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Motivation

 Operations in a dictionary

◦ Get, Insert and Delete

 Binary search tree

◦ Get, Insert and Delete take 𝑂(𝑛)

 Balanced binary search tree (AVL tree)

◦ Get, Insert and Delete take 𝑂(log 𝑛)

 Hashing

◦ Get, Insert and Delete take 𝑂(1)

◦ Static hashing

◦ Dynamic hashing
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8.2

Static 
Hashing



Overview of Hashing

 The file blocks are divided into 𝑀 equal-sized 

buckets

 The record with hash key value 𝐾 is stored in 

bucket 𝑖
◦ 𝑖 = ℎ(𝐾), and ℎ is the hashing function
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Hash 

Table



Hash Tables

 Hash table (ℎ𝑡)

◦ A container stores dictionary pairs.

 Hash table is partitioned into 𝒃 buckets

◦ ℎ𝑡[0], ℎ𝑡[1], … , ℎ𝑡[𝑏 − 1]

◦ Each bucket holds 𝒔 dictionary pairs (slots)

 Usually 𝑠 = 1, i.e. each bucket can hold exactly one 

pair.
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8.2.1

b-1

1

0
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pair=[record, key]



Hash Function

 The hash (bucket address) of a pair with 

key 𝑘 is determined by a hash function, 

ℎ(𝑘).

 Hash function maps keys into buckets by 

returning an integer in the range 

[0, 𝑏 − 1].
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8.2.2
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1

h
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h(key)
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Definitions

 Key density (𝑛/𝑇)

◦ 𝑛: # of pairs in the table

◦ 𝑇: Total # of possible keys

 Loading density or loading factor

◦ 𝛼 = 𝑛/(𝑠 ∙ 𝑏)

 Two keys, 𝑘1 and 𝑘2, are said to be 

synonyms w.r.t. ℎ, if ℎ(𝑘1) = ℎ(𝑘2).
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Definitions

 Many keys might be mapped to the same 
home bucket (synonyms)

 Collision

◦ When a key is mapped to a non-empty home 
bucket

 Overflow

◦ When a key is mapped to a full home bucket

 Overflow and collision occur 
simultaneously when each bucket has 1
slot.
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Example

 Given a set of 8 keys (n=8)

{GA, D, A, G, L, A2,A1, A3}.

 Consider a ht with 𝑏 = 26
and 𝑠 = 2. 

◦ 𝛼 =
𝑛

𝑠∙𝑏
=

8

2∗26
= 0.154

 The hash function maps 

each key into a bucket using 

its leading letter.

◦ Represent A – Z as 0 – 25
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Example (cont’d)
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slot 1 slot 2

0

1

2

25

.

.

.

3

4

5

6

A A2

D

GA G

GA, D, A, G, A2 A3 A4

Collision Overflow

A3 A4

Collision Overflow
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A 0

D 3

G 6



Overflow

 A new record hashes to a bucket that is already 

full
◦ An overflow file is kept for storing such records

◦ Overflow records that hash to each bucket can be 

linked together
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h(key)
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…

Primary bucket pages
Overflow pages

…key



Hashing Properties

 If the # of slots is small, all operations 
(search, insert and delete) can be 
performed in 𝑂(1).

 Using leading letter is not a good hash 
function.

◦ Keys might bias toward certain buckets.

 A good hash function should be

◦Easy to compute

◦Few collisions
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Uniform Hash Function

 A hash function that does not result in a 
biased use of the hash table for random 
keys.

 Given a key 𝑘 chosen at random, 

probability ℎ 𝑘 = 𝑖 =
1

𝑏
, ∀ 𝑖.

 Four popular hash functions

◦ Division

◦ Mid-Square

◦ Folding

◦ Digit Analysis
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8.2.2
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Division

 ℎ(𝑘) = 𝑘 % 𝐷

 Keys are non-negative integer 

 The home bucket is obtained by using the 

modulo (%) operator.

 Bucket address range from 0 to 𝐷 − 1, 

◦ hash table must have at least 𝑏 = 𝐷 buckets.

 Using a prime number for 𝐷 (see 

textbook).

 Ex: ℎ 𝑘 = 219 = 219%8 = 3
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Mid-Square

 Squaring the keys.

 Use an appropriate number of bits from 

the middle of the squared key as bucket 

address.

 If 𝑟 bits is used, the size of the table is 2𝑟

◦ If there are 8 buckets (23), we need the 

middle 3-bits to determine the bucket address

15

8.2.2.2

key=219 2192=47961=1011 1011 0101 1001 r=3
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h(219)=5



Folding

 The key is partitioned into several parts

 These parts are added together to obtain 

the key address
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8.2.2.3

k=12320324111220

+ + + + = 699



Digit Analysis

 All the keys in the table are known in advance

 Represent each key as a number in radix 𝑟
 Digits having the most skewed distributions are 

deleted

 Employ the remaining digits

 Example: 100 buckets = 2 digits
◦ 𝑚 = 105 delete 3 digits
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8.2.2.4

𝒌𝟏= 𝒅𝟏𝟏 𝒅𝟏𝟐 … 𝒅𝟏𝒏

𝒌𝟐= 𝒅𝟐𝟏 𝒅𝟐𝟐 … 𝒅𝟐𝒏

…

𝒌𝒎= 𝒅𝒎𝟏 𝒅𝒎𝟐 … 𝒅𝒎𝒏



The Secure Hash Algorithm (SHA)
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8.2.3

𝑊𝑡

 4 runs * 20 steps

𝑡 Step #, 𝟎 ≤ 𝒕 ≤ 𝟕𝟗

𝑓𝑡 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

<<<𝑘 Circular left shift 𝑘 bits

𝑊𝑡
A 32-bit value derived 

from 𝑀𝑖

𝐾𝑡 A constant



SHA-1: a Merkle-Damgard Hash Function

 Padding: Given an 𝑚-bit message, a single bit “1” 
is appended as the (𝑚 + 1)-th bit and then 
(448 − (𝑚 + 1)) mod 512 (between 0 and 
511) zero bits are appended. As a result, the 
message becomes 64-bit short of being a 
multiple of 512 bits long. 

 Merkle-Damgard Strengthening: append the 64-
bit representation of the original length of 𝑚, 
making the result a multiple of 512 bits long. 

 Divide the result into 512-bit blocks, denoted 
by 𝑀1, 𝑀2, . . . , 𝑀𝑙 . 
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m bits 1 bit 64 bits

message 1 000…0 m



SHA-1

 The internal state of SHA-1 is composed of five 32-bit 

words A, B, C, D and E, used to keep the 160-bit 

chaining value ℎ𝑖 . 

 Initialization: The initial value (ℎ0) is (in hexadecimal) 
◦ 𝐴0 = 67452301x 

◦ 𝐵0 = EFCDAB89x 

◦ 𝐶0 = 98BADCFEx 

◦ 𝐷0 = 10325476x 

◦ 𝐸0 = C3D2E1F0x . 

 Compression: For each block, the compression function 

ℎ𝑖 = 𝐻(ℎ𝑖−1, 𝑀𝑖) is applied on the previous value of 

ℎ𝑖−1 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) and the message block. 

 Output: The hash value is the 160-bit value

ℎ𝑙 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸). 
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The Compression Function H

 Divide 𝑀𝑖 into 16*32-bit words: 

◦ 𝑊0,𝑊1,𝑊2, . . . ,𝑊15. 

 for t = 16 to 79 compute 𝑊𝑡 = (𝑊𝑡−3 ⊕𝑊𝑡−8 ⊕𝑊𝑡−14 ⊕𝑊𝑡−16) ≪ 1. 

◦ Remark: The one-bit rotate in computing 𝑊𝑡 was not included in SHA, and is the 

only difference between SHA and SHA-1.

 Set ℎ0 = (𝐴0, 𝐵0, 𝐶0, 𝐷0, 𝐸0). 

 For t = 0 to 79 do 

◦ 𝑇 = 𝐴𝑡 ≪ 5 + 𝑓𝑡(𝐵𝑡 , 𝐶𝑡 , 𝐷𝑡) + 𝐸𝑡 +𝑊𝑡 + 𝐾𝑡. 

◦ 𝐸𝑡+1 = 𝐷𝑡 , 𝐷𝑡+1= 𝐶𝑡 , 𝐶𝑡+1 = 𝐵𝑡 ≪ 30, 𝐵𝑡+1 = 𝐴𝑡 , 𝐴𝑡+1 = 𝑇. 

 Output 𝐴 = 𝐴0 + 𝐴80, 𝐵 = 𝐵0 + 𝐵80, 𝐶 = 𝐶0 + 𝐶80, 𝐷 = 𝐷0 + 𝐷80,
and 𝐸 = 𝐸0 + 𝐸80(𝑚𝑜𝑑𝑢𝑙𝑜 232).

 The function 𝑓𝑡 and the values 𝐾𝑡 used above are: 
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𝑓𝑡(𝑋, 𝑌 , 𝑍) = 𝐾𝑡 =

0 ≤ t ≤ 19 XY ∨ (¬X)Z 5A827999

20 ≤ t ≤ 39 X ⊕Y ⊕ Z 6ED9EBA1

40 ≤ t ≤ 59 XY ∨ XZ ∨YZ 8F1BBCDC

60 ≤ t ≤ 79 X ⊕Y ⊕ Z CA62C1D6



Overflow Handling

 Open addressing

◦ Linear probing

◦ Quadratic probing

◦ Rehashing

◦ Random probing

 Chaining

22

8.2.4
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Linear Probing: Insert

 Find the closest unfilled bucket.

 To insert a key 𝑘.

◦ Compute ℎ(𝑘).

◦ Check the hash table buckets in the 
order ℎ𝑡[ℎ(𝑘)], ℎ𝑡[(ℎ(𝑘) +
1)%𝑏],… , ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] until an 
empty bucket is found.

◦ If no empty bucket is found, double 
the size of ℎ𝑡.

 e.g. GA, D, A, G, A2
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8.2.4.1
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Linear Probing: Search

 Searching for a key 𝑘.

◦ Compute ℎ(𝑘).

◦ Examine the hash table buckets in the order 
ℎ𝑡[ℎ(𝑘)], ℎ𝑡[(ℎ(𝑘) + 1)%𝑏], … , ℎ𝑡[(ℎ(𝑘) +
𝑗)%𝑏] until:

 ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] has the same key. Found!

 ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] is empty. Not found!

 Go back to starting point. Not found!

 Disadvantage:

◦ Keys tend to cluster together.
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Others

 Quadratic probing:

◦ Compute ℎ(𝑘).

◦ Examine buckets at ℎ(𝑘), (ℎ(𝑘) + 𝑖2)%𝑏, and 

(ℎ(𝑘) − 𝑖2)%𝑏, 1 ≤ 𝑖 ≤ (𝑏 − 1)/2 .

 Rehashing:

◦ A series of hashing functions ℎ1, ℎ2, … , ℎ𝑛.

◦ Bucket is searched by ℎ1, ℎ2, … , ℎ𝑛.
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Chaining

 Use chained hash table to solve collisions

 Each bucket holds a list of keys (key chain)
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8.2.4.2
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©  Ren-Song Tsay, NTHU, Taiwan



©  Ren-Song Tsay, NTHU, Taiwan 27

8.3

Dynamic 
Hashing



Manage Overflow Problems

 Add overflow pages

 Double the size of the buckets

 Double the number of the buckets and 

reorganize

 ?
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8.3.1

N-1

1

h

0

h(key) mod N

Primary bucket pages

key
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overhead 

to rebuild



Dynamic Hashing

29

 Also called Extendible Hashing

 Idea:  Use directory of pointers to buckets

◦ Use the binary representation of the hash 

value ℎ(𝐾) in order to access a directory

◦ Double #buckets by doubling the directory

◦ Splitting just the bucket that is overflowed!

 Directory is much smaller than bucket file

◦ Much cheaper to double the directory

◦ Split only the page of data entries.  No overflow page!
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Directory

30

 An array of size 2𝑑 where 𝑑 is called the 

global depth

 Expand or shrink dynamically

 Entries point to the buckets
◦ That contain the stored records

◦ When an insertion in a bucket that is full the 

bucket splits into two buckets
 The records are redistributed among the two buckets

 Update directory appropriately
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Example of Dynamic Hashing
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h

h(key) mod N

key
(01100101)

d

Global depth

00

01

10

11

Extract last d bits

Lookup

Directory of pointers to buckets

Local depth

Buckets holding data entries

Global Depth = max(Local Depth of all buckets)

Tells # bits needed to determine the address

d1

d2

d3



Dynamic Hashing: Example
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10*

1* 5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

Data entry r with 

h(r) = 32

To locate hash value = 5 (101)



Dynamic Hashing: Insert 13*
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10*

1* 5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

13 = 1101

Has space



Dynamic Hashing: Insert 20*
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10*

1* 13*5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

Full, need split.

Consider the last 

three bits

20 =   10100



Dynamic Hashing: Insert 20*
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10*

1* 13*5* 21*

3 2

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

32=10 0000

16=01 0000

4=00 0100

12=00 1100

20=01 0100



Dynamic Hashing: Insert 9*
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10*

1* 13*5* 21*

3 2

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

9 =   1001

Need split but directory 

doubling is not

necessary



Dynamic Hashing: Insert 9*
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10*

1* 9*

3 3

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

9 =   1001

13*5* 21*

3

When should we double 

the directory during the 

split process?

1=00 0001

9=00 1001

5=00 0101

21=01 0101

13=00 1101



When to Double Directory

 Initially, all local depths are equal to global depth

◦ # of bits need to express the total # of buckets

 During the process of split, if the bucket whose 

local depth = global depth

◦ The directory must be doubled

 Global depth +1 when the directory doubles

◦ Local depth +1 when a bucket is split 
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8.4

Bloom 
Filters



Introduction

 Generalize the hashing ideas

◦ ℎ 𝑘1 = ℎ 𝑘2 ⇒ 𝑘1? 𝑘2
◦ ℎ 𝑘1 ≠ ℎ(𝑘2) ⇒ 𝑘1 ≠ 𝑘2

 Approximate set membership problem

 Trade-off  between the space and the 

false positive probability



Approximate Set Membership Problem

 Given a set

S = {𝑠1, 𝑠2, … , 𝑠𝑛} ⊆ 𝑈 (Universe)

 Want to check if “𝑥 is an element of 𝑆”

 Approximated approach
◦ ℎ 𝑆 = ℎ 𝑠1 ∨ ℎ 𝑠2 ∨ ⋯∨ ℎ 𝑠𝑛

◦ ℎ(𝑥) ∧ ℎ 𝑆 = ቊ
1 𝑥? 𝑆 false positive
0 𝑥 ∉ 𝑆 sure exclusion

◦ Take little space



Bloom Filters

1. An 𝑛-bit array 𝐴[𝑛], initially set to 0 

2. 𝑘 independent random hash functions 

ℎ1, … , ℎ𝑘: 𝑈 ⇒ {0, 1, . . . , 𝑛 − 1}

3.  𝑠𝑆, 𝐴[ℎ𝑖(𝑠)] = 1 for 1 𝑖  𝑘

To check if 𝑥𝑆, calculate

ሩ
1≤𝑖≤𝑘

𝐴[ℎ𝑖(𝑥)] = ቊ
1 𝑥? 𝑆 assume 𝑥𝑆
0 𝑥 ∉ 𝑆 sure exclusion



BF Design Consideration

 Choose 𝑛 (filter size in bits).

◦ Use as much memory as is available.

 Pick 𝑘 (number of hash functions).

◦ 𝑘 too small  high probability for different 

keys to have same signature.

◦ 𝑘 too large  soon to fill ones in the filter

 Select the 𝑘 hash functions.

◦ Hash functions should be relatively 

independent.
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 ℎ1(𝑠) = 𝑠 mod 𝑛.
 ℎ2(𝑠) = 2(𝑠 + 1)mod 𝑛.

0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

Example:  𝒏 = 𝟏𝟏, 𝒌 = 𝟐

1 111

©  Ren-Song Tsay, NTHU, Taiwan 55

Student ID 𝒉𝟏 𝒉𝟐

105021121 7 5

210510215 3 8

106000103 0 2

107062601 8 7

104034052 1 4

1 1

my class
𝑚 = 3 ⁅

false positive

not in class



The Probability of a False Positive

 We assume the hash function are random.

 After all the elements of S are hashed 

into the bloom filters, the probability that 

a specific bit is still 0 is

𝑝 = (1 − 1/𝑛)𝑘𝑚≈ 𝑒−𝑘𝑚/𝑛

Note: 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2
−⋯ ≈ 1 − 𝑥

(𝑒−𝑥)𝑘𝑚 ≈ (1 − 𝑥)𝑘𝑚



 The probability of a false positive 𝑓 is 
𝑓 = (1 − 𝑝)𝑘≈ (1 − 𝑒−𝑘𝑚/𝑛)𝑘

 To find the optimal 𝑘 to minimize 𝑓.

Minimize 𝑓 iff minimize 𝑔 = ln(𝑓)

𝑑𝑔

𝑑𝑘
= ln(1 − 𝑒−𝑘𝑚/𝑛) +

𝑘𝑚

𝑛

𝑒−
𝑘𝑚
𝑛

(1 − 𝑒−𝑘𝑚/𝑛)
⇒ 𝑘 = ln(2) ∗ (𝑛/𝑚),
⇒ 𝑓 = (1/2)𝑘 = (0.6185)𝑛/𝑚

The false positive probability falls exponentially in 
𝑛/𝑚, the number bits used per item !!

Optimal 𝒏 & 𝒌



Conclusion

 A Bloom filters is like a hash table, and simply uses 
one bit to keep track whether an item hashed to 
the location.

 If 𝑘 = 1, it’s equivalent to a hashing based 
fingerprint system.

 If 𝑛 = 𝑐𝑚 for small constant 𝑐, such as 𝑐 = 8, then 
𝑘 = 5 or 6, the false positive probability is just over 
2% .

 It’s interesting that when k is optimal 

𝑘 = ln(2) ∗ (𝑛/𝑚), then 𝑝 = 1/2.

An optimized Bloom filters looks like a random bit-
string 


