
CH. 8
HASHING

EECS 204002
Data Structures 資料結構
Prof. REN-SONG TSAY 蔡仁松教授
NTHU

1© Ren-Song Tsay, NTHU, Taiwan

Motivation

 Operations in a dictionary

◦ Get, Insert and Delete

 Binary search tree

◦ Get, Insert and Delete take 𝑂(𝑛)

 Balanced binary search tree (AVL tree)

◦ Get, Insert and Delete take 𝑂(log 𝑛)

 Hashing

◦ Get, Insert and Delete take 𝑂(1)

◦ Static hashing

◦ Dynamic hashing

2

8.1

© Ren-Song Tsay, NTHU, Taiwan

© Ren-Song Tsay, NTHU, Taiwan 3

8.2

Static
Hashing

Overview of Hashing

 The file blocks are divided into 𝑀 equal-sized

buckets

 The record with hash key value 𝐾 is stored in

bucket 𝑖
◦ 𝑖 = ℎ(𝐾), and ℎ is the hashing function

© Ren-Song Tsay, NTHU, Taiwan 4

Hash

Table

Hash Tables

 Hash table (ℎ𝑡)

◦ A container stores dictionary pairs.

 Hash table is partitioned into 𝒃 buckets

◦ ℎ𝑡[0], ℎ𝑡[1], … , ℎ𝑡[𝑏 − 1]

◦ Each bucket holds 𝒔 dictionary pairs (slots)

 Usually 𝑠 = 1, i.e. each bucket can hold exactly one

pair.

5

8.2.1

b-1

1

0

© Ren-Song Tsay, NTHU, Taiwan

pair=[record, key]

Hash Function

 The hash (bucket address) of a pair with

key 𝑘 is determined by a hash function,

ℎ(𝑘).

 Hash function maps keys into buckets by

returning an integer in the range

[0, 𝑏 − 1].

6

8.2.2

b-1

1

h

0

h(key)

key

© Ren-Song Tsay, NTHU, Taiwan

Definitions

 Key density (𝑛/𝑇)

◦ 𝑛: # of pairs in the table

◦ 𝑇: Total # of possible keys

 Loading density or loading factor

◦ 𝛼 = 𝑛/(𝑠 ∙ 𝑏)

 Two keys, 𝑘1 and 𝑘2, are said to be

synonyms w.r.t. ℎ, if ℎ(𝑘1) = ℎ(𝑘2).

7© Ren-Song Tsay, NTHU, Taiwan

Definitions

 Many keys might be mapped to the same
home bucket (synonyms)

 Collision

◦ When a key is mapped to a non-empty home
bucket

 Overflow

◦ When a key is mapped to a full home bucket

 Overflow and collision occur
simultaneously when each bucket has 1
slot.

8© Ren-Song Tsay, NTHU, Taiwan

Example

 Given a set of 8 keys (n=8)

{GA, D, A, G, L, A2,A1, A3}.

 Consider a ht with 𝑏 = 26
and 𝑠 = 2.

◦ 𝛼 =
𝑛

𝑠∙𝑏
=

8

2∗26
= 0.154

 The hash function maps

each key into a bucket using

its leading letter.

◦ Represent A – Z as 0 – 25

9

slot 1 slot 2

0

1

2

25

.

.

.

© Ren-Song Tsay, NTHU, Taiwan

Example (cont’d)

10

slot 1 slot 2

0

1

2

25

.

.

.

3

4

5

6

A A2

D

GA G

GA, D, A, G, A2 A3 A4

Collision Overflow

A3 A4

Collision Overflow

© Ren-Song Tsay, NTHU, Taiwan

mapping

A 0

D 3

G 6

Overflow

 A new record hashes to a bucket that is already

full
◦ An overflow file is kept for storing such records

◦ Overflow records that hash to each bucket can be

linked together

© Ren-Song Tsay, NTHU, Taiwan 11

N-1

1

h

0

h(key)

…
…

…

Primary bucket pages
Overflow pages

…key

Hashing Properties

 If the # of slots is small, all operations
(search, insert and delete) can be
performed in 𝑂(1).

 Using leading letter is not a good hash
function.

◦ Keys might bias toward certain buckets.

 A good hash function should be

◦Easy to compute

◦Few collisions

12© Ren-Song Tsay, NTHU, Taiwan

Uniform Hash Function

 A hash function that does not result in a
biased use of the hash table for random
keys.

 Given a key 𝑘 chosen at random,

probability ℎ 𝑘 = 𝑖 =
1

𝑏
, ∀ 𝑖.

 Four popular hash functions

◦ Division

◦ Mid-Square

◦ Folding

◦ Digit Analysis

13

8.2.2

© Ren-Song Tsay, NTHU, Taiwan

Division

 ℎ(𝑘) = 𝑘 % 𝐷

 Keys are non-negative integer

 The home bucket is obtained by using the

modulo (%) operator.

 Bucket address range from 0 to 𝐷 − 1,

◦ hash table must have at least 𝑏 = 𝐷 buckets.

 Using a prime number for 𝐷 (see

textbook).

 Ex: ℎ 𝑘 = 219 = 219%8 = 3

14

8.2.2.1

© Ren-Song Tsay, NTHU, Taiwan

Mid-Square

 Squaring the keys.

 Use an appropriate number of bits from

the middle of the squared key as bucket

address.

 If 𝑟 bits is used, the size of the table is 2𝑟

◦ If there are 8 buckets (23), we need the

middle 3-bits to determine the bucket address

15

8.2.2.2

key=219 2192=47961=1011 1011 0101 1001 r=3

© Ren-Song Tsay, NTHU, Taiwan

h(219)=5

Folding

 The key is partitioned into several parts

 These parts are added together to obtain

the key address

© Ren-Song Tsay, NTHU, Taiwan 16

8.2.2.3

k=12320324111220

+ + + + = 699

Digit Analysis

 All the keys in the table are known in advance

 Represent each key as a number in radix 𝑟
 Digits having the most skewed distributions are

deleted

 Employ the remaining digits

 Example: 100 buckets = 2 digits
◦ 𝑚 = 105 delete 3 digits

© Ren-Song Tsay, NTHU, Taiwan 17

8.2.2.4

𝒌𝟏= 𝒅𝟏𝟏 𝒅𝟏𝟐 … 𝒅𝟏𝒏

𝒌𝟐= 𝒅𝟐𝟏 𝒅𝟐𝟐 … 𝒅𝟐𝒏

…

𝒌𝒎= 𝒅𝒎𝟏 𝒅𝒎𝟐 … 𝒅𝒎𝒏

The Secure Hash Algorithm (SHA)

© Ren-Song Tsay, NTHU, Taiwan 18

8.2.3

𝑊𝑡

 4 runs * 20 steps

𝑡 Step #, 𝟎 ≤ 𝒕 ≤ 𝟕𝟗

𝑓𝑡 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

<<<𝑘 Circular left shift 𝑘 bits

𝑊𝑡
A 32-bit value derived

from 𝑀𝑖

𝐾𝑡 A constant

SHA-1: a Merkle-Damgard Hash Function

 Padding: Given an 𝑚-bit message, a single bit “1”
is appended as the (𝑚 + 1)-th bit and then
(448 − (𝑚 + 1)) mod 512 (between 0 and
511) zero bits are appended. As a result, the
message becomes 64-bit short of being a
multiple of 512 bits long.

 Merkle-Damgard Strengthening: append the 64-
bit representation of the original length of 𝑚,
making the result a multiple of 512 bits long.

 Divide the result into 512-bit blocks, denoted
by 𝑀1, 𝑀2, . . . , 𝑀𝑙 .

© Ren-Song Tsay, NTHU, Taiwan 19

m bits 1 bit 64 bits

message 1 000…0 m

SHA-1

 The internal state of SHA-1 is composed of five 32-bit

words A, B, C, D and E, used to keep the 160-bit

chaining value ℎ𝑖 .

 Initialization: The initial value (ℎ0) is (in hexadecimal)
◦ 𝐴0 = 67452301x

◦ 𝐵0 = EFCDAB89x

◦ 𝐶0 = 98BADCFEx

◦ 𝐷0 = 10325476x

◦ 𝐸0 = C3D2E1F0x .

 Compression: For each block, the compression function

ℎ𝑖 = 𝐻(ℎ𝑖−1, 𝑀𝑖) is applied on the previous value of

ℎ𝑖−1 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) and the message block.

 Output: The hash value is the 160-bit value

ℎ𝑙 = (𝐴, 𝐵, 𝐶, 𝐷, 𝐸).

© Ren-Song Tsay, NTHU, Taiwan 20

The Compression Function H

 Divide 𝑀𝑖 into 16*32-bit words:

◦ 𝑊0,𝑊1,𝑊2, . . . ,𝑊15.

 for t = 16 to 79 compute 𝑊𝑡 = (𝑊𝑡−3 ⊕𝑊𝑡−8 ⊕𝑊𝑡−14 ⊕𝑊𝑡−16) ≪ 1.

◦ Remark: The one-bit rotate in computing 𝑊𝑡 was not included in SHA, and is the

only difference between SHA and SHA-1.

 Set ℎ0 = (𝐴0, 𝐵0, 𝐶0, 𝐷0, 𝐸0).

 For t = 0 to 79 do

◦ 𝑇 = 𝐴𝑡 ≪ 5 + 𝑓𝑡(𝐵𝑡 , 𝐶𝑡 , 𝐷𝑡) + 𝐸𝑡 +𝑊𝑡 + 𝐾𝑡.

◦ 𝐸𝑡+1 = 𝐷𝑡 , 𝐷𝑡+1= 𝐶𝑡 , 𝐶𝑡+1 = 𝐵𝑡 ≪ 30, 𝐵𝑡+1 = 𝐴𝑡 , 𝐴𝑡+1 = 𝑇.

 Output 𝐴 = 𝐴0 + 𝐴80, 𝐵 = 𝐵0 + 𝐵80, 𝐶 = 𝐶0 + 𝐶80, 𝐷 = 𝐷0 + 𝐷80,
and 𝐸 = 𝐸0 + 𝐸80(𝑚𝑜𝑑𝑢𝑙𝑜 232).

 The function 𝑓𝑡 and the values 𝐾𝑡 used above are:

© Ren-Song Tsay, NTHU, Taiwan 21

𝑓𝑡(𝑋, 𝑌 , 𝑍) = 𝐾𝑡 =

0 ≤ t ≤ 19 XY ∨ (¬X)Z 5A827999

20 ≤ t ≤ 39 X ⊕Y ⊕ Z 6ED9EBA1

40 ≤ t ≤ 59 XY ∨ XZ ∨YZ 8F1BBCDC

60 ≤ t ≤ 79 X ⊕Y ⊕ Z CA62C1D6

Overflow Handling

 Open addressing

◦ Linear probing

◦ Quadratic probing

◦ Rehashing

◦ Random probing

 Chaining

22

8.2.4

© Ren-Song Tsay, NTHU, Taiwan

Linear Probing: Insert

 Find the closest unfilled bucket.

 To insert a key 𝑘.

◦ Compute ℎ(𝑘).

◦ Check the hash table buckets in the
order ℎ𝑡[ℎ(𝑘)], ℎ𝑡[(ℎ(𝑘) +
1)%𝑏],… , ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] until an
empty bucket is found.

◦ If no empty bucket is found, double
the size of ℎ𝑡.

 e.g. GA, D, A, G, A2

23

8.2.4.1

0

1

2

.

.

.

3

4

5

6

7

8

9

A

D

GA

G

A2

© Ren-Song Tsay, NTHU, Taiwan

Linear Probing: Search

 Searching for a key 𝑘.

◦ Compute ℎ(𝑘).

◦ Examine the hash table buckets in the order
ℎ𝑡[ℎ(𝑘)], ℎ𝑡[(ℎ(𝑘) + 1)%𝑏], … , ℎ𝑡[(ℎ(𝑘) +
𝑗)%𝑏] until:

 ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] has the same key. Found!

 ℎ𝑡[(ℎ(𝑘) + 𝑗)%𝑏] is empty. Not found!

 Go back to starting point. Not found!

 Disadvantage:

◦ Keys tend to cluster together.

24

8.2.4.1

© Ren-Song Tsay, NTHU, Taiwan

Others

 Quadratic probing:

◦ Compute ℎ(𝑘).

◦ Examine buckets at ℎ(𝑘), (ℎ(𝑘) + 𝑖2)%𝑏, and

(ℎ(𝑘) − 𝑖2)%𝑏, 1 ≤ 𝑖 ≤ (𝑏 − 1)/2 .

 Rehashing:

◦ A series of hashing functions ℎ1, ℎ2, … , ℎ𝑛.

◦ Bucket is searched by ℎ1, ℎ2, … , ℎ𝑛.

25

8.2.4.1

© Ren-Song Tsay, NTHU, Taiwan

Chaining

 Use chained hash table to solve collisions

 Each bucket holds a list of keys (key chain)

26

8.2.4.2

0

0

0

0

0

0

0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[25]

ht

•

•

•

A4

D

E

L

ZA

0

0

0

A3 A1 A2 A

GA

Z

0

G 0

0

data link

© Ren-Song Tsay, NTHU, Taiwan

© Ren-Song Tsay, NTHU, Taiwan 27

8.3

Dynamic
Hashing

Manage Overflow Problems

 Add overflow pages

 Double the size of the buckets

 Double the number of the buckets and

reorganize

 ?

28

8.3.1

N-1

1

h

0

h(key) mod N

Primary bucket pages

key

© Ren-Song Tsay, NTHU, Taiwan

overhead

to rebuild

Dynamic Hashing

29

 Also called Extendible Hashing

 Idea: Use directory of pointers to buckets

◦ Use the binary representation of the hash

value ℎ(𝐾) in order to access a directory

◦ Double #buckets by doubling the directory

◦ Splitting just the bucket that is overflowed!

 Directory is much smaller than bucket file

◦ Much cheaper to double the directory

◦ Split only the page of data entries. No overflow page!

© Ren-Song Tsay, NTHU, Taiwan

Directory

30

 An array of size 2𝑑 where 𝑑 is called the

global depth

 Expand or shrink dynamically

 Entries point to the buckets
◦ That contain the stored records

◦ When an insertion in a bucket that is full the

bucket splits into two buckets
 The records are redistributed among the two buckets

 Update directory appropriately

© Ren-Song Tsay, NTHU, Taiwan

Example of Dynamic Hashing

© Ren-Song Tsay, NTHU, Taiwan 31

h

h(key) mod N

key
(01100101)

d

Global depth

00

01

10

11

Extract last d bits

Lookup

Directory of pointers to buckets

Local depth

Buckets holding data entries

Global Depth = max(Local Depth of all buckets)

Tells # bits needed to determine the address

d1

d2

d3

Dynamic Hashing: Example

© Ren-Song Tsay, NTHU, Taiwan 32

10*

1* 5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

Data entry r with

h(r) = 32

To locate hash value = 5 (101)

Dynamic Hashing: Insert 13*

© Ren-Song Tsay, NTHU, Taiwan 33

10*

1* 5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

13 = 1101

Has space

Dynamic Hashing: Insert 20*

© Ren-Song Tsay, NTHU, Taiwan 34

10*

1* 13*5* 21*

2 2

2

15* 7* 19*

2

4* 16*12*32*

2

00

01

10

11

DIRECTORY

DATA PAGES

Full, need split.

Consider the last

three bits

20 = 10100

Dynamic Hashing: Insert 20*

© Ren-Song Tsay, NTHU, Taiwan 35

10*

1* 13*5* 21*

3 2

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

32=10 0000

16=01 0000

4=00 0100

12=00 1100

20=01 0100

Dynamic Hashing: Insert 9*

© Ren-Song Tsay, NTHU, Taiwan 36

10*

1* 13*5* 21*

3 2

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

9 = 1001

Need split but directory

doubling is not

necessary

Dynamic Hashing: Insert 9*

© Ren-Song Tsay, NTHU, Taiwan 37

10*

1* 9*

3 3

2

15* 7* 19*

2

16*32*

3

000

001

010

011

4* 12*20*

3

100

101

110

111

9 = 1001

13*5* 21*

3

When should we double

the directory during the

split process?

1=00 0001

9=00 1001

5=00 0101

21=01 0101

13=00 1101

When to Double Directory

 Initially, all local depths are equal to global depth

◦ # of bits need to express the total # of buckets

 During the process of split, if the bucket whose

local depth = global depth

◦ The directory must be doubled

 Global depth +1 when the directory doubles

◦ Local depth +1 when a bucket is split

© Ren-Song Tsay, NTHU, Taiwan 38

© Ren-Song Tsay, NTHU, Taiwan 39

8.4

Bloom
Filters

Introduction

 Generalize the hashing ideas

◦ ℎ 𝑘1 = ℎ 𝑘2 ⇒ 𝑘1? 𝑘2
◦ ℎ 𝑘1 ≠ ℎ(𝑘2) ⇒ 𝑘1 ≠ 𝑘2

 Approximate set membership problem

 Trade-off between the space and the

false positive probability

Approximate Set Membership Problem

 Given a set

S = {𝑠1, 𝑠2, … , 𝑠𝑛} ⊆ 𝑈 (Universe)

 Want to check if “𝑥 is an element of 𝑆”

 Approximated approach
◦ ℎ 𝑆 = ℎ 𝑠1 ∨ ℎ 𝑠2 ∨ ⋯∨ ℎ 𝑠𝑛

◦ ℎ(𝑥) ∧ ℎ 𝑆 = ቊ
1 𝑥? 𝑆 false positive
0 𝑥 ∉ 𝑆 sure exclusion

◦ Take little space

Bloom Filters

1. An 𝑛-bit array 𝐴[𝑛], initially set to 0

2. 𝑘 independent random hash functions

ℎ1, … , ℎ𝑘: 𝑈 ⇒ {0, 1, . . . , 𝑛 − 1}

3.  𝑠𝑆, 𝐴[ℎ𝑖(𝑠)] = 1 for 1 𝑖  𝑘

To check if 𝑥𝑆, calculate

ሩ
1≤𝑖≤𝑘

𝐴[ℎ𝑖(𝑥)] = ቊ
1 𝑥? 𝑆 assume 𝑥𝑆
0 𝑥 ∉ 𝑆 sure exclusion

BF Design Consideration

 Choose 𝑛 (filter size in bits).

◦ Use as much memory as is available.

 Pick 𝑘 (number of hash functions).

◦ 𝑘 too small  high probability for different

keys to have same signature.

◦ 𝑘 too large  soon to fill ones in the filter

 Select the 𝑘 hash functions.

◦ Hash functions should be relatively

independent.

© Ren-Song Tsay, NTHU, Taiwan 43

 ℎ1(𝑠) = 𝑠 mod 𝑛.
 ℎ2(𝑠) = 2(𝑠 + 1)mod 𝑛.

0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10

Example: 𝒏 = 𝟏𝟏, 𝒌 = 𝟐

1 111

© Ren-Song Tsay, NTHU, Taiwan 55

Student ID 𝒉𝟏 𝒉𝟐

105021121 7 5

210510215 3 8

106000103 0 2

107062601 8 7

104034052 1 4

1 1

my class
𝑚 = 3 ⁅

false positive

not in class

The Probability of a False Positive

 We assume the hash function are random.

 After all the elements of S are hashed

into the bloom filters, the probability that

a specific bit is still 0 is

𝑝 = (1 − 1/𝑛)𝑘𝑚≈ 𝑒−𝑘𝑚/𝑛

Note:

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2
−⋯ ≈ 1 − 𝑥

(𝑒−𝑥)𝑘𝑚 ≈ (1 − 𝑥)𝑘𝑚

 The probability of a false positive 𝑓 is
𝑓 = (1 − 𝑝)𝑘≈ (1 − 𝑒−𝑘𝑚/𝑛)𝑘

 To find the optimal 𝑘 to minimize 𝑓.

Minimize 𝑓 iff minimize 𝑔 = ln(𝑓)

𝑑𝑔

𝑑𝑘
= ln(1 − 𝑒−𝑘𝑚/𝑛) +

𝑘𝑚

𝑛

𝑒−
𝑘𝑚
𝑛

(1 − 𝑒−𝑘𝑚/𝑛)
⇒ 𝑘 = ln(2) ∗ (𝑛/𝑚),
⇒ 𝑓 = (1/2)𝑘 = (0.6185)𝑛/𝑚

The false positive probability falls exponentially in
𝑛/𝑚, the number bits used per item !!

Optimal 𝒏 & 𝒌

Conclusion

 A Bloom filters is like a hash table, and simply uses
one bit to keep track whether an item hashed to
the location.

 If 𝑘 = 1, it’s equivalent to a hashing based
fingerprint system.

 If 𝑛 = 𝑐𝑚 for small constant 𝑐, such as 𝑐 = 8, then
𝑘 = 5 or 6, the false positive probability is just over
2% .

 It’s interesting that when k is optimal

𝑘 = ln(2) ∗ (𝑛/𝑚), then 𝑝 = 1/2.

An optimized Bloom filters looks like a random bit-
string

