EECS 204002

Data Structures E 45 1&

Prof. REN-SONG TSAY {3 1%
NTHU

CH.8
HASHING

8.1

Motivation

Operations in a dictionary
Get, Insert and Delete

Binary search tree
Get, Insert and Delete take O (n)

Balanced binary search tree (AVL tree)
Get, Insert and Delete take O(logn)

Hashing

Get, Insert and Delete take 0 (1)
Static hashing
Dynamic hashing

Static
Hashing

Overview of Hashing

The file blocks are divided into M equal-sized
buckets
The record with hash key value K is stored in

bucket i
[= h(K),and h is the

e
2 \\\ 3 L
. ';7@~——~+
Hash . >
sEe=—JE LS

82.1 'Hash Tables

Hash table (ht) pair=[record, key]

A container stores dictionary pairs.

Hash table is partitioned into b buckets
ht|0], ht|1], ..., At|b — 1]
Each bucket holds s dictionary pairs (slots)

Usually s = 1, i.e. each bucket can hold exactly one

pair. 0
1

b-1

822 'Hash Function

The hash (bucket address) of a pair with

key k is determined by a hash function,
h(k).

Hash function maps keys into buckets by
returning an integer in the range

[0,b — 1].

0
h(key) 1

SO

b-1

Definitions

Key density (n/T)
n: # of pairs in the table
T:Total # of possible keys
Loading density or loading factor
a=n/(s-b)
Two keys, k, and k,, are said to be
synonyms w.r.t. h, if h(k,) = h(k,).

Definitions

Many keys might be mapped to the same
home bucket (synonyms)

Collision

When a key is mapped to a non-empty home
bucket

Overflow

When a key is mapped to a full home bucket
Overflow and collision occur
simultaneously when each bucket has 1
slot.

Example I

» Given a set of 8 keys (n=8)
{GA,D,A, G,L,A2,Al,A3}. slot | slot 2

o Consider a ht with b = 26 °

and s = 2. |

2
n 8

o =— = = (0.154
S'b 2%26

* The hash function maps

each key into a bucket using2s _

its leading letter.
> Represent A —Z as 0 - 25

© Ren-Song Tsay, NTHU, Taiwan 9

Example (cont’d)

slot | slot 2

GA, D, A G, A2 A3 A4 A3 A4

B Collision jll Overflow

mapping
A |0
D |3
G |6

HU, Taiwan

Overflow

A new record hashes to a bucket that is already
full

An overflow file is kept for storing such records
Overflow records that hash to each bucket can be
linked together

0
1
h(key)
O
N-1

—

Overflow pages
Primary bucket pages

Hashing Properties

If the # of slots is small, all operations
(search, insert and delete) can be
performed in O(1).

Using leading letter is not a good hash
function.
Keys might bias toward certain buckets.

A good hash function should be
Easy to compute
Few collisions

822 Uniform Hash Function

A hash function that does not result in a

biased use of the hash table for random
keys.

Given a key k chosen at random,
probability[h(k) = i] =,V i.

Four popular hash functions
Division
Mid-Square
Folding
Digit Analysis

8.22.1 Division

h(k)=k%D
Keys are non-negative integer

The home bucket is obtained by using the
modulo (%) operator.
Bucket address range from 0 to D — 1,

hash table must have at least b = D buckets.

Using a prime number for D (see
textbook).

Ex:h(k = 219) = 219%8 = 3

8222 'Mid-Square

Squaring the keys.

Use an appropriate number of bits from
the middle of the squared key as bucket
address.

If bits is used, the size of the table is 27

If there are 8 buckets (23), we need the
middle 3-bits to determine the bucket address

key=
h(219)=5

8.2.2.3

Folding

The key is partitioned into several parts

These parts are added together to obtain
the key address

k=

699

8224 Digit Analysis

All the keys in the table are known in advance
Represent each key as a number in radix r
Digits having the most skewed distributions are
deleted
Employ the remaining digits
Example: 100 buckets = 2 digits

m = 10° »delete 3 digits

8.2.3 The Secure Hash Algorithm (SHA

* 4 runs * 20 steps

Step #,0 < t < 79

ft logical function
<<<i Circular left shift k bits

A 32-bit value derived

Wi from M;

K; A constant

(BAC)V((-B)AD) i 0<t<19
Lo BaCaD i£20 < ¢ < 39
fB.CD) =4 (BAC)V (BADIV(CAD) ifd0<t< 59
BeCa&D if 60 < ¢ < 70

A B C D E
St g
Ji
Y Y
<<< g

SHA-1:a Merkle-Damgard Hash Function

Padding: Given an m-bit message, a single bit “1”
is appended as the (m + 1)-th bit and then
(448 — (m + 1)) mod 512 (between 0 and
511) zero bits are appended. As a result, the
message becomes 64-bit short of being a
multiple of 512 bits long.

Merkle-Damgard Strengthening: append the 64-
bit representation of the original length of m,
making the result a multiple of 512 bits long.
Divide the result into 512-bit blocks, denoted
by M, M,, ..., M,.

message I 000...0 m

SHA-I

The internal state of SHA- 1 is composed of five 32-bit
words A, B, C, D and E, used to keep the |60-bit
chaining value h; .

Initialization: The initial value (hg) is (in hexadecimal)
A, = 67452301

B, = EFCDAB89x

C, = 98BADCFEx
= 10325476x
= C3D2EIFOx.

Compression: For each block, the compression function

h = H(h;_1, M;) is applied on the previous value of
hi_1 = (A,B,C,D, E)and the message block.

Output: The hash value is the 160-bit value

h, =(,B,C,D,E).

The Compression Function H

Divide M; into 16*32-bit words:
© Wo, Wl, WZ""inS'
fort=16to 79 compute W, = (W;_3 @ Wi_g D Wi_14 © Wi_16) K 1.

> Remark:The one-bit rotate in computing W, was not included in SHA, and is the
only difference between SHA and SHA-I.

Set hy = (Ay, By, Cy, Dy, Eyp).

Fort=0to 79 do

o T =A; L5 + f;(B:, C, D) + Ep + W, + K.

° Ety1 =D, Dpy1=C, Cpyq1 = B K30,Bry1 = A¢, Apy1 =T.

Output A = Ay + Agg, B = By + Bgy, C = Cy + Cg9, D = Dy + Dgy,
and E = E, + Ego(modulo 232).

The function f; and the values K; used above are:
I AR
0<st=s19 XY Vv (=X)Z 5A827999
20=st=<39 XDYDZ 6ED9EBAI
40<t=<59 XYV XZVvYZ 8FIBBCDC
60<t=<79 XDYDZ CA62CID6

824 |Overflow Handling

Open addressing
Linear probing
Quadratic probing
Rehashing
Random probing

Chaining

8.24.1

Linear Probing: Insert

Find the closest unfilled bucket.

To insert a key k.
Compute h(k).
Check the hash table buckets in the
order hi[h(k)], h:[(h(k) +
1)%b], ..., hi[(h(k) + j)%b] until an
empty bucket is found.

If no empty bucket is found, double
the size of h;.

e.g. GA,D, A, G, A2

VW 00 N oo i1 A W N — O

A2

GA

82.4.1 Linear Probing: Search

Searching for a key k.
Compute h(k).
Examine the hash table buckets in the order
hi[h(K)], h,[(h(k) + 1)%Db], ..., h[(h(k) +
)%b] until:
he[(h(k) + j)%Db] has the same key. Found!
he[(h(k) + j)%b] is empty. Not found!
Go back to starting point. Not found!

Disadvantage:
Keys tend to cluster together.

824.1 Others

Quadratic probing:
Compute h(k).
Examine buckets at h(k), (h(k) + i*)%b, and
(h(k) —i)%b,1<i<(b—1)/2.
Rehashing:
A series of hashing functions h, h,, ... , h
Bucket is searched by hy, h,, ... , h,,.

n.

8242 Chaining

Use chained hash table to solve collisions
Each bucket holds a list of keys (key chain)

ht data link
[0] (Aa] J——fAs] J——fa1] +——{a2[}——fA]0]
[1 | 0
[2]| 0
81| ——{DJo]
[4 | ——{E]0]
51| 0
[6] (6 [F——ea[0]
71| 0
[8] | 0
[9] | 0
[10]| O

[11]| ——{L o]
[25] ‘ ZA yA :

Dynamic
Hashing

8.3.1 |Manage Overflow Problems

» Add overflow pages
» Double the size of the buckets
» Double the number of the buckets and

reorganize
o ? 0

1 \ > BEE
h(key) mod N A >

-5 B\
overhead l \

Primary bucket pages

to rebuild

© Ren-Song Tsay, NTHU, Taiwan 28

Dynamic Hashing

Also called Extendible Hashing

Idea: Use directory of pointers to buckets

Use the binary representation of the hash
value h(K) in order to access a

Double #buckets by doubling the directory
Splitting just the bucket that is overflowed!

Directory is much smaller than bucket file
Much cheaper to double the directory
Split only the page of data entries. No overflow page!

Directory

An array of size 2¢ where d is called the

Expand or shrink dynamically

Entries point to the buckets
That contain the stored records
When an insertion in a bucket that is full the
bucket splits into two buckets
The records are redistributed among the two buckets

Update directory appropriately

Example of Dynamic Hashing

h(key) mod N
key Global Depth = max(Local Depth of all buckets)
—>®—> (OllOO]lOl' Tells # bits needed to determine the address

Extract last d bits

Lookup Global depth I;ocal depth
; .
01
10 /ds
11 —

|

Directory of pointers to buckets ~ Buckets holding data entries

Dynamic Hashing: Example

| To locate hash value =5 (2

4% 112732716
5 \ Data entry r with
2 h(r) = 32

o | |7 / PR

01 | *=
10 — . 2
" - 10%*
DIRECTON 2
15% 7% [19*

DATA PAGES

Dynamic Hashing: Insert |13*

13

[
H

/ 4% 1243241 6*

2
0N\ - /QS* 1% Has space
01 | \ —
10 | — . 2
11 ~ 19
DIRECTON 2
15% 7% [19*

DATA PAGES

Dynamic Hashing: Insert 20*

20 = 101@ 2 Full, need split.
Consider the last
three bits
2
00 // 1% | 5% 21*1.3%
01 —
10 | — Z
1 y — > 110%
DIRECTON 2
154 7* |19%

DATA PAGES

Dynamic Hashing: Insert 20*

32*16™ 32=10 0000

16=01 0000
3 2

000| ~ | |Lr|5prs

01| —

010 | =— 2

011 |~ [0

100

100 £ 2

o 15% 7% [19*

pell £ 4=00 0100

4% 112%20% 12=00 1100
20=01 0100

Dynamic Hashing: Insert 9*

32*416%
3 / 4 solit but di
000 yd 1*|5* 21@ Nee _Sp l_t ut directory
= ~— doubling is not

ot 5 necessary
010 _—
011 ~ 10%
100 5
101 <
110 P 15% 7*|19%
111 | — 3

4*(12%20%

© Ren-Song Tsay, NTHU, Taiwan 36

Dynamic Hashing: Insert 9*

9= 1001

000

001

010

011

100

101

110

111

3
3041 6% 1=00 0001
9=00 1001
3
// 1*| 9* 5=00 0101
— 21=01 0101
- 2 13=00 1101
o > 10% 3
N — —> | 5% 21*13%
1 X 7* 1 x|
/ 5 9
e 3 When should we double
the directory during the
4* 124207 split process?

© Ren-Song Tsay, NTHU, Taiwan 37

When to Double Directory

Initially, all local depths are equal to global depth

of bits need to express the total # of buckets

During the process of split, if the bucket whose
local depth = global depth
The directory must be doubled
Global depth +1 when the directory doubles
Local depth +1 when a bucket is split

Bloom
Filters

Introduction

Generalize the hashing ideas

h(k,) = h(k,) = k,?k,

h(k,) # h(k,) = k, # k,
Approximate set membership problem

Trade-off between the space and the
false positive probability

Approximate Set Membership Problem

Given a set
S =1{5,5, -,5,} € U (Universe)
Want to check if “x is an element of S”
Approximated approach

h(S) = h(sy) V h(sz) V -V h(sy)

|1 x?S false positive
h(x) AR(S) = {O X €S sureexclusion

Take little space

Bloom Filters
|

An n-bit array A[n|, initially set to 0
k independent random hash functions
hy..,h:U ={0,1,...,n—1}

VseS, Alh(s)]=1for1<i<k

To check if xeS§, calculate

1 x?S assume xS
ﬂlsiskA[hi(x)] B {O x €S sure exclusion

BF Design Consideration

Choose 7 (filter size in bits).

Use as much memory as is available.

Pick k£ (number of hash functions).

k too small ® high probability for different
keys to have same signature.

k too large ® soon to fill ones in the filter
Select the k hash functions.

Hash functions should be relatively
independent.

Example: n =11,k =2
n

4 5 6 7 8 9 10

°*h(s)=smodn
°*h,(s) =2(s +1)modn

m

105021121
my class
m = 3 [; 210510215

106000103
107062601
104034052

false positive

— 00 O W
A NN

not in class

The Probability of a False Positive

We assume the hash function are random.

After all the elements of S are hashed
into the bloom filters, the probability that
a specific bit is still 0 is

p = (1 _ 1/7,1)1’(171z e—km/n

Note:

x2

—X=1_ +__...g1_
e X . X

(e—x)km ~ (1 . x)km

Optimal n & k

The probability of a false positive f is
f=(1-p)s (1—ekmmk
To find the optimal k to minimize f.

Minimize f iff minimize g = In(f))
m

dg —1n(1 I km e n
ﬁ_n(— ¢)+n(1—e"‘m/")
= k =1n(2) * (n/m),
= f =(1/2)k = (0.6185)"/™
The false positive probability falls exponentially in
n/m, the number bits used per item !!

Conclusion

A Bloom filters is like a hash table, and simply uses
one bit to keep track whether an item hashed to
the location.

If Kk = 1,it’s equivalent to a hashing based
fingerprint system.
If n = cm for small constant ¢, such as ¢ = 8, then

k = 5 or 6, the false positive probability is just over
2% .

It’s interesting that when k is optimal

k =1In(2) * (n/m),thenp = 1/2.

An optimized Bloom filters looks like a random bit-
string

