing 

• Table/relations for all kinds of entity classes

• Primary/foreign keys for all kinds of 
relationships between entities

• Relational schema is logical

– Not how your data stored physically 

– Vs. physical schema
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Exercise: Student DB

• Storing course-enrollment info in a school
– Each department has many students and offers 

different courses

– Each courses can have multiple sections (e.g., 
2018 spring, 2019 fall, etc.)

– Each students can enroll in different sections

• Can you model data and draw a relational 
schema?
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Exercise: Student DB

• Relation (table)
– Realization of 1) an entity group via table; or 2) a relationship
– Fields/attributes as columns
– Records/tuples as rows
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students

 s-id: int

 s-name: varchar(10) 

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8) 

courses

 c-id: int

 title: varchar(20) 

 dept-id: int

enroll

 e-id: int

 student-id: int 

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int 

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*



Exercise: Student DB

• Primary Key

– Realization of ID via a group of fields
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students

 s-id: int

 s-name: varchar(10) 

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8) 

courses

 c-id: int

 title: varchar(20) 

 dept-id: int

enroll

 e-id: int

 student-id: int 

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int 

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*



Exercise: Student DB

• Foreign key
– Realization of relationship 
– A record can point to the primary key of the other record
– Only 1-1 and 1-many
– Intermediate relation is needed for many-many 38

students

 s-id: int

 s-name: varchar(10) 

 grad-year: int

 major-id: int

departments

 d-id: int

 d-name: varchar(8) 

courses

 c-id: int

 title: varchar(20) 

 dept-id: int

enroll

 e-id: int

 student-id: int 

 section-id: int

 grade: double

sections

 sect-id: int

 course-id: int 

 prof: int

 year-offered: int

1

*

1*

1*

1

*

1

*



Assigned Reading

• A nice SQL Tutorial

• We will have a quiz on SQL next Wed!
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https://www.codecademy.com/learn/learn-sql

