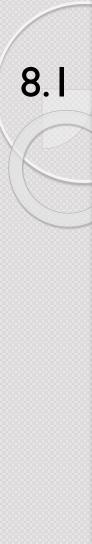
EECS 204002 Data Structures 資料結構 Prof. REN-SONG TSAY 蔡仁松 教授 NTHU

CH. 8 HASHING

0



Motivation

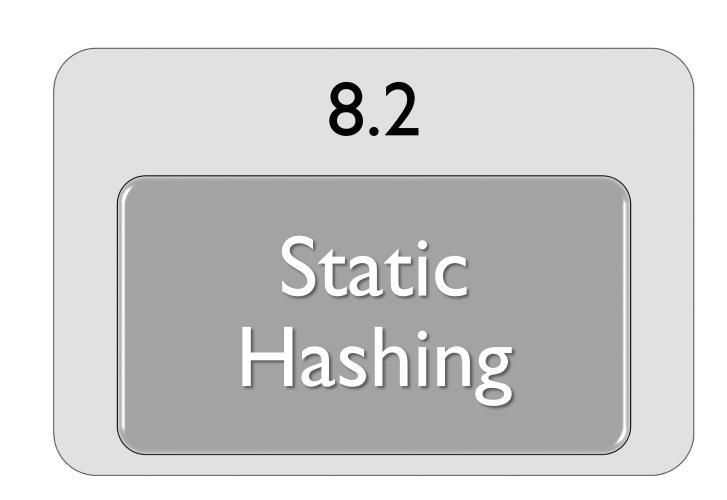
- Operations in a dictionary
 - Get, Insert and Delete
- Binary search tree
 - Get, Insert and Delete take O(n)

Balanced binary search tree (AVL tree)

• Get, Insert and Delete take $O(\log n)$

Hashing

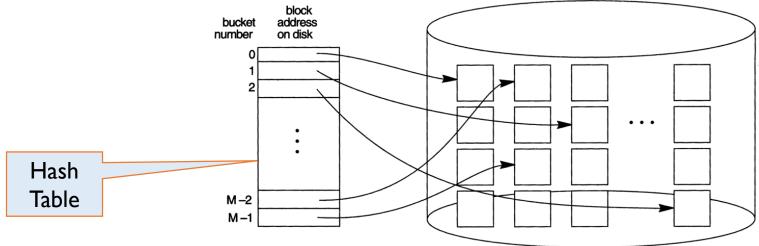
- Get, Insert and Delete take O(1)
- Static hashing
- Dynamic hashing



Overview of Hashing

- The file blocks are divided into *M* equal-sized buckets
- The record with hash key value *K* is stored in bucket *i*

• i = h(K), and h is the hashing function

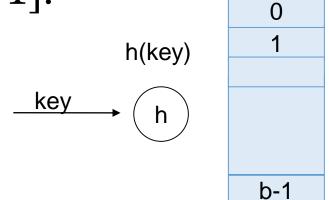


Hash Tables

- Hash table (ht) pair=[record, key]
 - A container stores dictionary pairs.
- Hash table is partitioned into b buckets
 - *ht*[0], *ht*[1], ..., *ht*[b − 1]
 - Each bucket holds *s* dictionary pairs (slots)
 - Usually s = 1, i.e. each bucket can hold exactly one pair. 0

Hash Function

- The hash (bucket address) of a pair with key k is determined by a hash function, h(k).
- Hash function maps keys into buckets by returning an integer in the range [0, b 1].



Definitions

- Key density (n/T)
 - n:# of pairs in the table
 - T:Total # of possible keys
- Loading density or loading factor • $\alpha = n/(s \cdot b)$
- Two keys, k_1 and k_2 , are said to be synonyms w.r.t. h, if $h(k_1) = h(k_2)$.

Definitions

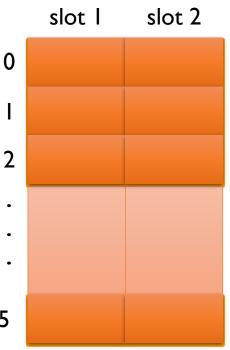
- Many keys might be mapped to the same home bucket (synonyms)
- Collision
 - When a key is mapped to a non-empty home bucket
- Overflow
 - When a key is mapped to a full home bucket
- Overflow and collision occur simultaneously when each bucket has 1 slot.

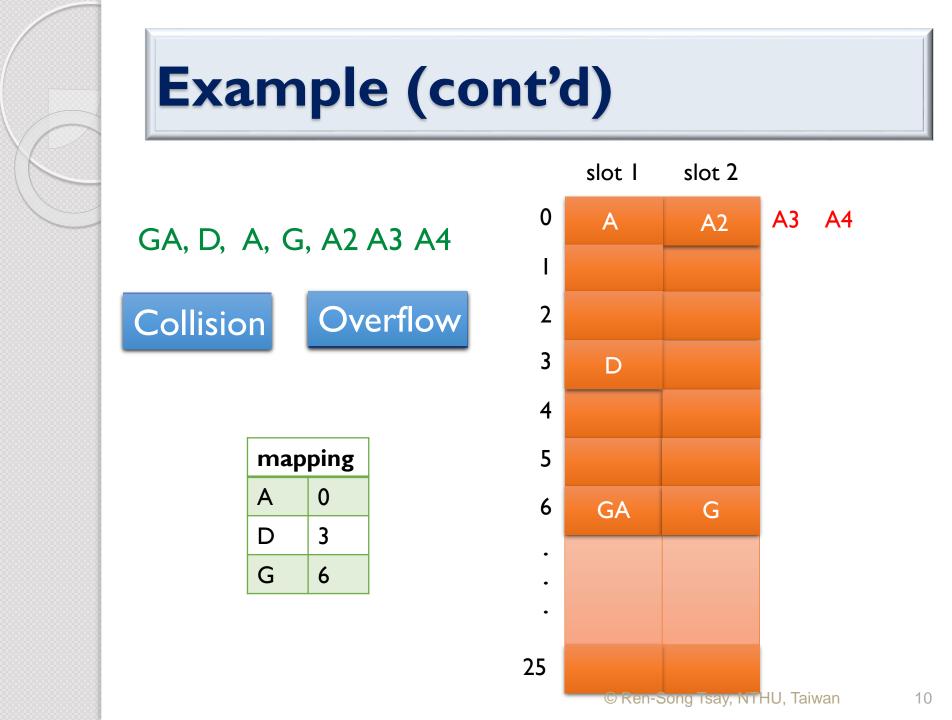
Example

- Given a set of 8 keys (n=8) {GA, D, A, G, L, A2, A1, A3}.
- Consider a ht with b = 26and s = 2.

•
$$\alpha = \frac{n}{s \cdot b} = \frac{8}{2 \cdot 26} = 0.154$$

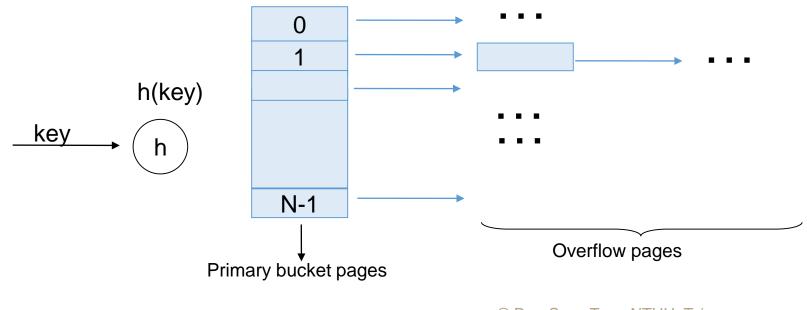
- The hash function maps
 each key into a bucket using 25 its leading letter.
 - Represent A Z as 0 25





Overflow

- A new record hashes to a bucket that is already full
 - An overflow file is kept for storing such records
 - Overflow records that hash to each bucket can be linked together



Hashing Properties

- If the # of slots is small, all operations (search, insert and delete) can be performed in O(1).
- Using leading letter is not a good hash function.
 - Keys might bias toward certain buckets.
- A good hash function should be
 - Easy to compute
 - Few collisions

Uniform Hash Function

- A hash function that does not result in a biased use of the hash table for random keys.
- Given a key k chosen at random, probability $[h(k) = i] = \frac{1}{h}, \forall i.$
- Four popular hash functions
 - Division

8.2.2

- Mid-Square
- Folding
- Digit Analysis

Division

8.2.2.I

- h(k) = k % D
- Keys are non-negative integer
- The home bucket is obtained by using the modulo (%) operator.
- Bucket address range from 0 to D 1,
 - hash table must have at least b = D buckets.
- Using a prime number for *D* (see textbook).
- Ex: h(k = 219) = 219%8 = 3

Mid-Square

- Squaring the keys.
- Use an appropriate number of bits from the middle of the squared key as bucket address.
- If r bits is used, the size of the table is 2^r

• If there are 8 buckets (2³), we need the middle 3-bits to determine the bucket address

key=219 219²=47961=1011 101 1001 r=3 h(219)=5

Folding

- The key is partitioned into several parts
- These parts are added together to obtain the key address

+ + +

k=12320324111220

+

699

=

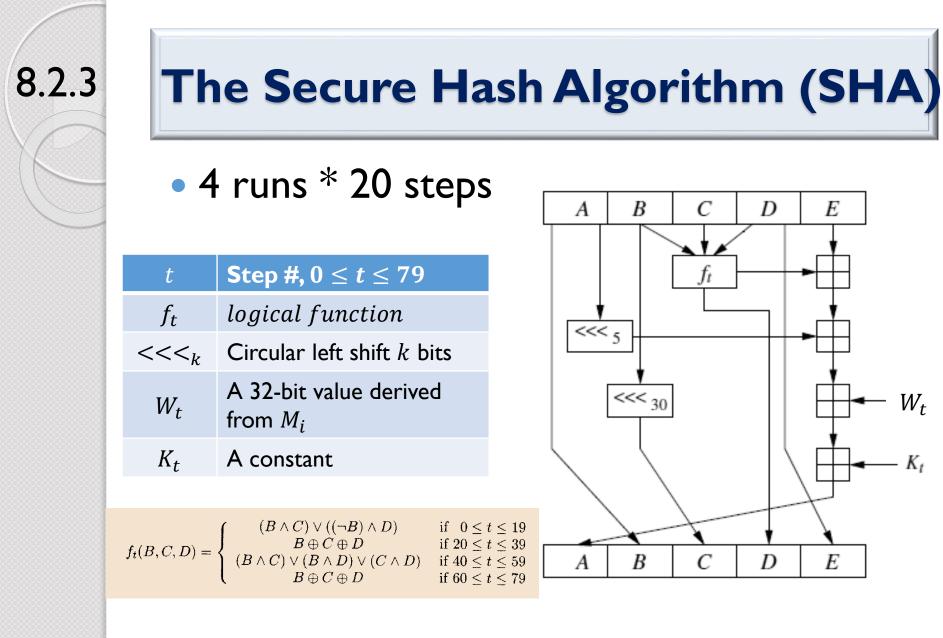
8.2.2.4

Digit Analysis

- All the keys in the table are known in advance
- Represent each key as a number in radix r
- Digits having the most skewed distributions are deleted
- Employ the remaining digits
- Example: 100 buckets = 2 digits

• $m = 10^5 \Rightarrow$ delete 3 digits

k ₁ =	<i>d</i> ₁₁	<i>d</i> ₁₂		d_{1n}
$k_2 =$	<i>d</i> ₂₁	<i>d</i> ₂₂		d_{2n}
•••				
$k_m =$	d_{m1}	d_{m2}		d_{mn}



SHA-1: a Merkle-Damgard Hash Function

- Padding: Given an *m*-bit message, a single bit "1" is appended as the (*m* + 1)-th bit and then (448 (*m* + 1)) mod 512 (between 0 and 511) zero bits are appended. As a result, the message becomes 64-bit short of being a multiple of 512 bits long.
- Merkle-Damgard Strengthening: append the 64bit representation of the original length of m, making the result a multiple of 512 bits long.
- Divide the result into 512-bit blocks, denoted by M_1, M_2, \ldots, M_l .

m bits	l bit		64 bits	
message	I	0000	m	
		© Ren-Song Tsay, NTHU, Ta		

SHA-I

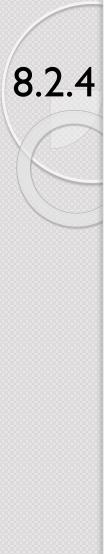
- The internal state of SHA-1 is composed of five 32-bit words A, B, C, D and E, used to keep the 160-bit chaining value h_i .
- Initialization: The initial value (h_0) is (in hexadecimal)
 - $A_0 = 67452301x$
 - $B_0 = EFCDAB89x$
 - $C_0 = 98BADCFEx$
 - $D_0 = 10325476x$
 - $E_0 = C3D2EIF0x$.
- Compression: For each block, the compression function h_i = H(h_{i-1}, M_i) is applied on the previous value of h_{i-1} = (A, B, C, D, E) and the message block.
 Output: The hash value is the 160-bit value

 $h_l = (A, B, C, D, E).$

The Compression Function H

- Divide M_i into 16*32-bit words:
 - $W_0, W_1, W_2, \dots, W_{15}$.
- for t = 16 to 79 compute $W_t = (W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) \ll 1$.
 - Remark: The one-bit rotate in computing W_t was not included in SHA, and is the only difference between SHA and SHA-1.
- Set $h_0 = (A_0, B_0, C_0, D_0, E_0)$.
- For t = 0 to 79 do
 - $T = A_t \ll 5 + f_t(B_t, C_t, D_t) + E_t + W_t + K_t.$
 - $E_{t+1} = D_t, D_{t+1} = C_t, C_{t+1} = B_t \ll 30, B_{t+1} = A_t, A_{t+1} = T.$
- Output $A = A_0 + A_{80}$, $B = B_0 + B_{80}$, $C = C_0 + C_{80}$, $D = D_0 + D_{80}$, and $E = E_0 + E_{80}$ (modulo 232).
- The function f_t and the values K_t used above are:

	$f_t(X, Y, Z) =$	$K_t =$	
$0 \le t \le 19$	XY ∨ (¬X)Z	5A827999	
$20 \le t \le 39$	$X \oplus Y \oplus Z$	6ED9EBA1	
$40 \le t \le 59$	XY v XZ v YZ	8FIBBCDC	
$60 \le t \le 79$	$X \oplus Y \oplus Z$	CA62CID6	/, NTHU, Taiwan



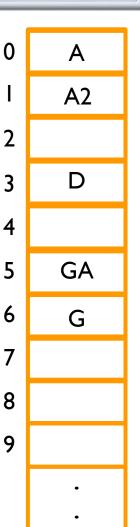
Overflow Handling

- Open addressing
 - Linear probing
 - Quadratic probing
 - Rehashing
 - Random probing
- Chaining

- Find the closest unfilled bucket.
- To insert a key k.

8.2.4.1

- Compute h(k).
- Check the hash table buckets in the order h_t[h(k)], h_t[(h(k) + 1)%b], ..., h_t[(h(k) + j)%b] until an empty bucket is found.
- If no empty bucket is found, double the size of h_t .
- e.g. GA, D, A, G, A2



Linear Probing: Search

- Searching for a key k.
 - Compute h(k).

8.2.4.

- Examine the hash table buckets in the order *h*_t[*h*(*k*)], *h*_t[(*h*(*k*) + 1)%*b*], ..., *h*_t[(*h*(*k*) + *j*)%*b*] until:
 - $h_t[(h(k) + j)\%b]$ has the same key. Found!
 - $h_t[(h(k) + j)\%b]$ is empty. Not found!
 - Go back to starting point. Not found!
- Disadvantage:
 - Keys tend to cluster together.

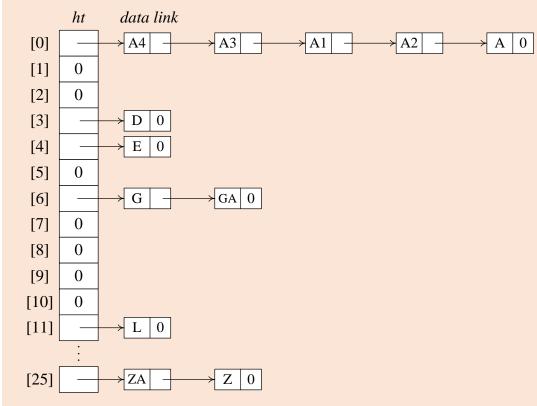
8.2.4.

Others

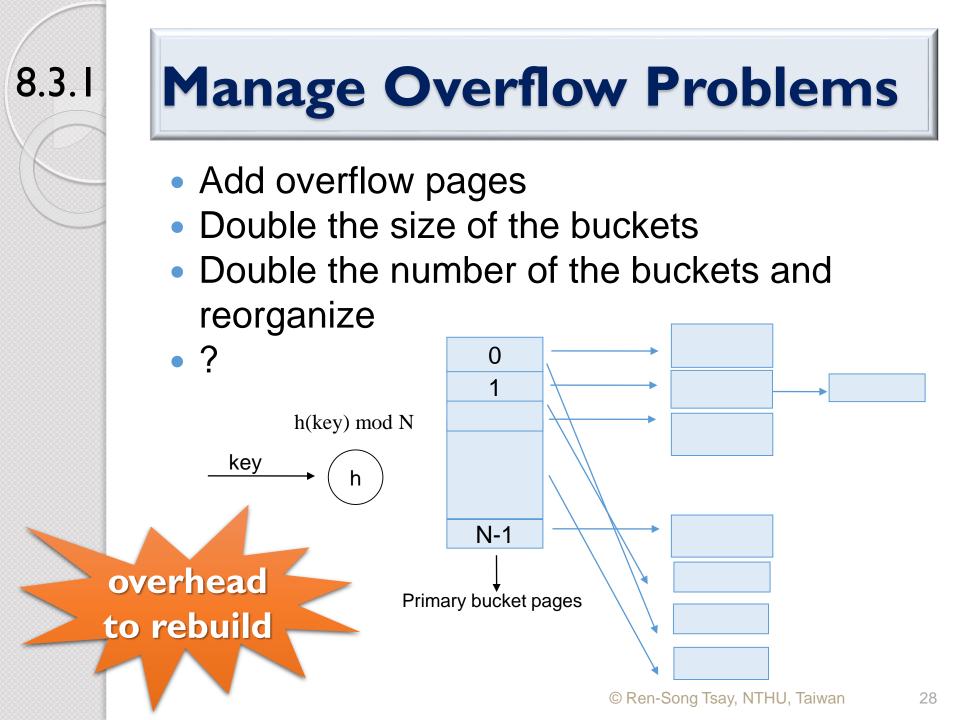
- Quadratic probing:
 - Compute h(k).
 - Examine buckets at h(k), $(h(k) + i^2)$ %b, and $(h(k) i^2)$ %b, $1 \le i \le (b 1)/2$.
- Rehashing:
 - A series of hashing functions h_1, h_2, \dots, h_n .
 - Bucket is searched by h_1, h_2, \dots, h_n .

Chaining

- Use chained hash table to solve collisions
- Each bucket holds a list of keys (key chain)



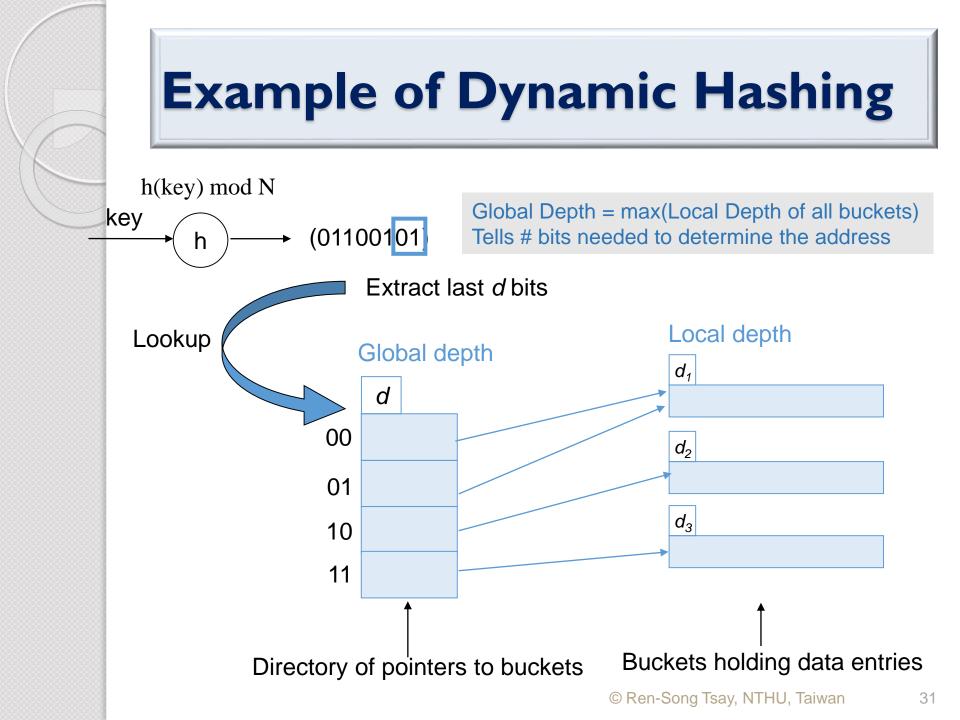


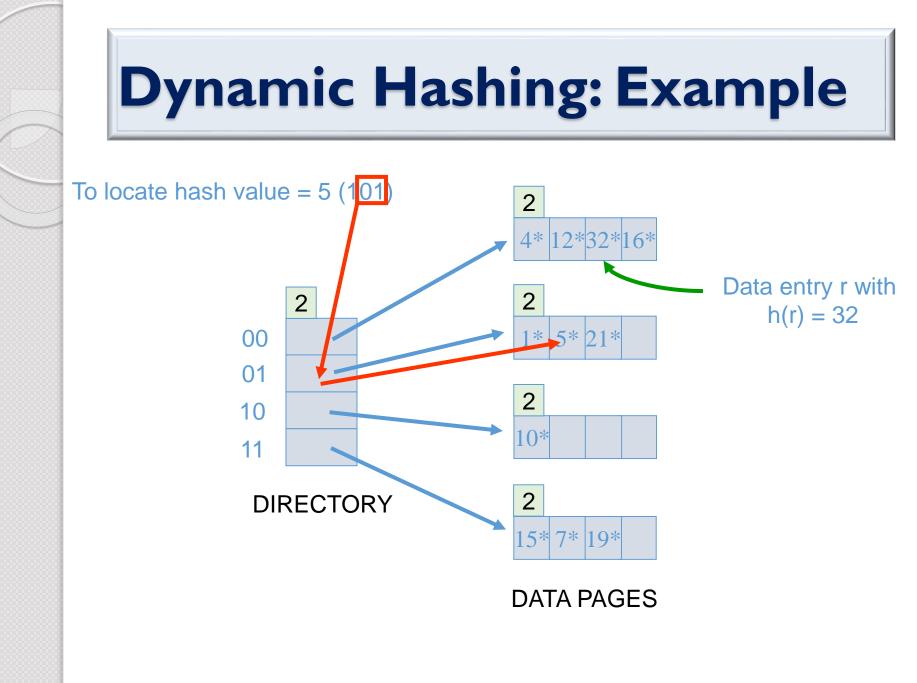


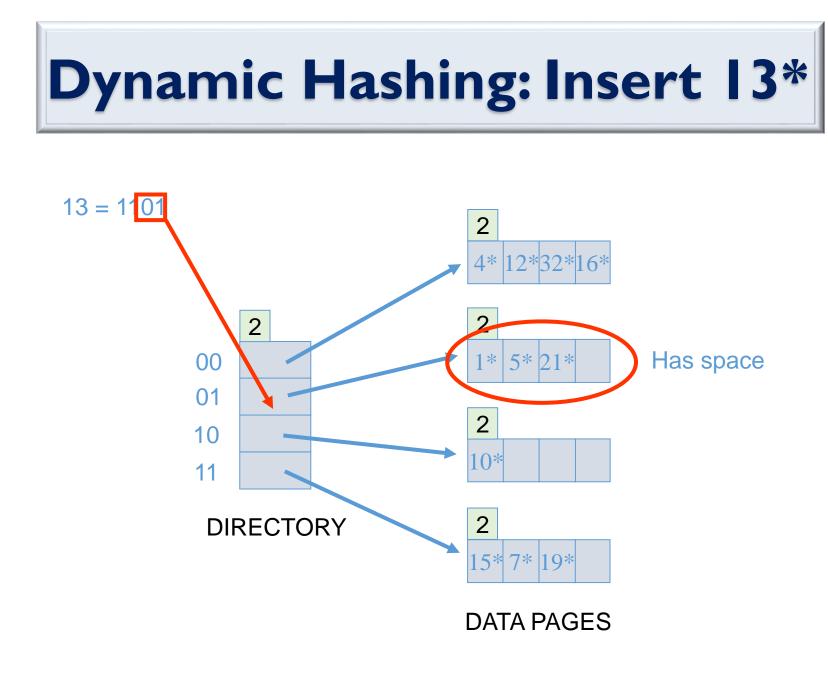
- Also called Extendible Hashing
- Idea: Use directory of pointers to buckets
 - Use the binary representation of the hash value h(K) in order to access a directory
 - Double #buckets by doubling the directory
 - Splitting just the bucket that is overflowed!
- Directory is much smaller than bucket file
 - Much cheaper to double the directory
 - Split only the page of data entries. No overflow page!

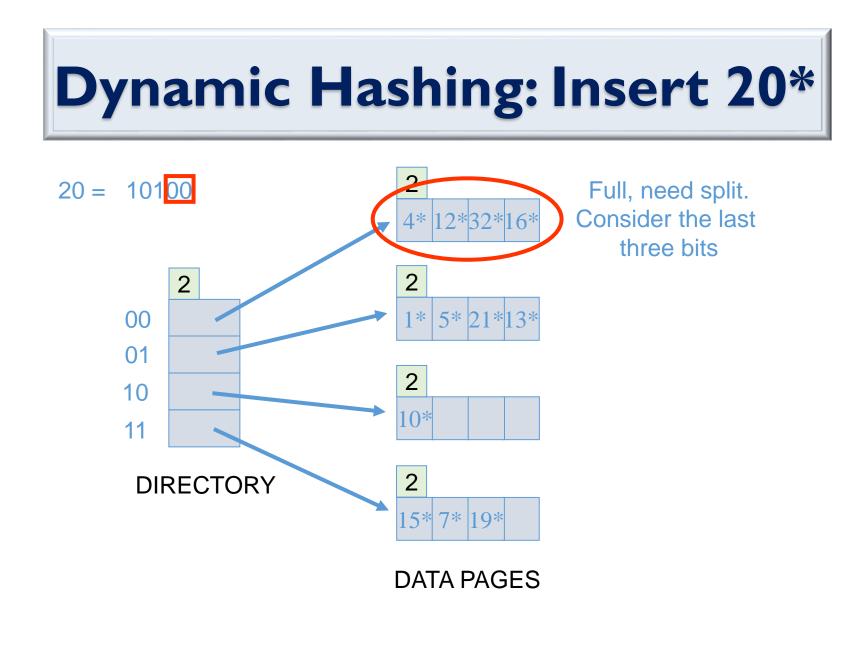
Directory

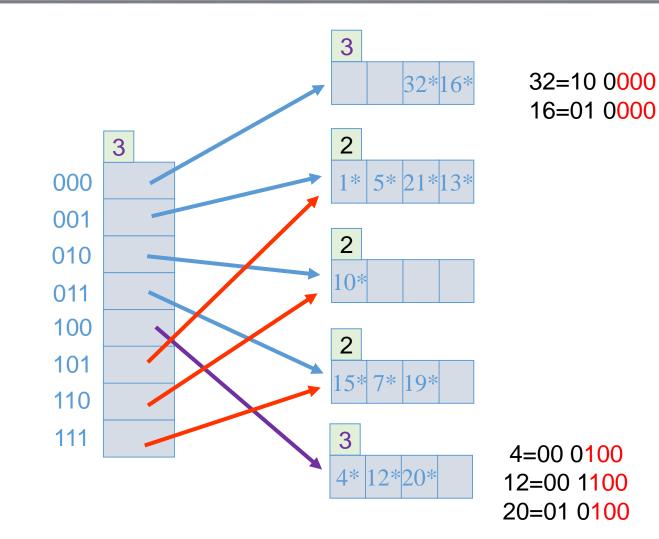
- An array of size 2^d where d is called the global depth
- Expand or shrink dynamically
- Entries point to the buckets
 - That contain the stored records
 - When an insertion in a bucket that is full the bucket splits into two buckets
 - The records are redistributed among the two buckets
- Update directory appropriately

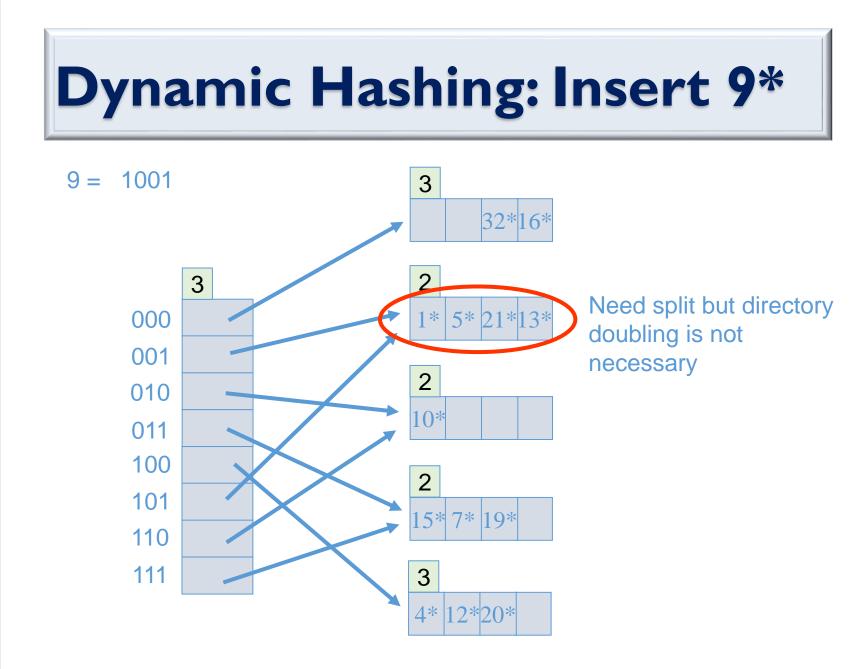




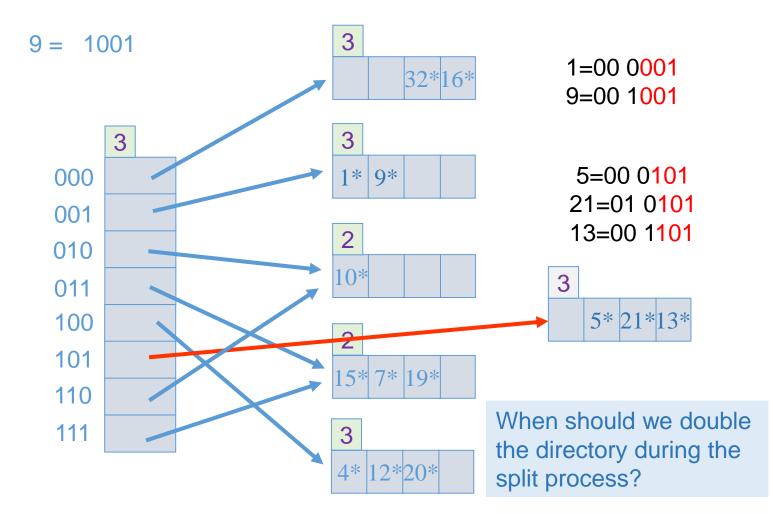






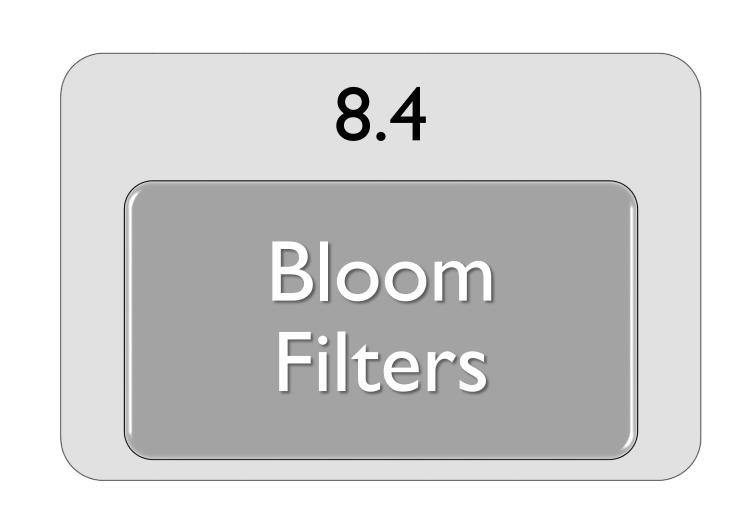


Dynamic Hashing: Insert 9*



When to Double Directory

- Initially, all local depths are equal to global depth
 - # of bits need to express the total # of buckets
- During the process of split, if the bucket whose local depth = global depth
 - The directory must be doubled
- Global depth +1 when the directory doubles
 - Local depth +1 when a bucket is split



Introduction

- Generalize the hashing ideas
 - $h(k_1) = h(k_2) \Rightarrow k_1? k_2$
 - $\circ h(k_1) \neq h(k_2) \Rightarrow k_1 \neq k_2$
- Approximate set membership problem
- Trade-off between the space and the false positive probability

Approximate Set Membership Problem

- Given a set
 - $S = \{s_1, s_2, \dots, s_n\} \subseteq U$ (Universe)
- Want to check if "*x* is an element of *S*"
- Approximated approach • $h(S) = h(s_1) \lor h(s_2) \lor \cdots \lor h(s_n)$ • $h(x) \land h(S) = \begin{cases} 1 & x?S & \text{false positive} \\ 0 & x \notin S & \text{sure exclusion} \end{cases}$

• Take little space

Bloom Filters

- I. An *n*-bit array A[n], initially set to 0
- *k* independent random hash functions

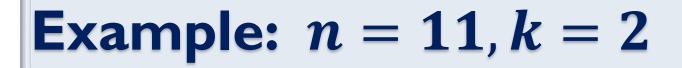
 *h*₁,...,*h_k*: *U* ⇒ {0, 1,...,*n* − 1}

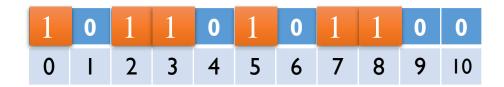
 ∀ s∈S, A[*h_i*(s)] = 1 for 1≤ *i* ≤ *k*

To check if $x \in S$, calculate $\bigcap_{1 \le i \le k} A[h_i(x)] = \begin{cases} 1 & x?S & \text{assume } x \in S \\ 0 & x \notin S & \text{sure exclusion} \end{cases}$

BF Design Consideration

- Choose *n* (filter size in bits).
 - Use as much memory as is available.
- Pick k (number of hash functions).
 - k too small ⇒ high probability for different keys to have same signature.
 - k too large \Rightarrow soon to fill ones in the filter
- Select the *k* hash functions.
 - Hash functions should be relatively independent.





• $h_1(s) = s \mod n$. • $h_2(s) = 2(s+1) \mod n$.

	Student ID	h_1	<i>h</i> ₂	
my class $m = 3$	105021121	7	5	
	210510215	3	8	
	106000103	0	2	
	107062601	8	7	false positive
	104034052	L.	4	not in class

The Probability of a False Positive

- We assume the hash function are random.
- After all the elements of S are hashed into the bloom filters, the probability that a specific bit is still 0 is

$$p = (1 - 1/n)^{km} \approx e^{-km/n}$$

Note:

$$e^{-x} = 1 - x + \frac{x^2}{2} - \dots \approx 1 - x$$
$$(e^{-x})^{km} \approx (1 - x)^{km}$$

Optimal n & k

- The probability of a false positive f is $f = (1-p)^k \approx (1-e^{-km/n})^k$
- To find the optimal k to minimize f. Minimize f iff minimize $g = \ln(f)$

$$\frac{dg}{dk} = \ln(1 - e^{-km/n}) + \frac{km}{n} \frac{e^{-\frac{km}{n}}}{(1 - e^{-km/n})}$$

$$\Rightarrow k = \ln(2) * (n/m),$$

$$\Rightarrow f = (1/2)^k = (0.6185)^{n/m}$$

The false positive probability falls exponentially in n/m, the number bits used per item !!

Conclusion

string

- A Bloom filters is like a hash table, and simply uses one bit to keep track whether an item hashed to the location.
- If k = 1, it's equivalent to a hashing based fingerprint system.
- If n = cm for small constant c, such as c = 8, then k = 5 or 6, the false positive probability is just over 2%.
- It's interesting that when k is optimal
 k = ln(2) * (n/m), then p = 1/2.
 An optimized Bloom filters looks like a random bit-